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Abstract— Internet Worms pose a serious threat to today’s
Internet. Signature matching is an important approach to detect
worms. However, as most signature development processes are
manual, they require significant time. They are thus not efficient
in reducing the damage worms may cause. In this paper,
an efficient signature-based method is proposed for automatic
detection of worms over large-scale networks. In the proposed
system, detection is performed in a hierarchical manner. Security
managers of local networks collect worm-like or suspicious flows
and handle these flows to high-hierarchy metropolitan managers.
In response, the latter use this information to generate robust
signature. The global manager which lies on top of the hierarchy,
multicasts the signature to local managers via metropolitan
managers. This enables local managers to detect worms that
try to penetrate into their networks. The proposed system is
evaluated using an off-line real network traffic that contains
traces of worms. Experimental results indicate that the proposed
system exhibits high detection rates with low false alarm rates.

I. INTRODUCTION

Internet worms are one of the most devastating and distinct
types of attacks in the Internet. When they infect a host,
they can remove its system files or modify the contents of
its applications. They can also implement Distributed Denial
of Service (DDoS) tools and bundle in DDoS attacks. After
infecting a host, they propagate to other vulnerable hosts
using several techniques such as scanning, target lists, and
passive monitoring [1]. Table I lists some recent worms and the
number of hosts they infected [2]–[5]. The table indicates the
vulnerability of present networks to worms and the limitations
of current security systems. Given the increasing number of
worm types, their fast propagation speeds, and the threat they
present to the Internet resources, adequate measures to combat
against worms is mandatory. Without such measures, cyber
terrorism may deprive large enterprises from making efficient
use of the Internet and may cause significant damages in terms
of time, infrastructure, and human resources. Protection of the
Internet against worms forms the focus of the research outlined
in this paper.

Most current worm detection techniques rely on signature
matching. They enjoy high popularity among network security
systems as they exhibit higher detection rates and generate
fewer false alarms compared to other methods. However,
most worm signatures are manually developed and are thus
costly due to the cumbersome work and time they require.

TABLE I

A LIST OF SOME RECENT WORMS AND THEIR CAUSED DAMAGE.

Worm Year Type Number of infections
Code Red 2001 Scan 359 thousand in 14 hrs.
SQL Slammer 2003 Scan 75 thousand in 10 mins.
Blaster 2003 Scan 330 thousand in 5 days
Witty 2004 Scan 20 thousand in 1 hour
Beagle 2004 Email 504 thousand
NetSky 2004 Email 6.1 million
MyDoom 2004 Email 2.3 million

In addition, manual development of worm signatures is not
efficient in reducing the damage worms may cause. Indeed,
by the time experts develop a worm signature, significant
damage may have already been caused. Furthermore, in case
of polymorphic worms, new signatures have to be developed
for each variant. In order to detect worms at early phases of
their propagation, generation of worm signatures has to be
performed in an automatic manner.

In this paper, we present a system to automatically generate
highly accurate worm signatures over large-scale networks. In
the proposed system, worm detection is performed in a hierar-
chical manner. The network topology is divided into a number
of metropolitan areas. Each metropolitan area comprises a
number of local networks. A global security manager controls
the whole network topology and directly communicates with
metropolitan security managers located at each metropolitan
area. When a worm-like traffic is detected at a local network
by its local security manager, the latter qualifies the traffic
as suspicious and transmits it to the metropolitan manager
of its corresponding metropolitan area. The metropolitan
manager analyzes then the received suspicious traffic and
decides whether a worm is spreading in its monitored area.
Accordingly, it generates a highly accurate signature for the
detected worm, and passes it to the global security manager.
The global manager then relays the signature to local security
managers via metropolitan managers. This operation helps to
hinder the further spread of the worm and its variants.

The remainder of this paper is organized as follows. Section
II showcases the propagation methods used by worms and
surveys the state-of-the-art in the area of worm detection.
Section III provides a detailed description of the proposed
scheme. The performance of the proposed scheme is evaluated
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in Section IV. Finally, Section V concludes the paper and
discusses possible future work.

