1,215 research outputs found

    Simulation Software as a Service and Service-Oriented Simulation Experiment

    Get PDF
    Simulation software is being increasingly used in various domains for system analysis and/or behavior prediction. Traditionally, researchers and field experts need to have access to the computers that host the simulation software to do simulation experiments. With recent advances in cloud computing and Software as a Service (SaaS), a new paradigm is emerging where simulation software is used as services that are composed with others and dynamically influence each other for service-oriented simulation experiment on the Internet. The new service-oriented paradigm brings new research challenges in composing multiple simulation services in a meaningful and correct way for simulation experiments. To systematically support simulation software as a service (SimSaaS) and service-oriented simulation experiment, we propose a layered framework that includes five layers: an infrastructure layer, a simulation execution engine layer, a simulation service layer, a simulation experiment layer and finally a graphical user interface layer. Within this layered framework, we provide a specification for both simulation experiment and the involved individual simulation services. Such a formal specification is useful in order to support systematic compositions of simulation services as well as automatic deployment of composed services for carrying out simulation experiments. Built on this specification, we identify the issue of mismatch of time granularity and event granularity in composing simulation services at the pragmatic level, and develop four types of granularity handling agents to be associated with the couplings between services. The ultimate goal is to achieve standard and automated approaches for simulation service composition in the emerging service-oriented computing environment. Finally, to achieve more efficient service-oriented simulation, we develop a profile-based partitioning method that exploits a system’s dynamic behavior and uses it as a profile to guide the spatial partitioning for more efficient parallel simulation. We develop the work in this dissertation within the application context of wildfire spread simulation, and demonstrate the effectiveness of our work based on this application

    Architecture of Environmental Risk Modelling: for a faster and more robust response to natural disasters

    Full text link
    Demands on the disaster response capacity of the European Union are likely to increase, as the impacts of disasters continue to grow both in size and frequency. This has resulted in intensive research on issues concerning spatially-explicit information and modelling and their multiple sources of uncertainty. Geospatial support is one of the forms of assistance frequently required by emergency response centres along with hazard forecast and event management assessment. Robust modelling of natural hazards requires dynamic simulations under an array of multiple inputs from different sources. Uncertainty is associated with meteorological forecast and calibration of the model parameters. Software uncertainty also derives from the data transformation models (D-TM) needed for predicting hazard behaviour and its consequences. On the other hand, social contributions have recently been recognized as valuable in raw-data collection and mapping efforts traditionally dominated by professional organizations. Here an architecture overview is proposed for adaptive and robust modelling of natural hazards, following the Semantic Array Programming paradigm to also include the distributed array of social contributors called Citizen Sensor in a semantically-enhanced strategy for D-TM modelling. The modelling architecture proposes a multicriteria approach for assessing the array of potential impacts with qualitative rapid assessment methods based on a Partial Open Loop Feedback Control (POLFC) schema and complementing more traditional and accurate a-posteriori assessment. We discuss the computational aspect of environmental risk modelling using array-based parallel paradigms on High Performance Computing (HPC) platforms, in order for the implications of urgency to be introduced into the systems (Urgent-HPC).Comment: 12 pages, 1 figure, 1 text box, presented at the 3rd Conference of Computational Interdisciplinary Sciences (CCIS 2014), Asuncion, Paragua

    An Historical Review of the Simplified Physical Fire Spread Model PhyFire: Model and Numerical Methods

    Get PDF
    A historical review is conducted of PhyFire, a simplified physical forest fire spread model developed by the research group on Numerical Simulation and Scientific Computation (SINUMCC) at the University of Salamanca. The review ranges from the first version of the model to the current one now integrated into GIS, considering all the mathematical problems and numerical methods involved throughout its development: finite differences, mixed, classical and adaptive finite elements, data assimilation, sensitivity analysis, parameter adjustment, and parallel computation, among others. The simulation of processes as complex as forest fires involves a multidisciplinary effort that is constantly being enhanced, while posing interesting challenges from a mathematical, numerical, and computational perspective, without losing sight of the overriding aim of developing an efficient, effective, and useful simulation tool

    Doctor of Philosophy

    Get PDF
    dissertationWildfire is a common hazard in the western U.S. that can cause significant loss of life and property. When a fire approaches a community and becomes a threat to the residents, emergency managers need to take into account both fire behavior and the expected response of the threatened population to warnings before they issue protective action recommendations to the residents at risk. In wildfire evacuation practices, incident commanders use prominent geographic features (e.g., rivers, roads, and ridgelines) as trigger points, such that when a fire crosses a feature, the selected protective action recommendation will be issued to the residents at risk. This dissertation examines the dynamics of evacuation timing by coupling wildfire spread modeling, trigger modeling, reverse geocoding, and traffic simulation to model wildfire evacuation as a coupled human-environmental system. This dissertation is composed of three manuscripts. In the first manuscript, wildfire simulation and household-level trigger modeling are coupled to stage evacuation warnings. This work presents a bottom-up approach to constructing evacuation warning zones and is characterized by fine-grain, data-driven spatial modeling. The results in this work will help improve our understanding and representation of the spatiotemporal dynamics in wildfire evacuation timing and warnings. The second manuscript integrates trigger modeling and reverse geocoding to extract and select prominent geographic features along the boundary of a trigger buffer. A case study using a global gazetteer GeoNames demonstrates the potential value of the proposed method in facilitating communications in real-world evacuation practice. This work also sheds light on using reverse geocoding in other environmental modeling applications. The third manuscript explores the spatiotemporal dynamics behind evacuation timing by coupling fire and traffic simulation models. The proposed method sets wildfire evacuation triggers based on the estimated evacuation times using agent-based traffic simulation and could be potentially used in evacuation planning. In summary, this dissertation enriches existing trigger modeling approaches by coupling fire simulation, reverse geocoding, and traffic simulation. A framework for modeling wildfire evacuation as a coupled human-environmental system using triggers is proposed. Moreover, this dissertation also attempts to advocate and promote open science in wildfire evacuation modeling by using open data and software tools in different phases of modeling and simulation

