3,404 research outputs found

    Design and optimization of an explosive storage policy in internet fulfillment warehouses

    Get PDF
    This research investigates the warehousing operations of internet retailers. The primary physical process in internet retail is fulfillment, which typically involves a large internet fulfillment warehouse (IFW) that has been built and designed exclusively for online sales and an accompanying parcel delivery network. Based on observational studies of IFW operations at a leading internet retailer, the investigations find that traditional warehousing methods are being replaced by new methods which better leverage information technology and efficiently serve the new internet retail driven supply chain economy. Traditional methods assume a warehouse moves bulk volumes to retail points where the bulks get broken down into individual items and sold. But in internet retail all the middle elements of a supply chain are combined into the IFW. Specifically, six key structural differentiations between traditional and IFW operations are identified: (i) explosive storage policy (ii) very large number of beehive storage locations (iii) bins with commingled SKUs (iv) immediate order fulfillment (v) short picking routes with single unit picks and (vi) high transaction volumes with total digital control. In combination, these have the effect of organizing the entire IFW warehouse like a forward picking area. Several models to describe and control IFW operations are developed and optimized. For IFWs the primary performance metric is order fulfillment time, the interval between order receipt and shipment, with a target of less than four hours to allow for same day shipment. Central to achieving this objective is an explosive storage policy which is defined as: An incoming bulk SKU is exploded into E storage lots such that no lot contains more than 10% of the received quantity, the lots are then stored in E locations anywhere in the warehouse without preset restrictions. The explosion ratio Ψo is introduced that measures the dispersion density, and show that in a randomized storage warehouse Ψoo\u3e0.40. Specific research objectives that are accomplished: (i) Develope a descriptive and prescriptive model for the control of IFW product flows identifying control variables and parameters and their relationship to the fulfillment time performance objective, (ii) Use a simulation analysis and baseline or greedy storage and picking algorithms to confirm that fulfillment time is a convex function of E and sensitive to Ǩ, the pick list size. For an experimental problem the fulfillment time decrease by 7% and 16% for explosion ratios ranging between Ψo=0.1 and 0.8, confirming the benefits of an explosive strategy, (iii) Develope the Bin Weighted Order Fillability (BWOF) heuristic, a fast order picking algorithm which estimates the number of pending orders than can be filled from a specific bin location. For small problems (120 orders) the BWOF performes well against an optimal assignment. For 45 test problems the BWOF matches the optimal in 28 cases and within 10% in five cases. For the large simulation experimental problems the BWOF heuristic further reduces fulfillment time by 18% for Ǩ =13, 27% for Ǩ =15 and 39% for Ǩ =17. The best fulfillment times are achieved at Ψo=0.5, allowing for additional benefits from faster storage times and reduced storage costs

    Product Return Handling

    Get PDF
    In this article we focus on product return handling and warehousingissues. In some businesses return rates can be well over 20% andreturns can be especially costly when not handled properly. In spiteof this, many managers have handled returns extemporarily. The factthat quantitative methods barely exist to support return handlingdecisions adds to this. In this article we bridge those issues by 1)going over the key decisions related with return handling; 2)identifying quantitative models to support those decisions.Furthermore, we provide insights on directions for future research.reverse logistics;decision-making;quantitative models;retailing and warehousing

    Grocery omnichannel perishable inventories: performance measures and influencing factors

    Get PDF
    Purpose- Perishable inventory management for the grocery sector has become more challenging with extended omnichannel activities and emerging consumer expectations. This paper aims to identify and formalize key performance measures of omnichannel perishable inventory management (OCPI) and explore the influence of operational and market-related factors on these measures. Design/methodology/approach- The inductive approach of this research synthesizes three performance measures (product waste, lost sales and freshness) and four influencing factors (channel effect, demand variability, product perishability and shelf life visibility) for OCPI, through industry investigation, expert interviews and a systematic literature review. Treating OCPI as a complex adaptive system and considering its transaction costs, this paper formalizes the OCPI performance measures and their influencing factors in two statements and four propositions, which are then tested through numerical analysis with simulation. Findings- Product waste, lost sales and freshness are identified as distinctive OCPI performance measures, which are influenced by product perishability, shelf life visibility, demand variability and channel effects. The OCPI sensitivity to those influencing factors is diverse, whereas those factors are found to moderate each other's effects. Practical implications- To manage perishables more effectively, with less waste and lost sales for the business and fresher products for the consumer, omnichannel firms need to consider store and online channel requirements and strive to reduce demand variability, extend product shelf life and facilitate item-level shelf life visibility. While flexible logistics capacity and dynamic pricing can mitigate demand variability, the product shelf life extension needs modifications in product design, production, or storage conditions. OCPI executives can also increase the product shelf life visibility through advanced stock monitoring/tracking technologies (e.g. smart tags or more comprehensive barcodes), particularly for the online channel which demands fresher products. Originality/value- This paper provides a novel theoretical view on perishables in omnichannel systems. It specifies the OCPI performance, beyond typical inventory policies for cost minimization, while discussing its sensitivity to operations and market factors

    Design and Control of Warehouse Order Picking: a literature review

    Get PDF
    Order picking has long been identified as the most labour-intensive and costly activity for almost every warehouse; the cost of order picking is estimated to be as much as 55% of the total warehouse operating expense. Any underperformance in order picking can lead to unsatisfactory service and high operational cost for its warehouse, and consequently for the whole supply chain. In order to operate efficiently, the orderpicking process needs to be robustly designed and optimally controlled. This paper gives a literature overview on typical decision problems in design and control of manual order-picking processes. We focus on optimal (internal) layout design, storage assignment methods, routing methods, order batching and zoning. The research in this area has grown rapidly recently. Still, combinations of the above areas have hardly been explored. Order-picking system developments in practice lead to promising new research directions.Order picking;Logistics;Warehouse Management
    • …
    corecore