II. RELATED WORK

To detect worms, a number of systems have been pro-
posed in recent literature. Systems such as HoneyStat [6] and
Honeycomb [7] use honeypots to detect worms. Honeypots
have the ability to test the presence of worms in real traffic.
However, they can detect worms only when worm packets
are sent to them. In case of highly interactive honeypots,
which leave their OS entirely exposed to intrusions, worms
may significantly compromise the honeypots and use them to
attack other targets. Therefore, there is a significant risk in
using honeypots. Data mining is a frequently used method for
detecting email worms [8]. This method is effective for the
detection of unknown intrusions including worms. However,
it can be costly in terms of time and system resources. [9]–
[11] use taint analysis to detect buffer overflow attacks which
are carried out by many notable worms such as Code Red.
The basic concept behind taint analysis-based schemes is to
retrieve inputs from unreliable sources and to track down the
records of data affected by such inputs.

A system which matches destination port numbers between
incoming and outgoing connections is proposed in [12]. This
method is based on the fact that, when a worm infects a
machine via a certain port, the machine sends worm packets
more likely via the same port to other hosts. Whilst this
may be efficient in detecting fast-spreading worms, it requires
a massive amount of information storage. MET, Malicious
Email Tracking, filters worm attachments from emails [13].
It assumes that worm attachments do not change during prop-
agation and computes MD5 hash for every binary attachments.
This assumption does not hold in case of polymorphic worms
such as Mimail whose attachment files can change in each
propagation step. [14] presents an architecture design of a
“feedback email worm defense system” to protect email users
in enterprise networks. The system consists of an “Email
Service Unit” which directly sends “safe” emails to the users.
It saves suspicious attachments at another server where the
likeliness of a worm attack is statistically evaluated. If an
attachment is not cleared, it is sent to a honeypot where the
attachment’s contamination with a worm is tested. This system
has a credit of achieving low false alarm rates. It, however,
requires long period of time to confirm the possibility of a
worm attack. In [15], Akritidis et al. propose a content-based
detection scheme to detect worms. Their scheme bases its de-
tection on invariant portions present in the payloads of a worm.
While their system targets only worm packets originating from
clients to servers irrespective of their destination networks,
our proposed scheme is designed to protect local networks
from worms coming from outsiders. Additionally, unlike their
system which uses Rabin fingerprints to identify the invariant
portions, the proposed scheme uses tokens of fixed length.

Autograph [16] and Earlybird [17] are also two recent
content based novel worm detectors. Both of these systems
look for repetitive contents in worm payloads to generate

signatures by using Rabin fingerprints. These systems generate
single substring signatures. They assume that there exists a
single substring that occurs in every worm payload but not in
any normal ones. Polymorphic worms, which may alter parts
of their payloads in their variants, can easily evade detection by
replacing the signatured portions. Polygraph [18] uses multiple
portions that are present in worm payloads. It generates
conjunction signature, token-subsequence signature, and Bayes
signature. In contrast, the proposed scheme extractss common
tokens present in worm flows and differences them with
normal flows to generate signature. It then reduces minimizes
the rate of false negatives by checking the percentage of
substrings present in test flows.

The above-mentioned techniques are deployable at only
local networks. Most of these security systems do not ad-
dress the need of information exchange to defend against
globally propagating worms. Thus, for a robust and efficient
defense against worms, a collaborative strategy among security
systems of local networks is necessary. [19] proposes the
collection of ICMP host unreachable packets from routers at
the edge of an Internet Service Provider (ISP) to detect scans
and control worms by blocking scanning hosts. However, due
to privacy concerns, most routers are designed not to return
ICMP host unreachable messages. Thus, this method can not
be considered practical for global detection of worms.

