10 research outputs found

    Decentralized Ultra-Reliable Low-Latency Communications through Concurrent Cooperative Transmission

    Get PDF
    Emerging cyber-physical systems demand for communication technologies that enable seamless interactions between humans and physical objects in a shared environment. This thesis proposes decentralized URLLC (dURLLC) as a new communication paradigm that allows the nodes in a wireless multi-hop network (WMN) to disseminate data quickly, reliably and without using a centralized infrastructure. To enable the dURLLC paradigm, this thesis explores the practical feasibility of concurrent cooperative transmission (CCT) with orthogonal frequency-division multiplexing (OFDM). CCT allows for an efficient utilization of the medium by leveraging interference instead of trying to avoid collisions. CCT-based network flooding disseminates data in a WMN through a reception-triggered low-level medium access control (MAC). OFDM provides high data rates by using a large bandwidth, resulting in a short transmission duration for a given amount of data. This thesis explores CCT-based network flooding with the OFDM-based IEEE 802.11 Non-HT and HT physical layers (PHYs) to enable interactions with commercial devices. An analysis of CCT with the IEEE 802.11 Non-HT PHY investigates the combined effects of the phase offset (PO), the carrier frequency offset (CFO) and the time offset (TO) between concurrent transmitters, as well as the elapsed time. The analytical results of the decodability of a CCT are validated in simulations and in testbed experiments with Wireless Open Access Research Platform (WARP) v3 software-defined radios (SDRs). CCT with coherent interference (CI) is the primary approach of this thesis. Two prototypes for CCT with CI are presented that feature mechanisms for precise synchronization in time and frequency. One prototype is based on the WARP v3 and its IEEE 802.11 reference design, whereas the other prototype is created through firmware modifications of the Asus RT-AC86U wireless router. Both prototypes are employed in testbed experiments in which two groups of nodes generate successive CCTs in a ping-pong fashion to emulate flooding processes with a very large number of hops. The nodes stay synchronized in experiments with 10 000 successive CCTs for various modulation and coding scheme (MCS) indices and MAC service data unit (MSDU) sizes. The URLLC requirement of delivering a 32-byte MSDU with a reliability of 99.999 % and with a latency of 1 ms is assessed in experiments with 1 000 000 CCTs, while the reliability is approximated by means of the frame reception rate (FRR). An FRR of at least 99.999 % is achieved at PHY data rates of up to 48 Mbit/s under line-of-sight (LOS) conditions and at PHY data rates of up to 12 Mbit/s under non-line-of-sight (NLOS) conditions on a 20 MHz wide channel, while the latency per hop is 48.2 µs and 80.2 µs, respectively. With four multiple input multiple output (MIMO) spatial streams on a 40 MHz wide channel, a LOS receiver achieves an FRR of 99.5 % at a PHY data rate of 324 Mbit/s. For CCT with incoherent interference, this thesis proposes equalization with time-variant zero-forcing (TVZF) and presents a TVZF receiver for the IEEE 802.11 Non-HT PHY, achieving an FRR of up to 92 % for CCTs from three unsyntonized commercial devices. As CCT-based network flooding allows for an implicit time synchronization of all nodes, a reception-triggered low-level MAC and a reservation-based high-level MAC may in combination support various applications and scenarios under the dURLLC paradigm

