

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. DISCRETE MATH. c© 2016 Society for Industrial and Applied Mathematics
Vol. 30, No. 3, pp. 1534–1570

EXPLOITING CHORDAL STRUCTURE IN POLYNOMIAL IDEALS:
A GRÖBNER BASES APPROACH∗

DIEGO CIFUENTES† AND PABLO A. PARRILO†

Abstract. Chordal structure and bounded treewidth allow for efficient computation in numer-
ical linear algebra, graphical models, constraint satisfaction, and many other areas. In this paper,
we begin the study of how to exploit chordal structure in computational algebraic geometry—in
particular, for solving polynomial systems. The structure of a system of polynomial equations can
be described in terms of a graph. By carefully exploiting the properties of this graph (in particular,
its chordal completions), more efficient algorithms can be developed. To this end, we develop a new
technique, which we refer to as chordal elimination, that relies on elimination theory and Gröbner
bases. By maintaining graph structure throughout the process, chordal elimination can outperform
standard Gröbner bases algorithms in many cases. The reason is because all computations are done
on “smaller” rings of size equal to the treewidth of the graph (instead of the total number of vari-
ables). In particular, for a restricted class of ideals, the computational complexity is linear in the
number of variables. Chordal structure arises in many relevant applications. We demonstrate the
suitability of our methods in examples from graph colorings, cryptography, sensor localization, and
differential equations.

Key words. chordal graph, elimination theory, Gröbner bases, structured polynomials, treewidth

AMS subject classifications. 13P10, 68W30

DOI. 10.1137/151002666

1. Introduction. Systems of polynomial equations can be used to model a large
variety of applications. In most cases the systems have a particular sparsity struc-
ture, and exploiting such a structure can greatly improve their efficiency. When all
polynomials have degree one, we have the special case of systems of linear equations,
which are often represented using matrices. In such a case, it is well known that under
a chordal structure many matrix algorithms can be performed efficiently [36, 37, 39].
Similarly, many hard combinatorial problems can be solved efficiently for chordal
graphs [26]. Chordal graphs are also a keystone in constraint satisfaction, graphical
models, and database theory [4,16,31]. We address the question of whether chordality
might also help to solve nonlinear equations.

It is natural to expect that the complexity of “solving” a system of polynomials
should depend on the underlying graph structure of the equations. In particular, a
parameter of the graph called the treewidth determines the complexity of solving the
problems described above, and it should influence polynomial equations as well. For
instance, several combinatorial problems (e.g., Hamiltonian circuit, vertex colorings,
vertex cover) are NP-hard in general, but are tractable if the treewidth is bounded [6].
Nevertheless, standard algebraic geometry techniques typically do not make use of this
graph. This paper links Gröbner bases with this graph structure.

It should be mentioned that, unlike classical graph problems, the ubiquity of
systems of polynomials makes them hard to solve in the general case, even for small
treewidth. Indeed, solving zero-dimensional quadratic equations of treewidth 1 is

∗Received by the editors January 5, 2015; accepted for publication (in revised form) May 4,
2016; published electronically August 18, 2016. This research was supported by Air Force Office of
Scientific Research grant FA9550-11-1-0305.

http://www.siam.org/journals/sidma/30-3/100266.html
†Laboratory for Information and Decision Systems (LIDS), Massachusetts Institute of Technology,

Cambridge, MA 02139 (diegcif@mit.edu, parrilo@mit.edu).

1534

D
ow

nl
oa

de
d

03
/2

7/
17

 to
 1

8.
51

.1
.6

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/83233396?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.siam.org/journals/sidma/30-3/100266.html
mailto:diegcif@mit.edu
mailto:parrilo@mit.edu

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CHORDAL STRUCTURE IN POLYNOMIAL IDEALS 1535

already NP-complete, as seen in the following example.

Example 1 (polynomials on trees are hard). Let a1, . . . , an and S be given inte-
gers. The subset-sum problem asks for a subset A ⊆ {a1, . . . , an}, whose sum is equal
to S. Let si denote the sum of A ∩ {a1, . . . , ai}, and note that we can recover the
subset A from the values of s1, . . . , sn. We can thus formulate the problem as

0 = s0

0 = (si − si−1)(si − si−1 − ai) for 1 ≤ i ≤ n.
S = sn

Observe that the structure of these equations can be represented with the path graph
s0—s1—s2 · · · sn−1—sn, which is a tree. However, it is well known that the subset-
sum problem is NP-complete.

