6,239 research outputs found

    On Achieving Diversity in the Presence of Outliers in Participatory Camera Sensor Networks

    Get PDF
    This paper addresses the problem of collection and delivery of a representative subset of pictures, in participatory camera networks, to maximize coverage when a significant portion of the pictures may be redundant or irrelevant. Consider, for example, a rescue mission where volunteers and survivors of a large-scale disaster scout a wide area to capture pictures of damage in distressed neighborhoods, using handheld cameras, and report them to a rescue station. In this participatory camera network, a significant amount of pictures may be redundant (i.e., similar pictures may be reported by many) or irrelevant (i.e., may not document an event of interest). Given this pool of pictures, we aim to build a protocol to store and deliver a smaller subset of pictures, among all those taken, that minimizes redundancy and eliminates irrelevant objects and outliers. While previous work addressed removal of redundancy alone, doing so in the presence of outliers is tricky, because outliers, by their very nature, are different from other objects, causing redundancy minimizing algorithms to favor their inclusion, which is at odds with the goal of finding a representative subset. To eliminate both outliers and redundancy at the same time, two seemingly opposite objectives must be met together. The contribution of this paper lies in a new prioritization technique (and its in-network implementation) that minimizes redundancy among delivered pictures, while also reducing outliers.unpublishedis peer reviewe

    Unmanned Aerial Systems for Wildland and Forest Fires

    Full text link
    Wildfires represent an important natural risk causing economic losses, human death and important environmental damage. In recent years, we witness an increase in fire intensity and frequency. Research has been conducted towards the development of dedicated solutions for wildland and forest fire assistance and fighting. Systems were proposed for the remote detection and tracking of fires. These systems have shown improvements in the area of efficient data collection and fire characterization within small scale environments. However, wildfires cover large areas making some of the proposed ground-based systems unsuitable for optimal coverage. To tackle this limitation, Unmanned Aerial Systems (UAS) were proposed. UAS have proven to be useful due to their maneuverability, allowing for the implementation of remote sensing, allocation strategies and task planning. They can provide a low-cost alternative for the prevention, detection and real-time support of firefighting. In this paper we review previous work related to the use of UAS in wildfires. Onboard sensor instruments, fire perception algorithms and coordination strategies are considered. In addition, we present some of the recent frameworks proposing the use of both aerial vehicles and Unmanned Ground Vehicles (UV) for a more efficient wildland firefighting strategy at a larger scale.Comment: A recent published version of this paper is available at: https://doi.org/10.3390/drones501001

    Minimal Camera Networks for 3D Image Based Modeling of Cultural Heritage Objects

    Get PDF
    3D modeling of cultural heritage objects like artifacts, statues and buildings is nowadays an important tool for virtual museums, preservation and restoration. In this paper, we introduce a method to automatically design a minimal imaging network for the 3D modeling of cultural heritage objects. This becomes important for reducing the image capture time and processing when documenting large and complex sites. Moreover, such a minimal camera network design is desirable for imaging non-digitally documented artifacts in museums and other archeological sites to avoid disturbing the visitors for a long time and/or moving delicate precious objects to complete the documentation task. The developed method is tested on the Iraqi famous statue “Lamassu”. Lamassu is a human-headed winged bull of over 4.25 m in height from the era of Ashurnasirpal II (883–859 BC). Close-range photogrammetry is used for the 3D modeling task where a dense ordered imaging network of 45 high resolution images were captured around Lamassu with an object sample distance of 1 mm. These images constitute a dense network and the aim of our study was to apply our method to reduce the number of images for the 3D modeling and at the same time preserve pre-defined point accuracy. Temporary control points were fixed evenly on the body of Lamassu and measured by using a total station for the external validation and scaling purpose. Two network filtering methods are implemented and three different software packages are used to investigate the efficiency of the image orientation and modeling of the statue in the filtered (reduced) image networks. Internal and external validation results prove that minimal image networks can provide highly accurate records and efficiency in terms of visualization, completeness, processing time (>60% reduction) and the final accuracy of 1 mm

    A comprehensive survey of multi-view video summarization

    Full text link
    [EN] There has been an exponential growth in the amount of visual data on a daily basis acquired from single or multi-view surveillance camera networks. This massive amount of data requires efficient mechanisms such as video summarization to ensure that only significant data are reported and the redundancy is reduced. Multi-view video summarization (MVS) is a less redundant and more concise way of providing information from the video content of all the cameras in the form of either keyframes or video segments. This paper presents an overview of the existing strategies proposed for MVS, including their advantages and drawbacks. Our survey covers the genericsteps in MVS, such as the pre-processing of video data, feature extraction, and post-processing followed by summary generation. We also describe the datasets that are available for the evaluation of MVS. Finally, we examine the major current issues related to MVS and put forward the recommendations for future research(1). (C) 2020 Elsevier Ltd. All rights reserved.This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2019R1A2B5B01070067)Hussain, T.; Muhammad, K.; Ding, W.; Lloret, J.; Baik, SW.; De Albuquerque, VHC. (2021). A comprehensive survey of multi-view video summarization. Pattern Recognition. 109:1-15. https://doi.org/10.1016/j.patcog.2020.10756711510

    Radar and RGB-depth sensors for fall detection: a review

    Get PDF
    This paper reviews recent works in the literature on the use of systems based on radar and RGB-Depth (RGB-D) sensors for fall detection, and discusses outstanding research challenges and trends related to this research field. Systems to detect reliably fall events and promptly alert carers and first responders have gained significant interest in the past few years in order to address the societal issue of an increasing number of elderly people living alone, with the associated risk of them falling and the consequences in terms of health treatments, reduced well-being, and costs. The interest in radar and RGB-D sensors is related to their capability to enable contactless and non-intrusive monitoring, which is an advantage for practical deployment and users’ acceptance and compliance, compared with other sensor technologies, such as video-cameras, or wearables. Furthermore, the possibility of combining and fusing information from The heterogeneous types of sensors is expected to improve the overall performance of practical fall detection systems. Researchers from different fields can benefit from multidisciplinary knowledge and awareness of the latest developments in radar and RGB-D sensors that this paper is discussing
    corecore