    OFDM para distribuição de dados de controlo em phased array antenas

    Get PDF
    Mestrado em Engenharia Eletrónica e TelecomunicaçõesCurrently, all the control data behind the RF front-end modules in phased array radars is transmitted digitally and simultaneously by means of optical ber, resulting in a massive distribution network. The design of cheaper radars requires alternative ways of transmission to be explored. An intuitive and rather straight approach is to take advantage of the already existent RF layer used for the distribution of the radar pulse. The aim of this thesis work is to investigate OFDM as a modulation option for that approach and to determine whether or not it is a viable one. As proof of concept, experimental results are presented and discussed.Actualmente, toda a informa cão de controlo por detráas dos móodulos T/R (Transmit/ Receive) em radares com phased arrays e transmitida digital e simultaneamente atrav és de fi bra optica, resultando numa rede de distribuiçaõ massiva. Para que se possa reduzir o custo de produção e limitações no design, e fundamental a exploração de alternativas para a transmissão destes dados. Uma ideia intuitiva e que não implica grandes modi ca ções estruturais, e tirar vantagem da j a existente layer de RF (R adio Frequência) usada para distribuição do pulso de radar pelos m ódulos. O objectivo desta tese é investigar OFDM (Orthogonal Frequency Division Multiplexing) como uma das opções para modulação do novo sinal de RF responsável pela informa ção de controlo e determinar se esta é ou não uma escolha vi ável. Como prova de conceito, resultados experimentais serão apresentados e discutidos

    The E-government artifact in the context of a developing country : towards a nomadic framework

    Get PDF
    Includes abstract.Includes bibliographical references (p. 301-325).This thesis is concerned with exploring alternative conceptualizations of the e-government artifact relevant to developing countries in Africa. The premise is that e-government, as an artifact of human conception, remains relatively poorly developed at the levels of theory, methodologies and practice. The investigation is focused on two problematic areas of e-government: its conceptualization and its operationalization as an artifact. There is evidence to suggest that conceptualization of e-government takes place at various levels: international, national, local

    The SoftPHY Abstraction: from Packets to Symbols in Wireless Network Design

    Get PDF
    At ever-increasing rates, we are using wireless systems to communicatewith others and retrieve content of interest to us. Current wirelesstechnologies such as WiFi or Zigbee use forward error correction todrive bit error rates down when there are few interferingtransmissions. However, as more of us use wireless networks toretrieve increasingly rich content, interference increases inunpredictable ways. This results in errored bits, degradedthroughput, and eventually, an unusable network. We observe that thisis the result of higher layers working at the packet granularity,whereas they would benefit from a shift in perspective from wholepackets to individual symbols.From real-world experiments on a 31-node testbed of Zigbee andsoftware-defined radios, we find that often, not all of the bitsin corrupted packets share fate. Thus, today's wireless protocolsretransmit packets where only a small number of the constituent bitsin a packet are in error, wasting network resources. In thisdissertation, we will describe a physical layer that passesinformation about its confidence in each decoded symbol up to higherlayers. These SoftPHY hints have many applications, one ofwhich, more efficient link-layer retransmissions, we will describe indetail. PP-ARQ is a link-layer reliable retransmission protocolthat allows a receiver to compactly encode a request forretransmission of only the bits in a packet that are likely in error.Our experimental results show that PP-ARQ increases aggregate networkthroughput by a factor of approximately 2x under variousconditions. Finally, we will place our contributions in the contextof related work and discuss other uses of SoftPHY throughout thewireless networking stack

    Signal processing for future MIMO-OFDM wireless communication systems

    Get PDF
    The combination of multiple-input multiple-output (MIMO) technology and orthogonal frequency division multiplexing (OFDM) is likely to provide the air-interface solution for future broadband wireless systems. A major challenge for MIMO-OFDM systems is the problem of multi-access interference (MAI) induced by the presence of multiple users transmitting over the same bandwidth. Novel signal processing techniques are therefore required to mitigate MAI and thereby increase link performance. A background review of space-time block codes (STBCs) to lever age diversity gain in MIMO systems is provided together with an introduction to OFDM. The link performance of an OFDM system is also shown to be sensitive to time-variation of the channel. Iterative minimum mean square error (MMSE) receivers are therefore proposed to overcome such time-variation. In the context of synchronous uplink transmission, a new two-step hard-decision interference cancellation receiver for STBC MIMO-OFDM is shown to have robust performance and relatively low complexity. Further improvement is obtained through employing error control coding methods and iterative algorithms. A soft output multiuser detector based on MMSE interference suppression and error correction coding at the first stage is shown by frame error rate simulations to provide significant performance improvement over the classical linear scheme. Finally, building on the "turbo principle", a low-complexity iterative interference cancellation and detection scheme is designed to provide a good compromise between the exponential computational complexity of the soft interference cancellation linear MMSE algorithm and the near-capacity performance of a scheme which uses iterative turbo processing for soft interference suppression in combination with multiuser detection.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Bowdoin Orient v.134, no.1-24 (2004-2005)