Despite this hardness result, it is still desirable to take advantage of this chordal
structure. In this paper, we introduce a new method that exploits this structure. We
refer to it as chordal elimination. Chordal elimination is based on ideas used in sparse
linear algebra; in particular, if the equations are linear, chordal elimination defaults
to sparse Gaussian elimination.

We proceed to formalize our statements. We consider the polynomial ring R =
K[x0, x1, . . . , xn−1] over some algebraically closed field K. We fix once and for all the
lexicographic term order with x0 > x1 > · · · > xn−1.1 Given a system of polynomials
F = {f1, f2, . . . , fs} in the ring R, we associate to it a graph G(F) with vertex set
V = {x0, . . . , xn−1}. Note that the vertices of G(F) inherit the order from R. Such
a graph is given by a union of cliques: for each fi, we form a clique in all of its
variables. Equivalently, there is an edge between xi and xj if and only if there is some
polynomial that contains both variables. We say that G(F) constitutes the sparsity
structure of F . In constraint satisfaction problems, G(F) is usually called the primal
constraint graph [16].

Throughout this paper we fix an ideal I ⊆ R with a given set of generators F . We
assume that the associated graph G = G(F) is chordal. Even more, we assume that
x0 > · · · > xn−1 is a perfect elimination ordering (see Definition 1) of the graph. In
the event that G is not chordal, the same reasoning applies by considering a chordal
completion. We want to compute the elimination ideals of I, denoted as eliml(I),
while preserving the sparsity structure. As we are mainly interested in the zero set
of I rather than finding the exact elimination ideals, we attempt to find some Il such
that V(Il) = V(eliml(I)).

Question. Consider an ideal I ⊆ R with generators F , and fix the lex order
x0 > x1 > · · · > xn−1. Assume that such an order is a perfect elimination ordering of
its associated graph G(F). Can we find ideals Il, with some generators Fl, such that
V(Il) = V(eliml(I)) and the sparsity structure is preserved, i.e., G(Fl) ⊆ G(F)?

We could also ask the following stronger question: Does there exist a Gröbner
basis gb that preserves the sparsity structure, i.e., G(gb) ⊆ G(F)? It turns out that
it is not generally possible to find a Gröbner basis that preserves chordality, as seen
in the next example.

Example 2 (Gröbner bases may destroy chordality). Let I = 〈x0x2−1, x1x2−1〉,
whose associated graph is the path x0—x2—x1. Note that any Gröbner basis must

1Observe that smaller indices correspond to larger variables.

D
ow

nl
oa

de
d

03
/2

7/
17

 to
 1

8.
51

.1
.6

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1536 D. CIFUENTES AND P. A. PARRILO

contain the polynomial p = x0 − x1, breaking the sparsity structure. Nevertheless,
we can find some generators for its first elimination ideal elim1(I) = 〈x1x2 − 1〉 that
preserve such structure.

As evidenced in Example 2, a Gröbner basis with the same graph structure might
not exist, but we still might be able to find its elimination ideals. Our main method,
chordal elimination, attempts to find ideals Il as proposed above. It generalizes the
ideas of sparse linear algebra. As opposed to Gaussian elimination, in the general case
chordal elimination may not lead to the right elimination ideals. Nevertheless, we can
certify when the ideals found are correct. This allows us to prove that for a large
family of problems, which includes the case of linear equations, chordal elimination
succeeds in finding the elimination ideals.

The aim of chordal elimination is to obtain a good description of the ideal (e.g.,
a Gröbner basis), while at the same time preserving the underlying graph structure.
However, as illustrated above, there may not be a Gröbner basis that preserves the
structure. For larger systems, Gröbner bases can be extremely large, and thus they
may not be practical. Nonetheless, we can ask for some sparse generators of the ideal
that are the closest to such Gröbner bases. We argue that one such representation
can be given by finding the elimination ideals of all maximal cliques of the graph. We
extend chordal elimination to compute these ideals in Algorithm 3. In the case when I
is zero-dimensional, it is straightforward to obtain the roots from such representation.

