5,977 research outputs found

    An Efficient Signature-Based Approach for Automatic Detection of Internet Worms over Large-Scale Networks

    Get PDF
    科研費報告書収録論文(課題番号:18300017/研究代表者:根元義章/通信データ列特徴量の類似性に基づいた不正アクセス逆探知方式)68

    Efficient Implementation of Elastohydrodynamics via Integral Operators

    Get PDF
    The dynamics of geometrically non-linear flexible filaments play an important role in a host of biological processes, from flagella-driven cell transport to the polymeric structure of complex fluids. Such problems have historically been computationally expensive due to numerical stiffness associated with the inextensibility constraint, as well as the often non-trivial boundary conditions on the governing high-order PDEs. Formulating the problem for the evolving shape of a filament via an integral equation in the tangent angle has recently been found to greatly alleviate this numerical stiffness. The contribution of the present manuscript is to enable the simulation of non-local interactions of multiple filaments in a computationally efficient manner using the method of regularized stokeslets within this framework. The proposed method is benchmarked against a non-local bead and link model, and recent code utilizing a local drag velocity law. Systems of multiple filaments (1) in a background fluid flow, (2) under a constant body force, and (3) undergoing active self-motility are modeled efficiently. Buckling instabilities are analyzed by examining the evolving filament curvature, as well as by coarse-graining the body frame tangent angles using a Chebyshev approximation for various choices of the relevant non-dimensional parameters. From these experiments, insight is gained into how filament-filament interactions can promote buckling, and further reveal the complex fluid dynamics resulting from arrays of these interacting fibers. By examining active moment-driven filaments, we investigate the speed of worm- and sperm-like swimmers for different governing parameters. The MATLAB(R) implementation is made available as an open-source library, enabling flexible extension for alternate discretizations and different surrounding flows.Comment: 37 pages, 17 figure

    Distributed Port Scanning Detection

    Get PDF
    Conventional Network Intrusion Detection System (NIDS) have heavyweight processing and memory requirements as they maintain per flow state using data structures like linked lists or trees. This is required for some specialized jobs such as Stateful Packet Inspection (SPI) where the network communications between entities are recreated in its entirety to inspect application level data. The downside to this approach is that the NIDS must be in a position to view all inbound and outbound traffic of the protected network. The NIDS can be overwhelmed by a DDoS attack since most of these try and exhaust the available state of network entities. For some applications like port scan detection, we do not require to reconstruct the complete network tra�c. We propose to integrate a detector into all routers so that a more distributed detection approach can be achieved. Since routers are devices with limited memory and processing capabilities, conventional NIDS approaches do not work while integrating a detector in them. We describe a method to detect port scans using aggregation. A data structure called a Partial Completion Filter(PCF) or a counting Bloom filter is used to reduce the per flow state

    The Dynamics of Internet Traffic: Self-Similarity, Self-Organization, and Complex Phenomena

    Full text link
    The Internet is the most complex system ever created in human history. Therefore, its dynamics and traffic unsurprisingly take on a rich variety of complex dynamics, self-organization, and other phenomena that have been researched for years. This paper is a review of the complex dynamics of Internet traffic. Departing from normal treatises, we will take a view from both the network engineering and physics perspectives showing the strengths and weaknesses as well as insights of both. In addition, many less covered phenomena such as traffic oscillations, large-scale effects of worm traffic, and comparisons of the Internet and biological models will be covered.Comment: 63 pages, 7 figures, 7 tables, submitted to Advances in Complex System

    Research on organic agriculture in the Netherlands : organisation, methodology and results

    Get PDF
    Chapters: 1. Organic agriculture in the Netherlands; 2. Dutch research on organic agriculture: approaches and characteristics; 3. Dutch knowledge infrastructure for organic agricultur'; 4. Sustainable systems; 5. Good soil: a good start; 6. Robust varieties and vigorous propagation material; 7. Prevention and control of weeds, pests and diseases; 8. Health and welfare of organic livestock; 9. Animal production and feeding; 10. Special branches: organic greenhouse production, bulbs, ornamentals and aquaculture; 11. Healthfulness and quality of products; 12. Economy, market and chain; 13. People and society. A publication of Wageningen UR and Louis Bolk Institut
    corecore