    Get PDF
    https://digitalcommons.bowdoin.edu/bowdoinorient-2000s/1005/thumbnail.jp

    An Assessment of Indoor Geolocation Systems

    Get PDF
    Currently there is a need to design, develop, and deploy autonomous and portable indoor geolocation systems to fulfil the needs of military, civilian, governmental and commercial customers where GPS and GLONASS signals are not available due to the limitations of both GPS and GLONASS signal structure designs. The goal of this dissertation is (1) to introduce geolocation systems; (2) to classify the state of the art geolocation systems; (3) to identify the issues with the state of the art indoor geolocation systems; and (4) to propose and assess four WPI indoor geolocation systems. It is assessed that the current GPS and GLONASS signal structures are inadequate to overcome two main design concerns; namely, (1) the near-far effect and (2) the multipath effect. We propose four WPI indoor geolocation systems as an alternative solution to near-far and multipath effects. The WPI indoor geolocation systems are (1) a DSSS/CDMA indoor geolocation system, (2) a DSSS/CDMA/FDMA indoor geolocation system, (3) a DSSS/OFDM/CDMA/FDMA indoor geolocation system, and (4) an OFDM/FDMA indoor geolocation system. Each system is researched, discussed, and analyzed based on its principle of operation, its transmitter, the indoor channel, and its receiver design and issues associated with obtaining an observable to achieve indoor navigation. Our assessment of these systems concludes the following. First, a DSSS/CDMA indoor geolocation system is inadequate to neither overcome the near-far effect not mitigate cross-channel interference due to the multipath. Second, a DSSS/CDMA/FDMA indoor geolocation system is a potential candidate for indoor positioning, with data rate up to 3.2 KBPS, pseudorange error, less than to 2 m and phase error less than 5 mm. Third, a DSSS/OFDM/CDMA/FDMA indoor geolocation system is a potential candidate to achieve similar or better navigation accuracy than a DSSS/CDMA indoor geolocation system and data rate up to 5 MBPS. Fourth, an OFDM/FDMA indoor geolocation system is another potential candidate with a totally different signal structure than the pervious three WPI indoor geolocation systems, but with similar pseudorange error performance

    Signal processing for future MIMO-OFDM wireless communication systems

    Get PDF
    The combination of multiple-input multiple-output (MIMO) technology and orthogonal frequency division multiplexing (OFDM) is likely to provide the air-interface solution for future broadband wireless systems. A major challenge for MIMO-OFDM systems is the problem of multi-access interference (MAI) induced by the presence of multiple users transmitting over the same bandwidth. Novel signal processing techniques are therefore required to mitigate MAI and thereby increase link performance. A background review of space-time block codes (STBCs) to lever age diversity gain in MIMO systems is provided together with an introduction to OFDM. The link performance of an OFDM system is also shown to be sensitive to time-variation of the channel. Iterative minimum mean square error (MMSE) receivers are therefore proposed to overcome such time-variation. In the context of synchronous uplink transmission, a new two-step hard-decision interference cancellation receiver for STBC MIMO-OFDM is shown to have robust performance and relatively low complexity. Further improvement is obtained through employing error control coding methods and iterative algorithms. A soft output multiuser detector based on MMSE interference suppression and error correction coding at the first stage is shown by frame error rate simulations to provide significant performance improvement over the classical linear scheme. Finally, building on the "turbo principle", a low-complexity iterative interference cancellation and detection scheme is designed to provide a good compromise between the exponential computational complexity of the soft interference cancellation linear MMSE algorithm and the near-capacity performance of a scheme which uses iterative turbo processing for soft interference suppression in combination with multiuser detection
    corecore