Chordal elimination shares many of the limitations of other elimination methods.
In particular, if V(I) is finite, the complexity depends intrinsically on the size of
the projection |πl(V(I))|. As such, it performs much better if such a set is small.
In Theorem 6 we show complexity bounds for a certain family of ideals where this
condition is met. Specifically, we show that chordal elimination is O(n) if the treewidth
is bounded.

Chordal structure arises in many different applications, and we believe that al-
gebraic geometry algorithms should take advantage of it. The last part of this paper
evaluates our methods on some of such applications, including cryptography, sensor
localization, and differential equations.

We summarize our contributions as follows:
• We present a new elimination algorithm that exploits chordal structure in

systems of polynomial equations. This method is presented in Algorithm 2.
To the best of our knowledge, this is the first work that exploits chordal
structure in computational algebraic geometry, as we will argue below in the
section on related work.

• We prove that the chordal elimination algorithm computes the correct elim-
ination ideals for a large family of problems, although (as explained in sec-
tion 3) in general it may fail to do so. In particular, Lemma 4 specifies
conditions under which chordal elimination succeeds. We show in Theorem 3
that these conditions are met for a large class of problems. Among others,
this class includes linear equations and generic dense ideals.

• We present a recursive method (Algorithm 3) to compute the elimination
ideals of all maximal cliques of the graph. These ideals provide a good sparse
description from which we can easily find all solutions, as seen in section 5.2.
We show in Corollary 4 that this algorithm succeeds under the same condi-
tions of chordal elimination.

• We show in Theorem 6 and Corollary 6 that the complexity of our methods
is linear in the number of variables and exponential in the treewidth for a
restricted class of problems.

D
ow

nl
oa

de
d

03
/2

7/
17

 to
 1

8.
51

.1
.6

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CHORDAL STRUCTURE IN POLYNOMIAL IDEALS 1537

• Section 7 provides experimental evaluation of our methods in problems from
graph colorings, cryptography, sensor localization, and differential equations.
In all of these cases we show the advantages of chordal elimination over stan-
dard Gröbner basis algorithms. In some cases, we show that we can also
find a lex Gröbner basis faster than with degrevlex ordering by using chordal
elimination. This subverts the heuristic of preferring degrevlex.

The paper is structured as follows. In section 2 we provide a brief introduction to
chordal graphs and recall some ideas from algebraic geometry. In section 3 we present
our main method, chordal elimination. Section 4 presents some types of systems under
which chordal elimination succeeds. In section 5 we present a method for finding the
elimination ideals of all maximal cliques of the graph. In section 6 we analyze the
computational complexity of the algorithms proposed for a certain class of problems.
Finally, section 7 presents an experimental evaluation of our methods.

Related work. Even though there is a broad literature regarding chordality/
treewidth and also polynomial system solving, their interaction has received almost no
attention. A meeting point between these two areas is the case of linear equations, for
which graph modeling methods have been very successful. There also has been much
research done on connections between graph theory and computational/commutative
algebra. We now proceed to review previous works in these areas, comparing them
with our methods.

Chordality and bounded treewidth. The concepts of chordality and bounded tree-
width are pervasive in many different research areas. In fact, several hard graph
problems (e.g., vertex colorings, vertex covers, weighted independent set) can be
solved efficiently in chordal graphs and in graphs of bounded treewidth [6, 26]. In
a similar way, many problems in constraint satisfaction and graphical models become
polynomial-time solvable under bounded treewidth assumptions [11, 16]. In other
words, some hard problems are fixed-parameter-tractable when they are parametrized
by the treewidth.

The logic community has also studied families of graph problems which are fixed-
parameter-tractable with respect to the treewidth [9]. Makowsky and Meer applied
these methods to algebraic problems such as evaluation, feasibility, and positivity
of polynomials [33]. They show that these problems are tractable under bounded
treewidth and finite domain conditions. On the contrary, our methods do not require
a discrete domain, as they rely on well-studied tools from computational algebraic
geometry. Moreover, their methods are not implementable due to the large underlying
constants.