DOMINO [20] and Indra [21] are two architectures which
have been proposed to detect intrusions including worms in a
distributed environment. In DOMINO, heterogeneous nodes
share information on worms and make themselves aware
of the presence of any worm in the network. DOMINO
comprises also active sink nodes which verify the legitimacy
of connections directed to unused IP addresses. On the other
hand, in Indra, only interested and trusted peers in a Peer-to-
Peer (P2P) network share information on any intrusion attempt
directed at them. Compared to these two architectures, the
proposed system adopts a hierarchical concept for information
exchange.

III. A LARGE-SCALE WORM DETECTION SYSTEM

A. Components of the Proposed Architecture
Fig. 1 depicts the key components of the hierarchical

architecture of the proposed system. It consists of several
Metropolitan Area Networks (MANs) composed of a set of
clusters of local networks. Each MAN comprises a metropoli-
tan security manager. Metropolitan security managers commu-
nicate directly with Local Security Managers located within
their service areas. Local managers search for flows carrying
similar contents. They qualify them as suspicious flows and
send them to their corresponding metropolitan managers.
Metropolitan managers use cluster analysis to identify worms
from the suspicious flows. They then generate worm signature
by extracting common portions from the payloads. Metropoli-
tan managers update worm events to the global manager
which is situated on top of the hierarchy. The global manager
uses these update information to determine the areas that are
affected by worms. It then acknowledges the areas that are
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Fig. 1. The envisioned two-layer hierarchical worm detection architecture.

most likely to be affected by sending alert messages, along
with the worm signature, to their metropolitan managers. By
increasing the alert levels at targeted networks, worms can be
detected at early stage, before they cripple the networks.

B. Collection of Suspicious Flows at Local Networks
The operation of local managers is depicted in the flowchart

of Fig. 2. Local managers consist of two primary units, namely
Signature Update Unit (SUU) and Anomaly Detection Unit
(ADU). The SUU unit protects the local network from worms
by using already available signatures. The ADU, on the other
hand, collects worm-like flows from inbound traffic and sends
them to the metropolitan manager. The working schemes of
these units are described below.

1) Signature Update Unit (SUU): This unit functions in a
similar way to existing Intrusion Detection Systems (IDSs)
and firewalls. It filters the total network traffic and verifies
its legitimacy by comparing it to the characteristics of some
normal traffic and attacking traffic, already available at the
IDS systems. Detected worms are blocked instantly while
normal traffic is not hindered. It forwards the remaining
traffic, or the SUU filtrate, to the ADU unit. The SUU unit
is regularly updated with signatures relayed by the high-
hierarchy metropolitan manager.

2) Anomaly Detection Unit (ADU): This unit analyzes the
SUU filtrate and collects worm-like or suspicious flows. It
then sends these suspicious flows to the metropolitan service
manager. For this purpose, it exploits some intrinsic charac-
teristics of worms. For instance, given the fact that a specific
type of worm targets specific ports, analysis is carried out
on a port basis. When a worm is actively propagating in the
Internet, same character sequences appear in many flows. Unix
commands and parts of executable programs may be examples
of such information passed on to target hosts during each

Anomaly Detection Unit
(ADU )

Signature Update Unit
(SUU)

Detected
Worm

Metropolitan
Security Manager

Local Security Manager

SUU  Filtrate

Suspicious
Flows

Signature

Network Traffic

Normal
Traffic

Fig. 2. Basic operations of the worm detection procedure at local security
managers.

infection step. From each flow present in the suspicious traffic,
the ADU unit extracts a fixed number of sample tokens (NS)
of constant length (LS). It judges flows which contain sample
tokens that occur in several flows as worm flows. In [22], the
authors propose a scheme which differences worm flows and
normal flows to extract sequences unique to worms. It is based
on the fact that normal flows do not carry worm strings. This
approach is taken in order to reduce the probability of normal
tokens being selected as sample tokens.

