1,533 research outputs found

    Optimal fault-tolerant placement of relay nodes in a mission critical wireless network

    Get PDF
    The operations of many critical infrastructures (e.g., airports) heavily depend on proper functioning of the radio communication network supporting operations. As a result, such a communication network is indeed a mission-critical communication network that needs adequate protection from external electromagnetic interferences. This is usually done through radiogoniometers. Basically, by using at least three suitably deployed radiogoniometers and a gateway gathering information from them, sources of electromagnetic emissions that are not supposed to be present in the monitored area can be localised. Typically, relay nodes are used to connect radiogoniometers to the gateway. As a result, some degree of fault-tolerance for the network of relay nodes is essential in order to offer a reliable monitoring. On the other hand, deployment of relay nodes is typically quite expensive. As a result, we have two conflicting requirements: minimise costs while guaranteeing a given fault-tolerance. In this paper address the problem of computing a deployment for relay nodes that minimises the relay node network cost while at the same time guaranteeing proper working of the network even when some of the relay nodes (up to a given maximum number) become faulty (fault-tolerance). We show that the above problem can be formulated as a Mixed Integer Linear Programming (MILP) as well as a Pseudo-Boolean Satisfiability (PB-SAT) optimisation problem and present experimental results com- paring the two approaches on realistic scenarios

    Robotic Wireless Sensor Networks

    Full text link
    In this chapter, we present a literature survey of an emerging, cutting-edge, and multi-disciplinary field of research at the intersection of Robotics and Wireless Sensor Networks (WSN) which we refer to as Robotic Wireless Sensor Networks (RWSN). We define a RWSN as an autonomous networked multi-robot system that aims to achieve certain sensing goals while meeting and maintaining certain communication performance requirements, through cooperative control, learning and adaptation. While both of the component areas, i.e., Robotics and WSN, are very well-known and well-explored, there exist a whole set of new opportunities and research directions at the intersection of these two fields which are relatively or even completely unexplored. One such example would be the use of a set of robotic routers to set up a temporary communication path between a sender and a receiver that uses the controlled mobility to the advantage of packet routing. We find that there exist only a limited number of articles to be directly categorized as RWSN related works whereas there exist a range of articles in the robotics and the WSN literature that are also relevant to this new field of research. To connect the dots, we first identify the core problems and research trends related to RWSN such as connectivity, localization, routing, and robust flow of information. Next, we classify the existing research on RWSN as well as the relevant state-of-the-arts from robotics and WSN community according to the problems and trends identified in the first step. Lastly, we analyze what is missing in the existing literature, and identify topics that require more research attention in the future

    Performance optimization of wireless sensor networks for remote monitoring

    Get PDF
    Wireless sensor networks (WSNs) have gained worldwide attention in recent years because of their great potential for a variety of applications such as hazardous environment exploration, military surveillance, habitat monitoring, seismic sensing, and so on. In this thesis we study the use of WSNs for remote monitoring, where a wireless sensor network is deployed in a remote region for sensing phenomena of interest while its data monitoring center is located in a metropolitan area that is geographically distant from the monitored region. This application scenario poses great challenges since such kind of monitoring is typically large scale and expected to be operational for a prolonged period without human involvement. Also, the long distance between the monitored region and the data monitoring center requires that the sensed data must be transferred by the employment of a third-party communication service, which incurs service costs. Existing methodologies for performance optimization of WSNs base on that both the sensor network and its data monitoring center are co-located, and therefore are no longer applicable to the remote monitoring scenario. Thus, developing new techniques and approaches for severely resource-constrained WSNs is desperately needed to maintain sustainable, unattended remote monitoring with low cost. Specifically, this thesis addresses the key issues and tackles problems in the deployment of WSNs for remote monitoring from the following aspects. To maximize the lifetime of large-scale monitoring, we deal with the energy consumption imbalance issue by exploring multiple sinks. We develop scalable algorithms which determine the optimal number of sinks needed and their locations, thereby dynamically identifying the energy bottlenecks and balancing the data relay workload throughout the network. We conduct experiments and the experimental results demonstrate that the proposed algorithms significantly prolong the network lifetime. To eliminate imbalance of energy consumption among sensor nodes, a complementary strategy is to introduce a mobile sink for data gathering. However, the limited communication time between the mobile sink and nodes results in that only part of sensed data will be collected and the rest will be lost, for which we propose the concept of monitoring quality with the exploration of sensed data correlation among nodes. We devise a heuristic for monitoring quality maximization, which schedules the sink to collect data from selected nodes, and uses the collected data to recover the missing ones. We study the performance of the proposed heuristic and validate its effectiveness in improving the monitoring quality. To strive for the fine trade-off between two performance metrics: throughput and cost, we investigate novel problems of minimizing cost with guaranteed throughput, and maximizing throughput with minimal cost. We develop approximation algorithms which find reliable data routing in the WSN and strategically balance workload on the sinks. We prove that the delivered solutions are fractional of the optimum. We finally conclude our work and discuss potential research topics which derive from the studies of this thesis