Chordality in linear algebra. The use of graph theory methods in sparse linear
algebra goes back at least to the work of Parter [35]. It was soon realized that sym-
metric Gaussian elimination (Cholesky factorization) does not introduce additional
nonzero entries if and only if the adjacency graph of the matrix is chordal. Current
numerical linear algebra methods exploit this property by first finding a small chordal
completion of this adjacency graph [37]. The nonsymmetric case is quite a bit more
complicated, but a standard approach is to use instead a chordal completion of the
adjacency graph of ATA [12, 37]. In this paper we generalize these ideas to the case
of nonlinear equations. We note that chordality is also used in several sparse matrix
problems from optimization, such as matrix inversion, positive semidefinite matrix
completion, and Hessian evaluation [36,43].

Structured polynomials. Solving structured systems of polynomial equations is a
well-studied problem in computational algebraic geometry. Many past techniques

D
ow

nl
oa

de
d

03
/2

7/
17

 to
 1

8.
51

.1
.6

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1538 D. CIFUENTES AND P. A. PARRILO

make use of different types of structure. In particular, properties such as sym-
metry [20, 25] and multihomogeneous structure [21] have been exploited within the
Gröbner basis framework. Symmetry and multihomogeneous structure have also been
used in homotopy continuation methods; see, e.g., [40].

Sparsity in the equations has also been exploited by making use of polytopal
abstractions of the system [42]. This idea has led to faster algorithms based on homo-
topy methods [29, 32], sparse resultants [18], and, more recently, Gröbner bases [22].
All of these methods will perform efficiently provided that a certain measure of com-
plexity of the system, known as the BKK bound, is small. Nonetheless, these types of
methods do not take advantage of the chordal structure that we study in this paper.
Indeed, we will see that our methods may perform efficiently even when the number
of solutions, and thus the BKK bound, is very large.

A different body of methods comes from the algebraic cryptanalysis community,
which considers very sparse equations over small finite fields. One popular approach
is converting the problem into a Boolean satisfiability problem (SAT) problem and
using SAT solvers [2]. A different idea is seen in [38], where they represent each
equation with its zero set and treat it as a constraint satisfaction problem (CSP).
These methods implicitly exploit the graph structure of the system as both SAT and
CSP solvers can take advantage of it. Our work, on the other hand, directly relates the
graph structure with the algebraic properties of the ideal. In addition, our methods
apply to positive dimensional systems and arbitrary fields.

Graphs in computer algebra. There is a long-standing interaction between graph
theory and computational algebra. Indeed, several polynomial ideals have been asso-
ciated to graphs in the past years [3,13,27,44]. One of the earliest such ideals was the
coloring ideal [3, 13,28], which was recently considered for the special case of chordal
graphs [14]. The edge ideal is perhaps the most widely studied example [44,45], given
its tight connections with simplicial complexes, and the many graph properties that
can be inferred from the ideal (e.g., connectedness, acyclicity, colorability, chordality).
More recently, the related binomial edge ideals have also motivated much research [27].

These graph ideals allow us to infer combinatorial properties by means of commu-
tative/computational algebra, and they are also crucial in understanding the complex-
ity of computational algebra problems. However, previous work has mostly focused on
structural properties of these specific families of ideals, as opposed to effective meth-
ods for general polynomials, such as those from sparse linear algebra. In contrast, our
paper uses graph theoretic methods as a constructive guide to perform computations
on arbitrary sparse polynomial systems.

2. Preliminaries.

2.1. Chordal graphs. Chordal graphs, also known as triangulated graphs, have
many equivalent characterizations. A good presentation is found in [5]. For our
purposes, we use the following definition.

Definition 1. Let G be a graph with vertices x0, . . . , xn−1. An ordering of its
vertices x0 > x1 > · · · > xn−1 is a perfect elimination ordering if for each xl the set

Xl := {xl} ∪ {xm : xm is adjacent to xl, xm < xl}(1)

is such that the restriction G|Xl
is a clique. A graph G is chordal if it has a perfect

elimination ordering.

Remark. Observe that lower indices correspond to larger vertices.

D
ow

nl
oa

de
d

03
/2

7/
17

 to
 1

8.
51

.1
.6

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CHORDAL STRUCTURE IN POLYNOMIAL IDEALS 1539

Chordal graphs have many interesting properties. Observe, for instance, that the
number of maximal cliques is at most n. The reason is because any clique should be
contained in some Xl. It is easy to see that trees are chordal graphs: by successively
pruning a leaf from the tree, we get a perfect elimination ordering.