Let T be the set of these sample tokens. If a sample token
tj ∈ T exists in an inbound flow Fi, its occurrence frequency
(fj) is increased by 1. If only ns (0 ≤ ns < NS) sample
tokens appear in an inbound flow, (NS−ns) tokens are further
extracted from such a flow and are added to T. As tokens with
high occurrence frequencies are likely to be parts of worm
payloads, alerts are generated for flows that contain tokens
whose occurrence frequencies exceed a predefined Repetitive
Occurrence Threshold (∆TH ). A flow for which an alert is
generated is considered to be a suspicious flow and is sent to
the metropolitan manager. To mitigate the memory overhead
that may be incurred due to the saving of sample tokens, old
sample tokens are gradually deleted from T. Hence, only the
sample tokens observed during a predefined Token Caching
Time (θT ) remain throughout the analysis.

C. Signature Generation at Metropolitan Managers
If a worm is spreading across several local networks, a

metropolitan manager is likely to receive similar suspicious
flows from its monitored local managers. The metropolitan
manager sorts worms from these suspicious flows. It then uses
the worm flows to generate a highly accurate signature.

Character distributions of payloads that belong to a particu-
lar worm are usually similar whereas those of normal payloads
vary with each other by a great extent. This property is used to
separate flows that belong to a certain type of worm from the
rest of the suspicious flows. Let n be the number of suspicious
flows collected at a metropolitan manager. For each suspicious
flow, occurrence frequencies of the 256 ASCII codes are
extracted. The values of the occurrence frequencies are further
normalized and are used as coordinates of the suspicious
flow in a 256 dimensions space. Each of these payloads is
initially considered as a cluster. Nearest clusters are joined to
form a new cluster until the total number of clusters becomes
less than (n/2). Clustering half of the received flows can be
considered sufficient because a number of worm flows will be
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already grouped inside a cluster by then. The biggest cluster
is regarded as the worm cluster.

The flows that form the worm cluster, referred to as worm
flows throughout this paper, are used for the signature gener-
ation. The latter is carried out in two phases is proposed in
[22]. In the first phase, common substrings with a length longer
than a pre-defined threshold (LMIN ) are extracted from worm
flows. Among the extracted substrings, the ones appearing
in normal flows are excluded. Hence, multiple substrings,
each with a length longer than LMIN , are generated. To
form a signature out of these substrings, several approaches
can be considered. Weighting the substrings, and combining
some or all of them are two possible candidates. However,
in a real network scenario, decisions regarding the use of
signature substrings should be made instantly. We overcome
this problem by using a new parameter, Attack Tolerence
Level (ATL). ATL is defined as the minimum percentage of
signature substrings that should be detected in a flow in order
to generate an alarm for the flow. Use of multiple substrings
in the signature, along with appropriate adjustment of ATL,
make the proposed approach robust in detecting polymorphic
worms.

IV. PERFORMANCE EVALUATION

A. Experimental Set-up

The following two quantities are used to investigate the
efficiency of the proposed scheme:

1) True positives (NTP ): number of worms that are suc-
cessfully detected.

2) False positives (NFP ): number of innocent flows for
which alerts are mistakenly generated.

We describe separately the experimental set-ups for collecting
suspicious flows and for investigating the performance of the
generated signatures.

1) Collection of Suspicious Flows: An off-line real network
traffic containing traces of Beagle worm is used to test the
performance of a local manager. It consists of a total of 3054
inbound flows on port 25 directed to the monitored network
which consists of 85 computer hosts and 160 actively used
email addresses. Among the inbound flows, 34 flows contain
worm information.

The required length of tokens-caching time (θT ) depends
on the type of the targeted worm. For fast spreading worms
such as Slammer, setting θT to a low value (in the order of
seconds) is sufficient to collect enough worm flows. However,
in our case where we aim to collect inbound email worms, a
reasonable length of time is required to gather worms. Hence,
θT is fixed to 60 minutes.