    Markov Decision Processes with Applications in Wireless Sensor Networks: A Survey

    Full text link
    Wireless sensor networks (WSNs) consist of autonomous and resource-limited devices. The devices cooperate to monitor one or more physical phenomena within an area of interest. WSNs operate as stochastic systems because of randomness in the monitored environments. For long service time and low maintenance cost, WSNs require adaptive and robust methods to address data exchange, topology formulation, resource and power optimization, sensing coverage and object detection, and security challenges. In these problems, sensor nodes are to make optimized decisions from a set of accessible strategies to achieve design goals. This survey reviews numerous applications of the Markov decision process (MDP) framework, a powerful decision-making tool to develop adaptive algorithms and protocols for WSNs. Furthermore, various solution methods are discussed and compared to serve as a guide for using MDPs in WSNs

    Resource Allocation and Performance Optimization in Wireless Networks

    Get PDF
    As wireless networks continue streaking through more aspects of our lives, it is seriously constrained by limited network resources, in terms of time, frequency and power. In order to enhance performance for wireless networks, it is of great importance to allocate resources smartly based on the current network scenarios. The focus of this dissertation is to investigate radio resource management algorithms to optimize performance for different types of wireless networks. Firstly, we investigate a joint optimization problem on relay node placement and route assignment for wireless sensor networks. A heuristic binary integer programming algorithm is proposed to maximize the total number of information packets received at the base station during the network lifetime. We then present an optimization algorithm based on binary integer programming for relay node assignment with the current node locations. Subsequently, a heuristic algorithm is applied to move the relay nodes to the locations iteratively to better serve their associated edge nodes. Secondly, as traditional goal of maximizing the total throughput can result in unbalanced use of network resources, we study a joint problem of power control and channel assignment within a wireless mesh network such that the minimal capacity of all links is maximized. This is essentially a fairness problem. We develop an upper bound for the objective by relaxing the integer variables and linearization. Subsequently, we put forward a heuristic approach to approximate the optimal solution, which tries to increase the minimal capacity of all links via setting tighter constraint and solving a binary integer programming problem. Simulation results show that solutions obtained by this algorithm are very close to the upper bounds obtained via relaxation, thus suggesting that the solution produced by the algorithm is near-optimal. Thirdly, we study the topology control of disaster area wireless networks to facilitate mobile nodes communications by deploying a minimum number of relay nodes dynamically. We first put forward a novel mobility model for mobile nodes that describes the movement of first responders within a large disaster area. Secondly, we formulate the square disk cover problem and propose three algorithms to solve it, including the two-vertex square covering algorithm, the circle covering algorithm and the binary integer programming algorithm. Fourthly, we explore the joint problem of power control and channel assignment to maximize cognitive radio network throughput. It is assumed that an overlaid cognitive radio network (CRN) co-exists with a primary network. We model the opportunistic spectrum access for cognitive radio network and formulate the cross-layer optimization problem under the interference constraints imposed by the existing primary network. A distributed greedy algorithm is proposed to seek for larger network throughput. Cross-layer optimization for CRN is often implemented in centralized manner to avoid co-channel interference. The distributed algorithm coordinates the channel assignment with local channel usage information. Thus the computation complexity is greatly reduced. Finally, we study the network throughput optimization problem for a multi-hop wireless network by considering interference alignment at physical layer. We first transform the problem of dividing a set of links into multiple maximal concurrent link sets to the problem of finding the maximal cliques of a graph. Then each concurrent link set is further divided into one or several interference channel networks, on which interference alignment is implemented to guarantee simultaneous transmission. The network throughput optimization problem is then formulated as a non-convex nonlinear programming problem, which is NP-hard generally. Thus we resort to developing a branch-and-bound framework, which guarantees an achievable performance bound
    • …
    corecore