Given a chordal graph G, a perfect elimination ordering can be found in linear
time. A classic and simple algorithm for doing so is maximum cardinality search
(MCS) [5]. This algorithm successively selects a vertex with a maximal number of
neighbors among previously chosen vertices, as shown in Algorithm 1. The ordering
obtained is a reversed perfect elimination ordering.

Algorithm 1 Maximum cardinality search [5].

Input: A chordal graph G = (V,E) and an optional initial clique
Output: A reversed perfect elimination ordering σ

1: procedure MCS(G, start = ∅)
2: σ := start
3: while |σ| < n do
4: choose v ∈ V − σ that maximizes |adj (v) ∩ σ|
5: append v to σ

6: return σ

Definition 2. Let G be an arbitrary graph. We say that G is a chordal comple-
tion of G if it is chordal and G is a subgraph of G. The clique number of G is the size
of its largest clique. The treewidth of G is the minimum clique number of G (minus
one) among all possible chordal completions.

Observe that given any ordering x0 > · · · > xn−1 of the vertices of G, there is
a natural chordal completion G; i.e., we add edges to G in such a way that each
G|Xl

is a clique. In general, we want to find a chordal completion with a small clique
number. However, there are n! possible orderings of the vertices, and thus finding the
best chordal completion is not simple. Indeed, this problem is NP-hard [1], but there
are good heuristics and approximation algorithms [6].

Example 3. Let G be the blue/solid graph in Figure 1. This graph is not chordal,
but if we add the three green/dashed edges shown in the figure, we obtain a chordal
completion G. In fact, the ordering x0 > · · · > x9 is a perfect elimination ordering
of the chordal completion. The clique number of G is four and the treewidth of G is
three.

As mentioned in the introduction, we will assume throughout this paper that
the graph G = G(F) is chordal and the ordering of its vertices (inherited from the
polynomial ring) is a perfect elimination ordering. However, for a nonchordal graph
G the same results hold by considering a chordal completion.

Remark (the linear case). We finalize this section by explaining how for linear
equations finding a chordal completion of G(F) agrees with standard methods from
numerical linear algebra. A linear set of equations F can be written in matrix form
as Ax = b. This is equivalent to (ATA)x = AT b, which can be solved with a Cholesky
factorization. As mentioned earlier, to minimize the fill-in (nonzero entries) we need
to find a small chordal completion of the adjacency graph G of matrix ATA. It can be
seen that this adjacency graph G coincides with the graph G(F) that we associate to
the equations. Alternatively, we can directly perform an LU decomposition (Gaussian
elimination) on matrix A, and it turns out that the adjacency graph G also bounds
the fill-in of the LU factors [12,37].

D
ow

nl
oa

de
d

03
/2

7/
17

 to
 1

8.
51

.1
.6

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1540 D. CIFUENTES AND P. A. PARRILO

Fig. 1. 10-vertex graph (blue, solid) and a chordal completion (green, dashed).

2.2. Algebraic geometry. We use standard tools from computational algebraic
geometry, following the notation from [10]. In particular, we assume the reader has
familiarity with Gröbner bases, elimination ideals, and resultants.

We let eliml(I) be the lth elimination ideal, i.e.,

eliml(I) := I ∩K[xl, . . . , xn−1].

We will denote by Il the “approximation” that we will compute to this elimination
ideal, defined in section 3. We also denote by πl : Kn → Kn−l the projection onto the
last n− l coordinates.

We recall the correspondence between elimination and projection given by

V(eliml(I)) = πl(V(I)),

where S denotes the closure of S with respect to the Zariski topology.

Remark. In order for the above equation to hold, we require that K be alge-
braically closed, as we assume throughout this paper. However, if the coefficients of
the equations F are contained in a smaller field (e.g., K = C but the coefficients are
in Q), then all computations in our algorithms will stay within such a field.

