1,438 research outputs found

    Exploiting chordal structure in polynomial ideals: a Gr\"obner bases approach

    Get PDF
    Chordal structure and bounded treewidth allow for efficient computation in numerical linear algebra, graphical models, constraint satisfaction and many other areas. In this paper, we begin the study of how to exploit chordal structure in computational algebraic geometry, and in particular, for solving polynomial systems. The structure of a system of polynomial equations can be described in terms of a graph. By carefully exploiting the properties of this graph (in particular, its chordal completions), more efficient algorithms can be developed. To this end, we develop a new technique, which we refer to as chordal elimination, that relies on elimination theory and Gr\"obner bases. By maintaining graph structure throughout the process, chordal elimination can outperform standard Gr\"obner basis algorithms in many cases. The reason is that all computations are done on "smaller" rings, of size equal to the treewidth of the graph. In particular, for a restricted class of ideals, the computational complexity is linear in the number of variables. Chordal structure arises in many relevant applications. We demonstrate the suitability of our methods in examples from graph colorings, cryptography, sensor localization and differential equations.Comment: 40 pages, 5 figure

    Data Reduction for Graph Coloring Problems

    Full text link
    This paper studies the kernelization complexity of graph coloring problems with respect to certain structural parameterizations of the input instances. We are interested in how well polynomial-time data reduction can provably shrink instances of coloring problems, in terms of the chosen parameter. It is well known that deciding 3-colorability is already NP-complete, hence parameterizing by the requested number of colors is not fruitful. Instead, we pick up on a research thread initiated by Cai (DAM, 2003) who studied coloring problems parameterized by the modification distance of the input graph to a graph class on which coloring is polynomial-time solvable; for example parameterizing by the number k of vertex-deletions needed to make the graph chordal. We obtain various upper and lower bounds for kernels of such parameterizations of q-Coloring, complementing Cai's study of the time complexity with respect to these parameters. Our results show that the existence of polynomial kernels for q-Coloring parameterized by the vertex-deletion distance to a graph class F is strongly related to the existence of a function f(q) which bounds the number of vertices which are needed to preserve the NO-answer to an instance of q-List-Coloring on F.Comment: Author-accepted manuscript of the article that will appear in the FCT 2011 special issue of Information & Computatio

    Faster Algorithms For Vertex Partitioning Problems Parameterized by Clique-width

    Full text link
    Many NP-hard problems, such as Dominating Set, are FPT parameterized by clique-width. For graphs of clique-width kk given with a kk-expression, Dominating Set can be solved in 4knO(1)4^k n^{O(1)} time. However, no FPT algorithm is known for computing an optimal kk-expression. For a graph of clique-width kk, if we rely on known algorithms to compute a (23k1)(2^{3k}-1)-expression via rank-width and then solving Dominating Set using the (23k1)(2^{3k}-1)-expression, the above algorithm will only give a runtime of 423knO(1)4^{2^{3k}} n^{O(1)}. There have been results which overcome this exponential jump; the best known algorithm can solve Dominating Set in time 2O(k2)nO(1)2^{O(k^2)} n^{O(1)} by avoiding constructing a kk-expression [Bui-Xuan, Telle, and Vatshelle. Fast dynamic programming for locally checkable vertex subset and vertex partitioning problems. Theoret. Comput. Sci., 2013. doi:10.1016/j.tcs.2013.01.009]. We improve this to 2O(klogk)nO(1)2^{O(k\log k)}n^{O(1)}. Indeed, we show that for a graph of clique-width kk, a large class of domination and partitioning problems (LC-VSP), including Dominating Set, can be solved in 2O(klogk)nO(1)2^{O(k\log{k})} n^{O(1)}. Our main tool is a variant of rank-width using the rank of a 00-11 matrix over the rational field instead of the binary field.Comment: 13 pages, 5 figure

    Fixed-parameter tractability, definability, and model checking

    Full text link
    In this article, we study parameterized complexity theory from the perspective of logic, or more specifically, descriptive complexity theory. We propose to consider parameterized model-checking problems for various fragments of first-order logic as generic parameterized problems and show how this approach can be useful in studying both fixed-parameter tractability and intractability. For example, we establish the equivalence between the model-checking for existential first-order logic, the homomorphism problem for relational structures, and the substructure isomorphism problem. Our main tractability result shows that model-checking for first-order formulas is fixed-parameter tractable when restricted to a class of input structures with an excluded minor. On the intractability side, for every t >= 0 we prove an equivalence between model-checking for first-order formulas with t quantifier alternations and the parameterized halting problem for alternating Turing machines with t alternations. We discuss the close connection between this alternation hierarchy and Downey and Fellows' W-hierarchy. On a more abstract level, we consider two forms of definability, called Fagin definability and slicewise definability, that are appropriate for describing parameterized problems. We give a characterization of the class FPT of all fixed-parameter tractable problems in terms of slicewise definability in finite variable least fixed-point logic, which is reminiscent of the Immerman-Vardi Theorem characterizing the class PTIME in terms of definability in least fixed-point logic.Comment: To appear in SIAM Journal on Computin
    corecore