8,421 research outputs found

    A dispersion minimizing scheme for the 3-D Helmholtz equation based on ray theory

    Full text link
    We develop a new dispersion minimizing compact finite difference scheme for the Helmholtz equation in 2 and 3 dimensions. The scheme is based on a newly developed ray theory for difference equations. A discrete Helmholtz operator and a discrete operator to be applied to the source and the wavefields are constructed. Their coefficients are piecewise polynomial functions of hkhk, chosen such that phase and amplitude errors are minimal. The phase errors of the scheme are very small, approximately as small as those of the 2-D quasi-stabilized FEM method and substantially smaller than those of alternatives in 3-D, assuming the same number of gridpoints per wavelength is used. In numerical experiments, accurate solutions are obtained in constant and smoothly varying media using meshes with only five to six points per wavelength and wave propagation over hundreds of wavelengths. When used as a coarse level discretization in a multigrid method the scheme can even be used with downto three points per wavelength. Tests on 3-D examples with up to 10810^8 degrees of freedom show that with a recently developed hybrid solver, the use of coarser meshes can lead to corresponding savings in computation time, resulting in good simulation times compared to the literature.Comment: 33 pages, 12 figures, 6 table

    Fast, adaptive, high order accurate discretization of the Lippmann-Schwinger equation in two dimension

    Get PDF
    We present a fast direct solver for two dimensional scattering problems, where an incident wave impinges on a penetrable medium with compact support. We represent the scattered field using a volume potential whose kernel is the outgoing Green's function for the exterior domain. Inserting this representation into the governing partial differential equation, we obtain an integral equation of the Lippmann-Schwinger type. The principal contribution here is the development of an automatically adaptive, high-order accurate discretization based on a quad tree data structure which provides rapid access to arbitrary elements of the discretized system matrix. This permits the straightforward application of state-of-the-art algorithms for constructing compressed versions of the solution operator. These solvers typically require O(N3/2)O(N^{3/2}) work, where NN denotes the number of degrees of freedom. We demonstrate the performance of the method for a variety of problems in both the low and high frequency regimes.Comment: 18 page

    Method of lines transpose: High order L-stable O(N) schemes for parabolic equations using successive convolution

    Get PDF
    We present a new solver for nonlinear parabolic problems that is L-stable and achieves high order accuracy in space and time. The solver is built by first constructing a single-dimensional heat equation solver that uses fast O(N) convolution. This fundamental solver has arbitrary order of accuracy in space, and is based on the use of the Green's function to invert a modified Helmholtz equation. Higher orders of accuracy in time are then constructed through a novel technique known as successive convolution (or resolvent expansions). These resolvent expansions facilitate our proofs of stability and convergence, and permit us to construct schemes that have provable stiff decay. The multi-dimensional solver is built by repeated application of dimensionally split independent fundamental solvers. Finally, we solve nonlinear parabolic problems by using the integrating factor method, where we apply the basic scheme to invert linear terms (that look like a heat equation), and make use of Hermite-Birkhoff interpolants to integrate the remaining nonlinear terms. Our solver is applied to several linear and nonlinear equations including heat, Allen-Cahn, and the Fitzhugh-Nagumo system of equations in one and two dimensions

    Crystallization of magnetic dipolar monolayers: a density functional approach

    Full text link
    We employ density functional theory to study in detail the crystallization of super-paramagnetic particles in two dimensions under the influence of an external magnetic field that lies perpendicular to the confining plane. The field induces non-fluctuating magnetic dipoles on the particles, resulting into an interparticle interaction that scales as the inverse cube of the distance separating them. In line with previous findings for long-range interactions in three spatial dimensions, we find that explicit inclusion of liquid-state structural information on the {\it triplet} correlations is crucial to yield theoretical predictions that agree quantitatively with experiment. A non-perturbative treatment is superior to the oft-employed functional Taylor expansions, truncated at second or third order. We go beyond the usual Gaussian parametrization of the density site-orbitals by performing free minimizations with respect to both the shape and the normalization of the profiles, allowing for finite defect concentrations.Comment: 23 pages, 18 figure

    Shenfun -- automating the spectral Galerkin method

    Full text link
    With the shenfun Python module (github.com/spectralDNS/shenfun) an effort is made towards automating the implementation of the spectral Galerkin method for simple tensor product domains, consisting of (currently) one non-periodic and any number of periodic directions. The user interface to shenfun is intentionally made very similar to FEniCS (fenicsproject.org). Partial Differential Equations are represented through weak variational forms and solved using efficient direct solvers where available. MPI decomposition is achieved through the {mpi4py-fft} module (bitbucket.org/mpi4py/mpi4py-fft), and all developed solver may, with no additional effort, be run on supercomputers using thousands of processors. Complete solvers are shown for the linear Poisson and biharmonic problems, as well as the nonlinear and time-dependent Ginzburg-Landau equation.Comment: Presented at MekIT'17, the 9th National Conference on Computational Mechanic

    Optimized Schwarz Methods for Maxwell equations

    Get PDF
    Over the last two decades, classical Schwarz methods have been extended to systems of hyperbolic partial differential equations, and it was observed that the classical Schwarz method can be convergent even without overlap in certain cases. This is in strong contrast to the behavior of classical Schwarz methods applied to elliptic problems, for which overlap is essential for convergence. Over the last decade, optimized Schwarz methods have been developed for elliptic partial differential equations. These methods use more effective transmission conditions between subdomains, and are also convergent without overlap for elliptic problems. We show here why the classical Schwarz method applied to the hyperbolic problem converges without overlap for Maxwell's equations. The reason is that the method is equivalent to a simple optimized Schwarz method for an equivalent elliptic problem. Using this link, we show how to develop more efficient Schwarz methods than the classical ones for the Maxwell's equations. We illustrate our findings with numerical results

    Spectral methods for CFD

    Get PDF
    One of the objectives of these notes is to provide a basic introduction to spectral methods with a particular emphasis on applications to computational fluid dynamics. Another objective is to summarize some of the most important developments in spectral methods in the last two years. The fundamentals of spectral methods for simple problems will be covered in depth, and the essential elements of several fluid dynamical applications will be sketched
    corecore