3. Chordal elimination. In this section, we present our main method, chordal
elimination. As mentioned, we attempt to compute some generators for the elimina-
tion ideals with the same structure G. The approach we follow mimics the Gaussian
elimination process by isolating the polynomials that do not involve the variables that
we are eliminating. The output of chordal elimination is an “approximate” elimination
ideal that preserves chordality. We call it approximate in the sense that, in general,
it might not be the exact elimination ideal, but we hope it will be close to it. In fact,
we will find inner and outer approximations to the ideal, as will be seen later. The
case when both approximations are the same ensures us that the elimination ideal
was computed correctly.

3.1. Incremental elimination. We follow an incremental approach to compute
the elimination ideals, in a similar way as in Gaussian elimination. We illustrate the
basic methodology through the following example.

Example 4. Consider the ideal

I = 〈x4
0 − 1, x2

0 + x2, x
2
1 + x2, x

2
2 + x3〉.

The associated graph is the tree in Figure 2. We incrementally eliminate each of the

D
ow

nl
oa

de
d

03
/2

7/
17

 to
 1

8.
51

.1
.6

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CHORDAL STRUCTURE IN POLYNOMIAL IDEALS 1541

Fig. 2. Simple 3-vertex tree.

variables, considering at each step only the equations involving it. First, we consider
only the polynomials involving x0, of which there are two: x4

0 − 1, x2
0 + x2. If we

eliminate x0 from these equations, we obtain x2
2 − 1. This leads to the elimination

ideal

I1 = 〈x2
1 + x2, x

2
2 − 1, x2

2 + x3〉.

We now consider the polynomials involving x1, of which there is only one: x2
1 + x2.

Thus, we cannot eliminate x1, so our second elimination ideal is

I2 = 〈x2
2 − 1, x2

2 + x3〉.

Finally, we eliminate x2 from the remaining equations, obtaining

I3 = 〈x3 + 1〉.

For this example all elimination ideals found are correct, as can be seen from the lex
Gröbner basis gb = {x2

0 + x2, x
2
1 + x2, x

2
2 − 1, x3 + 1}.

Example 4 shows the basic idea we follow. Namely, to eliminate a variable xi
we only consider a subset of the equations. In the above example, these equations
only involved two variables at each step. In general, to eliminate xi we only take into
account its neighboring variables in the graph. Therefore, if the neighborhood of each
xi is small, we should require less computation. The chordality property will imply
that these neighborhoods (cliques) are never expanded in the process.

This successive elimination process is simple, but it is not clear whether it always
leads to the correct elimination ideals. The following example illustrates that this is
not always the case.

Example 5 (incremental elimination may fail). Consider the ideal

I = 〈x0x1 + 1, x1 + x2, x1x2〉.

The associated graph is the path x0—x1—x2. We proceed in an incremental way as
before. First, we consider only the polynomials involving x0, of which there is only
one: x0x1 + 1. Thus, we cannot eliminate x0, and we are left with the ideal

I1 = 〈x1 + x2, x1x2〉.

Eliminating x1 from the two equations above, we obtain

I2 = 〈x2
2〉.

Observe that the original ideal I is infeasible, i.e., I = 〈1〉, but the ideals I1, I2 found
are feasible. Thus, the elimination ideals found are not correct.

D
ow

nl
oa

de
d

03
/2

7/
17

 to
 1

8.
51

.1
.6

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1542 D. CIFUENTES AND P. A. PARRILO

Examples 4 and 5 show this incremental approach to obtain elimination ideals.
In the first case the elimination process was correct, but in the second case it was not
correct. The problem in the second example can be seen in the following equation:

elim1(〈x0x1 + 1, x1 + x2, x1x2〉) 6= elim1(〈x0x1 + 1〉) + 〈x1 + x2, x1x2〉.

The goal now is to understand why these ideals are different, and to determine when
we can ensure that we successfully found the elimination ideals.

3.2. Bounding the first elimination ideal. We just introduced an incremen-
tal approach to compute elimination ideals, and we observed that it might not be
correct. As will be shown next, the result of this process is always an inner approxi-
mation to the actual elimination ideal. Even more, we will see that we can also find
an outer approximation to it. By comparing these approximations (or bounds) we
can certify the cases where the elimination is correct. We now analyze the case of the
first elimination ideal, and we will later proceed to further elimination ideals.