2) Performance Evaluation of Signatures: A separate off-
line real network traffic, captured after the traffic used for
evaluation of local managers were captured, is used to investi-
gate the efficiency of the signatures generated by metropolitan
manager. This traffic consists of 45,193 flows destined to port
25, among which 271 are Beagle worms.

B. Collection of Suspicious Flows at a Local Network
In evaluating the performance of local managers, different

scenarios are considered by changing the length of sample
tokens (LS), the number of sample tokens extracted per flow
(NS), and the Repetitive Occurrence Threshold (∆TH ).

The payload distribution of a flow is better represented if a
large number of sample tokens are extracted from its payload.
Hence, a high detection rate is possible when NS is set to
a high value. However, this also increases the probability of
extracting normal sequences as sample tokens, thus increasing
the risk of false positives. This is depicted in Fig. 3(a) which
shows a high number of true positives and false positives at
high values of NS . However, in order to avoid suspecting
any normal flow, a low false positive rate is preferred even
if it comes at the price of some worms being undetected.
This problem can be partially overcome by increasing ∆TH .
But an alternative approach to threshold adjustment becomes
necessary if sufficient worms do not enter the network in θT .
One such alternative is to increase the LS . The probability of a
string’s appearance in normal traffic decreases with an increase
in its length. This decrease is, however, low for the presence
of worm tokens in worm payloads. The effect of these two
approaches is clearly illustrated in Fig. 3(b) where NFP is
reduced to zero but NTP remains relatively unchanged even
for high values of NS .

Fig. 4 shows the values of NTP and NFP for different
values of ∆TH . In this case also, increasing the threshold
∆TH alone is not sufficient to acquire a desired performance
because it can not be bias enough to reduce only false
positives. A typical of such case is depicted in Fig. 4(a).
As shown in the figure, although it is possible to completely
suppress false positives by raising ∆TH beyond 6, doing so
significantly reduces the detection rate. Poor detection implies
that sufficient parts of worm payloads have not been cached.
As indicated by Fig. 3, it is possible to solve this problem by
increasing NS . Fig. 4(b) potrays an example of such a solution.
In this case, a significantly high number of true positives
are obtained even at large values of ∆TH . An increase in
NS obviously increases false positives. But, because worm
payloads show higher resemblance with one another than
normal flows, increases in occurrence frequencies of worm
tokens are more than those of normal tokens. Hence, high
false positive rates are limited to situations when the values of
∆TH are low. In our experiments, a large number of worms
were successfully detected, while maintaining minimal false
positives, when 6 ≤ ∆TH ≤ 8, 15 ≤ NS ≤ 20, LS = 30.

In our experiment, the average time taken by the ADU unit
to analyze one minute’s SUU filtrate was 1.87 seconds. This
promising result indicates that the ADU analysis is practical
for real-time detection of Internet worms.

C. Performance Evaluation of Generated Signature
Having evaluated the performance of a local manager, we

now direct our focus to generating worm signatures at a
metropolitan manager and to investigating the efficiency of the
signature in detecting worms. A total of 21 flows for which
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Fig. 3. Number of true positives and false positives for different numbers
of sample tokens extracted per flow (θT = 60 min).

alerts were generated during different time stances of four
different days were collected. These were used as suspicious
flows sent by four local managers. After the clustering phase,
the highest ranking cluster included seven flows. Tokens
common to these flows and longer than the Minimum Length of
Signature-substrings (LMIN ) are used as signature substrings.
As LMIN largely influences detection accuracy, this parameter
is used to investigate the performance of these signature strings
in detecting worms. We consider two scenarios. In Scenario
1, ATL = 0; an alert for a flow is generated if any signature
substring is present in it. On the other hand, Scenario 2 is set
under the condition ATL = 0.5; a flow is considered a worm
if it contains at least half of the signature substrings.

