8,843 research outputs found

    Intelligent systems in manufacturing: current developments and future prospects

    Get PDF
    Global competition and rapidly changing customer requirements are demanding increasing changes in manufacturing environments. Enterprises are required to constantly redesign their products and continuously reconfigure their manufacturing systems. Traditional approaches to manufacturing systems do not fully satisfy this new situation. Many authors have proposed that artificial intelligence will bring the flexibility and efficiency needed by manufacturing systems. This paper is a review of artificial intelligence techniques used in manufacturing systems. The paper first defines the components of a simplified intelligent manufacturing systems (IMS), the different Artificial Intelligence (AI) techniques to be considered and then shows how these AI techniques are used for the components of IMS

    Logistics Hub Location Optimization: A K-Means and P-Median Model Hybrid Approach Using Road Network Distances

    Full text link
    Logistic hubs play a pivotal role in the last-mile delivery distance; even a slight increment in distance negatively impacts the business of the e-commerce industry while also increasing its carbon footprint. The growth of this industry, particularly after Covid-19, has further intensified the need for optimized allocation of resources in an urban environment. In this study, we use a hybrid approach to optimize the placement of logistic hubs. The approach sequentially employs different techniques. Initially, delivery points are clustered using K-Means in relation to their spatial locations. The clustering method utilizes road network distances as opposed to Euclidean distances. Non-road network-based approaches have been avoided since they lead to erroneous and misleading results. Finally, hubs are located using the P-Median method. The P-Median method also incorporates the number of deliveries and population as weights. Real-world delivery data from Muller and Phipps (M&P) is used to demonstrate the effectiveness of the approach. Serving deliveries from the optimal hub locations results in the saving of 815 (10%) meters per delivery

    Sustainability Analysis under Disruption Risks

    Get PDF
    Resilience to disruptions and sustainability are both of paramount importance to supply chains. This paper presents a hybrid methodology for the design of a sustainable supply network that performs resiliently in the face of random disruptions. A stochastic bi-objective optimization model is developed that utilizes a fuzzy c-means clustering method to quantify and assess the sustainability performance of the suppliers. The proposed model determines outsourcing decisions and buttressing strategies that minimize the expected total cost and maximize the overall sustainability performance in disruptions. Important managerial insights and practical implications are obtained from the model implementation in a case study of plastic pipe industry

    Combining heuristics with simulation and fuzzy logic to solve a flexible-size location routing problem under uncertainty

    Get PDF
    The location routing problem integrates both a facility location and a vehicle routing problem. Each of these problems are NP-hard in nature, which justifies the use of heuristic-based algorithms when dealing with large-scale instances that need to be solved in reasonable computing times. This paper discusses a realistic variant of the problem that considers facilities of different sizes and two types of uncertainty conditions. In particular, we assume that some customers’ demands are stochastic, while others follow a fuzzy pattern. An iterated local search metaheuristic is integrated with simulation and fuzzy logic to solve the aforementioned problem, and a series of computational experiments are run to illustrate the potential of the proposed algorithm.This work has been partially supported by the Spanish Ministry of Science (PID2019-111100RB-C21/AEI/10.13039/501100011033). In addition, it has received the support of the Doctoral School at the Universitat Oberta de Catalunya (Spain) and the Universidad de La Sabana (INGPhD-12-2020).Peer ReviewedPostprint (published version

    Optimization of Location-Routing for the Waste Household Appliances Recycling Logistics under the Uncertain Condition

    Get PDF
    Waste household appliances and electronic products usually contain harmful substances which need scientific and reasonable collection, classification, processing, recovery and disposal to achieve sustainable and effective recycling and utilization. In recent years, due to the poor management of waste household appliances recycling logistics system, safety accidents occur frequently, which seriously harm the health and life safety of the society. This paper studies the risk management of recycling waste household appliances under uncertain conditions and establishes a risk measurement model under fuzzy population density. Considering the multi-stage and classification diversity of waste household appliances recycling logistics, the multi-objective location routing model and location - routing model are established respectively. Based on the model complexity analysis, the solution method of multi-objective model is designed. Finally, the validity of the model and algorithm is verified by examples and tests