We formalize the elimination procedure presented in section 3.1. Let I1 be our
estimation of the first elimination ideal as described before. Recall that to compute
the ideal I1 we want to use only a subset of the equations, that is, in the examples
above, those containing variable x0. Let us denote by J the ideal of these equations
and by K the ideal of the remaining equations. Then I = J +K, and our estimation
of the first elimination ideal is given by I1 = elim1(J) +K. Note that the equations
of I involving x0 must certainly be part of J .

In this way, to compute I1 we need only perform operations on the generators
of J ; we never deal with K. As a result, the computation of I1 can be done on a
smaller ring, whose variables correspond to a neighborhood, or clique, of the chordal
graph. Chordality will ensure that graphical structure of I is preserved; i.e., the graph
associated to (the generators of) I1 is a subgraph of G. We elaborate more on this
later.

We want to show the relationship between our estimate I1 and the actual elimi-
nation ideal elim1(I). To do so, the key will be the closure theorem [10, Chapter 3].

Definition 3. Let 1 ≤ l < n, and let I = 〈f1, . . . , fs〉 ⊆ K[xl−1, . . . , xn−1] be an
ideal with a fixed set of generators. For each 1 ≤ t ≤ s assume that ft is of the form

ft = ut(xl, . . . , xn−1)xdtl−1 + (terms with smaller degree in xl−1)

for some dt ≥ 0 and ut ∈ K[xl, . . . , xn−1]. We define the coefficient ideal of I to be

coeff l(I) := 〈ut : 1 ≤ t ≤ s〉 ⊆ K[xl, . . . , xn−1].

Theorem 1 (closure theorem). Let I = 〈f1, . . . , fs〉 ⊆ K[x0, . . . , xn−1]. Let
W := coeff1(I) be the coefficient ideal, let elim1(I) be the first elimination ideal, and
let π : Kn → Kn−1 be the projection onto the last factor. Then,

V(elim1(I)) = π(V(I)),

V(elim1(I))−V(W) ⊆ π(V(I)).

The next lemma tells us that I1 is an inner approximation of the actual elimination
ideal elim1(I). It also describes an outer approximation to it, which depends on I1
and some ideal W . If the two bounds are equal, this implies that we successfully
found the elimination ideal.

D
ow

nl
oa

de
d

03
/2

7/
17

 to
 1

8.
51

.1
.6

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CHORDAL STRUCTURE IN POLYNOMIAL IDEALS 1543

Lemma 1. Let J=〈f1, . . . , fs〉⊆K[x0, . . . , xn−1], K=〈g1, . . . , gr〉⊆K[x1, . . . , xn−1],
and

I := J +K = 〈f1, . . . , fs, g1, . . . , gr〉.

Let the ideals I1,W ⊆ K[x1, . . . , xn−1] be

I1 := elim1(J) +K,

W := coeff1(J) +K.

Then the following equations hold:

V(elim1(I)) = π(V(I)) ⊆ V(I1),(2)

V(I1)−V(W) ⊆ π(V(I)).(3)

Proof. We first show (2). The closure theorem says that V(elim1(I)) = π(V(I)).
We will show that π(V(I)) ⊆ V(I1), from which (2) follows because V(I1) is closed.

In the following equations, sometimes we will consider the varieties in Kn and
sometimes in Kn−1. To specify, we will denote them as Vn and Vn−1, respectively.
Notice that

π(Vn(I)) = π(Vn(J +K)) = π(Vn(J) ∩Vn(K)).

Now observe that

π(Vn(J) ∩Vn(K)) = π(Vn(J)) ∩Vn−1(K).

The reason is the fact that if S ⊆ Kn, T ⊆ Kn−1 are arbitrary sets, then

π(S ∩ (K× T)) = π(S) ∩ T.

Finally, note that π(Vn(J)) = V(elim1(J)). Combining everything, we conclude that

π(V(I)) = π(Vn(J)) ∩Vn−1(K)

⊆ π(Vn(J)) ∩Vn−1(K)

= Vn−1(elim1(J)) ∩Vn−1(K)

= Vn−1(elim1(J) +K)

= V(I1).

We now show (3). The closure theorem states that

V(elim1(J))−V(coeff1(J)) ⊆ π(V(J)).

