29 research outputs found

    Design of APSK Constellations for Coherent Optical Channels with Nonlinear Phase Noise

    Get PDF
    We study the design of amplitude phase-shift keying (APSK) constellations for a coherent fiber-optical communication system where nonlinear phase noise (NLPN) is the main system impairment. APSK constellations can be regarded as a union of phase-shift keying (PSK) signal sets with different amplitude levels. A practical two-stage (TS) detection scheme is analyzed, which performs close to optimal detection for high enough input power. We optimize APSK constellations with 4, 8, and 16 points in terms of symbol error probability (SEP) under TS detection for several combinations of input power and fiber length. Our results show that APSK is a promising modulation format in order to cope with NLPN. As an example, for 16 points, performance gains of 3.2 dB can be achieved at a SEP of 10^-2 compared to 16-QAM by choosing an optimized APSK constellation. We also demonstrate that in the presence of severe nonlinear distortions, it may become beneficial to sacrifice a constellation point or an entire constellation ring to reduce the average SEP. Finally, we discuss the problem of selecting a good binary labeling for the found constellations. For the class of rectangular APSK a labeling design method is proposed, resulting in near-optimal bit error probability.Comment: Submitted to IEEE Transactions on Communication

    Code Design for Non-Coherent Detection of Frame Headers in Precoded Satellite Systems

    Full text link
    In this paper we propose a simple method for generating short-length rate-compatible codes over ZM\mathbb{Z}_M that are robust to non-coherent detection for MM-PSK constellations. First, a greedy algorithm is used to construct a family of rotationally invariant codes for a given constellation. Then, by properly modifying such codes we obtain codes that are robust to non-coherent detection. We briefly discuss the optimality of the constructed codes for special cases of BPSK and QPSK constellations. Our method provides an upper bound for the length of optimal codes with a given desired non-coherent distance. We also derive a simple asymptotic upper bound on the frame error rate (FER) of such codes and provide the simulation results for a selected set of proposed codes. Finally, we briefly discuss the problem of designing binary codes that are robust to non-coherent detection for QPSK constellation.Comment: 11 pages, 5 figure

    Optimization of a Coded-Modulation System with Shaped Constellation

    Get PDF
    Conventional communication systems transmit signals that are selected from a signal constellation with uniform probability. However, information-theoretic results suggest that performance may be improved by shaping the constellation such that lower-energy signals are selected more frequently than higher-energy signals. This dissertation presents an energy efficient approach for shaping the constellations used by coded-modulation systems. The focus is on designing shaping techniques for systems that use a combination of amplitude phase shift keying (APSK) and low-density parity check (LDPC) coding. Such a combination is typical of modern satellite communications, such as the system used by the DVB-S2 standard.;The system implementation requires that a subset of the bits at the output of the LDPC encoder are passed through a nonlinear shaping encoder whose output bits are more likely to be a zero than a one. The constellation is partitioned into a plurality of sub-constellations, each with a different average signal energy, and the shaping bits are used to select the sub-constellation. An iterative receiver exchanges soft information among the demodulator, LDPC decoder, and shaping decoder. Parameters associated with the modulation and shaping code are optimized with respect to information rate, while the design of the LDPC code is optimized for the shaped modulation with the assistance of extrinsic-information transfer (EXIT) charts. The rule for labeling the constellation with bits is optimized using a novel hybrid cost function and a binary switching algorithm.;Simulation results show that the combination of constellation shaping, LDPC code optimization, and optimized bit labeling can achieve a gain in excess of 1 dB in an additive white Gaussian noise (AWGN) channel at a rate of 3 bits/symbol compared with a system that adheres directly to the DVB-S2 standard

    Uncoded space-time labelling diversity : data rate & reliability enhancements and application to real-world satellite broadcasting.

    Get PDF
    Doctoral Degree. University of KwaZulu-Natal, Durban.Abstract available in PDF

    A Simple Approximation for the Bit-Interleaved Coded Modulation Capacity

    Get PDF
    The generalized mutual information (GMI) is an achievable rate for bit-interleaved coded modulation (BICM) and is highly dependent on the binary labeling of the constellation. The BICM-GMI, sometimes called the BICM capacity, can be evaluated numerically. This approach, however, becomes impractical when the number of constellation points and/or the constellation dimensionality grows, or when many different labelings are considered. A simple approximation for the BICM-GMI based on the area theorem of the demapper's extrinsic information transfer (EXIT) function is proposed. Numerical results show the proposed approximation gives good estimates of the BICM-GMI for labelings with close to linear EXIT functions, which includes labelings of common interest, such as the natural binary code, binary reflected Gray code, etc. This approximation is used to optimize the binary labeling of the 32-APSK constellation defined in the DVB-S2 standard. Gains of approximately 0.15 dB are obtained

    Uncoded space-time labeling diversity with three transmit antennas: symbol mapping designs and error performance analysis.

    Get PDF
    Doctoral Degrees. University of KwaZulu-Natal, Durban.Abstract available in PDF.Publications on page iii

    Application of real-world modulation schemes to advanced spatial modulation systems.

    Get PDF
    Masters Degree. University of KwaZulu- Natal, Durban.Abstract available in PDF.Red hyperlinks in table of contents noted
    corecore