    Cell Production System Design: A Literature Review

    Get PDF
    Purpose In a cell production system, a number of machines that differ in function are housed in the same cell. The task of these cells is to complete operations on similar parts that are in the same group. Determining the family of machine parts and cells is one of the major design problems of production cells. Cell production system design methods include clustering, graph theory, artificial intelligence, meta-heuristic, simulation, mathematical programming. This article discusses the operation of methods and research in the field of cell production system design. Methodology: To examine these methods, from 187 articles published in this field by authoritative scientific sources, based on the year of publication and the number of restrictions considered and close to reality, which are searched using the keywords of these restrictions and among them articles Various aspects of production and design problems, such as considering machine costs and cell size and process routing, have been selected simultaneously. Findings: Finally, the distribution diagram of the use of these methods and the limitations considered by their researchers, shows the use and efficiency of each of these methods. By examining them, more efficient and efficient design fields of this type of production system can be identified. Originality/Value: In this article, the literature on cell production system from 1972 to 2021 has been reviewed

    Evaluating strategies for implementing industry 4.0: a hybrid expert oriented approach of B.W.M. and interval valued intuitionistic fuzzy T.O.D.I.M.

    Get PDF
    open access articleDeveloping and accepting industry 4.0 influences the industry structure and customer willingness. To a successful transition to industry 4.0, implementation strategies should be selected with a systematic and comprehensive view to responding to the changes flexibly. This research aims to identify and prioritise the strategies for implementing industry 4.0. For this purpose, at first, evaluation attributes of strategies and also strategies to put industry 4.0 in practice are recognised. Then, the attributes are weighted to the experts’ opinion by using the Best Worst Method (BWM). Subsequently, the strategies for implementing industry 4.0 in Fara-Sanat Company, as a case study, have been ranked based on the Interval Valued Intuitionistic Fuzzy (IVIF) of the TODIM method. The results indicated that the attributes of ‘Technology’, ‘Quality’, and ‘Operation’ have respectively the highest importance. Furthermore, the strategies for “new business models development’, ‘Improving information systems’ and ‘Human resource management’ received a higher rank. Eventually, some research and executive recommendations are provided. Having strategies for implementing industry 4.0 is a very important solution. Accordingly, multi-criteria decision-making (MCDM) methods are a useful tool for adopting and selecting appropriate strategies. In this research, a novel and hybrid combination of BWM-TODIM is presented under IVIF information

    Submodular Load Clustering with Robust Principal Component Analysis

    Full text link
    Traditional load analysis is facing challenges with the new electricity usage patterns due to demand response as well as increasing deployment of distributed generations, including photovoltaics (PV), electric vehicles (EV), and energy storage systems (ESS). At the transmission system, despite of irregular load behaviors at different areas, highly aggregated load shapes still share similar characteristics. Load clustering is to discover such intrinsic patterns and provide useful information to other load applications, such as load forecasting and load modeling. This paper proposes an efficient submodular load clustering method for transmission-level load areas. Robust principal component analysis (R-PCA) firstly decomposes the annual load profiles into low-rank components and sparse components to extract key features. A novel submodular cluster center selection technique is then applied to determine the optimal cluster centers through constructed similarity graph. Following the selection results, load areas are efficiently assigned to different clusters for further load analysis and applications. Numerical results obtained from PJM load demonstrate the effectiveness of the proposed approach.Comment: Accepted by 2019 IEEE PES General Meeting, Atlanta, G

    Robust Multi-Objective Sustainable Reverse Supply Chain Planning: An Application in the Steel Industry

    Get PDF
    In the design of the supply chain, the use of the returned products and their recycling in the production and consumption network is called reverse logistics. The proposed model aims to optimize the flow of materials in the supply chain network (SCN), and determine the amount and location of facilities and the planning of transportation in conditions of demand uncertainty. Thus, maximizing the total profit of operation, minimizing adverse environmental effects, and maximizing customer and supplier service levels have been considered as the main objectives. Accordingly, finding symmetry (balance) among the profit of operation, the environmental effects and customer and supplier service levels is considered in this research. To deal with the uncertainty of the model, scenario-based robust planning is employed alongside a meta-heuristic algorithm (NSGA-II) to solve the model with actual data from a case study of the steel industry in Iran. The results obtained from the model, solving and validating, compared with actual data indicated that the model could optimize the objectives seamlessly and determine the amount and location of the necessary facilities for the steel industry more appropriately.This article belongs to the Special Issue Uncertain Multi-Criteria Optimization Problem
    corecore