Fig. 5(a) depicts NTP and NFP in case of Scenario 1. A
100 percent detection rate is achieved for LMIN below 175
bytes. NFP , on the other hand, shows a decreasing tendancy
as LMIN increases. The fact that the probability of a string’s
presence in normal flows decreases with respect to its length,
and that the number of signature strings decreases with an
increase in LMIN are the reasons behind this phenomenon. In
this scenario, best results are achieved when LMIN is between
30 and 170. Under this condition, the detection rate is 100
percent while the number of false positives is nine. Fig. 5(b),
on the other hand, plots NTP and NFP for different values
of LMIN in case of Scenario 2. Compared to Scenario 1,
false positives have significantly reduced. This is most clearly
observable when the value of LMIN is between 5 and 15. It
implies that the false positives generated for LMIN ≤ 15 in
Scenario 1 were because of a small number of short substrings.
In Scenario 2, a 100 percent detection rate with a low false
positives (three) is achieved when LMIN is set between 100
and 145. The fact that the majority of the signature substrings
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Fig. 4. Number of true positives and false positives for different repetitive
occurrence thresholds (θT = 60 min).

generated by the metropolitan manager are worm tokens, along
with the requirement of half of signature strings needed to be
present to generate an alarm, makes this method more accurate
than that of Scenario 1. Given the results of both scenarios,
it is clear that the propagation of worms in the concerned
network could have been prevented, had the proposed system
been implemented online.

D. Discussion
Signatures generated by metropolitan managers can further

be refined at the global manager. During a global propagation
of a worm, the global manager is likely to receive similar
alerts and signatures from different metropolitan managers.
A refined signature can be generated by extracting common
portions of the received signature substrings. Higher accuracy
is thus possible. Besides, the refinement process also helps to
reduce the time required during signature matching later at
local managers because fewer and shorter substrings will be
generated by the global manager.

Although it is possible to observe worm propagation from
one MAN to another, such spread is more distinctly observable
within MANs at the very early phase of a worm outbreak.
Hence, monitoring geographically near networks is effective
for an early detection of worms. While Indra [21] envisions a
scenario where geographically distant peers warn each other
of worm propagation, a high detection accuracy is expected
from each participating peer in the network. In the proposed
scheme, however, a slight error in detection at local managers
is still bearable because only a few and most probable worm
flows will be sorted for signature generation at metropolitan
managers. The proposed scheme is applicable in architectures
such as DOMINO [20] which comprises also hierarchically
placed nodes apart from peer-to-peer components. Sink-nodes
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Fig. 5. Number of true positives and false positives for different values of
minimum length of signature strings for a real network data that contains
45,193 flows out of which 271 are worms.

present in DOMINO are not necessary in the proposed scheme
because the proposed system deals solely with the traffic
content.

Finally, it should be stressed out that the proposed scheme
generates signature from worm payloads. Worms with en-
crypted payloads can not be subject to detection by our
proposed scheme, unless local managers are provided with
appropriate keys to decrypt the payload contents. Such an
operation can be possible provided a prior request from hosts
soliciting a certain level of safety certification.

V. CONCLUDING REMARKS

In this paper, a two-layer hierarchical architecture is pro-
posed for an automatic detection of Internet worms over large-
scale networks. In the proposed system, the network topology
is divided into a number of metropolitan areas which are
divided in turn into local networks. Local security managers
gather inbound flows that transfer similar contents and send
them to the metropolitan managers of their respective MANs.
Metropolitan managers use cluster analysis to sort some worm
flows, and generate worm signature substrings. They then send
these signature substrings to the global manager which multi-
casts them to local managers to stop further propagation of the
worm over the entire network. Performance of the proposed
system is evaluated using real network traffic that contains
traces of Beagle worm. The proposed scheme managed to
successfully collect suspicious flows at local managers, and
to sort worm flows at metropolitan managers. The signature
developed by the metropolitan manager succeeded in detecting
worms with high detection rates while maintaining low false
positive rates.

Given the encouraging results of the proposed system, the
authors are currently working on an on-line implementation
of the system.
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