    Doctor of Philosophy

    Get PDF
    dissertationWildfire is a common hazard in the western U.S. that can cause significant loss of life and property. When a fire approaches a community and becomes a threat to the residents, emergency managers need to take into account both fire behavior and the expected response of the threatened population to warnings before they issue protective action recommendations to the residents at risk. In wildfire evacuation practices, incident commanders use prominent geographic features (e.g., rivers, roads, and ridgelines) as trigger points, such that when a fire crosses a feature, the selected protective action recommendation will be issued to the residents at risk. This dissertation examines the dynamics of evacuation timing by coupling wildfire spread modeling, trigger modeling, reverse geocoding, and traffic simulation to model wildfire evacuation as a coupled human-environmental system. This dissertation is composed of three manuscripts. In the first manuscript, wildfire simulation and household-level trigger modeling are coupled to stage evacuation warnings. This work presents a bottom-up approach to constructing evacuation warning zones and is characterized by fine-grain, data-driven spatial modeling. The results in this work will help improve our understanding and representation of the spatiotemporal dynamics in wildfire evacuation timing and warnings. The second manuscript integrates trigger modeling and reverse geocoding to extract and select prominent geographic features along the boundary of a trigger buffer. A case study using a global gazetteer GeoNames demonstrates the potential value of the proposed method in facilitating communications in real-world evacuation practice. This work also sheds light on using reverse geocoding in other environmental modeling applications. The third manuscript explores the spatiotemporal dynamics behind evacuation timing by coupling fire and traffic simulation models. The proposed method sets wildfire evacuation triggers based on the estimated evacuation times using agent-based traffic simulation and could be potentially used in evacuation planning. In summary, this dissertation enriches existing trigger modeling approaches by coupling fire simulation, reverse geocoding, and traffic simulation. A framework for modeling wildfire evacuation as a coupled human-environmental system using triggers is proposed. Moreover, this dissertation also attempts to advocate and promote open science in wildfire evacuation modeling by using open data and software tools in different phases of modeling and simulation

    A GIS-based fire spread simulator integrating a simplified physical wildland fire model and a wind field model

    Get PDF
    [EN]This article discusses the integration of two models, namely, the Physical Forest Fire Spread (PhFFS) and the High Definition Wind Model (HDWM), into a Geographical Information System-based interface. The resulting tool automates data acquisition, preprocesses spatial data, launches the aforementioned models and displays the corresponding results in a unique environment. Our implementation uses the Python language and Esri’s ArcPy library to extend the functionality of ArcMap 10.4. The PhFFS is a simplified 2D physical wildland fire spread model based on conservation equations, with convection and radiation as heat transfer mechanisms. It also includes some 3D effects. The HDWM arises from an asymptotic approximation of the Navier–Stokes equations, and provides a 3D wind velocity field in an air layer above the terrain surface. Both models can be run in standalone or coupled mode. Finally, the simulation of a real fire in Galicia (Spain) confirms that the tool developed is efficient and fully operational.Junta de Castilla y León; Fundación General de la Universidad de Salamanc

    Overview on agent-based social modelling and the use of formal languages

    Get PDF
    Transdisciplinary Models and Applications investigates a variety of programming languages used in validating and verifying models in order to assist in their eventual implementation. This book will explore different methods of evaluating and formalizing simulation models, enabling computer and industrial engineers, mathematicians, and students working with computer simulations to thoroughly understand the progression from simulation to product, improving the overall effectiveness of modeling systems.Postprint (author's final draft

    Cloud computing based bushfire prediction for cyber-physical emergency applications

    Get PDF
    In the past few years, several studies proposed to reduce the impact of bushfires by mapping their occurrences and spread. Most of these prediction/mapping tools and models were designed to run either on a single local machine or a High performance cluster, neither of which can scale with users' needs. The process of installing these tools and models their configuration can itself be a tedious and time consuming process. Thus making them, not suitable for time constraint cyber-physical emergency systems. In this research, to improve the efficiency of the fire prediction process and make this service available to several users in a scalable and cost-effective manner, we propose a scalable Cloud based bushfire prediction framework, which allows forecasting of the probability of fire occurrences in different regions of interest. The framework automates the process of selecting particular bushfire models for specific regions and scheduling users' requests within their specified deadlines. The evaluation results show that our Cloud based bushfire prediction system can scale resources and meet user requirements. © 2017 Elsevier B.V

    The Acceptance of Using Information Technology for Disaster Risk Management: A Systematic Review

    Get PDF
    The numbers of natural disaster events are continuously affecting human and the world economics. For coping with disaster, several sectors try to develop the frameworks, systems, technologies and so on. However, there are little researches focusing on the usage behavior of Information Technology (IT) for disaster risk management (DRM). Therefore, this study investigates the affecting factors on the intention to use IT for mitigating disaster’s impacts. This study conducted a systematic review with the academic researches during 2011-2018. Two important factors from the Technology Acceptance Model (TAM) and others are used in describing individual behavior. In order to investigate the potential factors, the technology platforms are divided into nine types. According to the findings, computer software such as GIS applications are frequently used for simulation and spatial data analysis. Social media is preferred among the first choices during disaster events in order to communicate about situations and damages. Finally, we found five major potential factors which are Perceived Usefulness (PU), Perceived Ease of Use (PEOU), information accessibility, social influence, and disaster knowledge. Among them, the most essential one of using IT for disaster management is PU, while PEOU and information accessibility are more important in the web platforms
    • …
    corecore