Then,

V(I1)−V(W) = [Vn−1(elim1(J)) ∩Vn−1(K)]− [Vn−1(coeff1(J)) ∩Vn−1(K)]

= [Vn−1(elim1(J))−Vn−1(coeff1(J))] ∩Vn−1(K)

⊆ π(Vn(J)) ∩Vn−1(K)

= π(V(I)).

This concludes the proof.

D
ow

nl
oa

de
d

03
/2

7/
17

 to
 1

8.
51

.1
.6

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1544 D. CIFUENTES AND P. A. PARRILO

Note that the lemma above implies the equations

V(I1)−V(W) ⊆ V(elim1(I)) ⊆ V(I1),√
I1 :
√
W ⊇

√
elim1(I) ⊇

√
I1,

where we used the fact that set difference of varieties corresponds to ideal quotient.
Thus, the ideal W bounds the approximation error of our estimation I1 to the ideal
elim1(I). In particular, if V(W) is empty, then I1 and elim1(I) determine the same
variety.

3.3. Bounding all elimination ideals. Lemma 1 gave us the relationship be-
tween our estimation I1 and the actual elimination ideal elim1(I). We generalize this
now to further elimination ideals.

We denote by Il our estimation of the lth elimination ideal. As before, to estimate
eliml+1(Il) we only use a subset of the equations of Il, which we denote as Jl. The
remaining equations are denoted as Kl+1. Then Il+1 = eliml+1(Il) + Kl+1. The
following theorem establishes the relationship between Il+1 and eliml+1(I).

Theorem 2. Let I⊆K[x0, . . . , xn−1] be an ideal. Consider ideals Il⊆K[xl, . . . , xn−1]
for 0 ≤ l < n, with I0 := I, which are constructed recursively as follows:

(i) Given Il, let Jl ⊆ K[xl, . . . , xn−1], Kl+1 ⊆ K[xl+1, . . . , xn−1] be2 such that
Il = Jl +Kl+1.

(ii) Let Il+1 := eliml+1(Jl) +Kl+1.
(iii) Also denote Wl+1 := coeff l+1(Jl) +Kl+1.

Then for each l the following equations hold:

V(eliml(I)) = πl(V(I)) ⊆ V(Il),(4)

V(Il)− [πl(V(W1)) ∪ · · · ∪ πl(V(Wl))] ⊆ πl(V(I)).(5)

Proof. The proof follows from Lemma 1 by induction. See section A.1 in the
appendix.

The lemma above implies the following equations:

V(IL)−V(W) ⊆ V(elimL(I)) ⊆ V(IL),(6a) √
IL :
√
W ⊇

√
elimL(I) ⊇

√
IL,(6b)

where the ideal W is

W := elimL(W1) ∩ · · · ∩ elimL(WL).(7)

Note also that by construction we always have that if xm < xl, then Im ⊆ Il.

3.4. Chordal elimination algorithm. The recursive construction given in
Theorem 2 is not fully specified (see item (i)). In particular, it is not clear which
decomposition of type Il = Jl +Kl+1 to use. We now describe the specific decompo-
sition we use to obtain the chordal elimination algorithm.

We recall the definition of the cliques Xl from (1). Equivalently, Xl is the largest
clique containing xl in G|{xl,...,xn−1}. Let fj be a generator of Il. If all of the variables
in fj are contained in Xl, we put fj in Jl. Otherwise, if some variable of fj is not in
Xl, we put fj in Kl+1. We refer to this procedure as clique decomposition.

2Note that this decomposition is not unique, since we are not fully specifying the ideals Jl,Kl+1.

D
ow

nl
oa

de
d

03
/2

7/
17

 to
 1

8.
51

.1
.6

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CHORDAL STRUCTURE IN POLYNOMIAL IDEALS 1545

Example 6. Let I = 〈f, g, h〉, where f = x2
0 +x1x2, g = x3

1 +x2, and h = x1 +x3.
Note that the associated graph consists of a triangle x0, x1, x2 and the edge x1, x3.
Thus, we have X0 = {x0, x1, x2}. The clique decomposition is J0 = 〈f, g〉, K1 = 〈h〉.

We should mention that this decomposition method is reminiscent of the bucket
elimination algorithm from constraint satisfaction [15]. However, we do not place
an equation f in its largest variable, but rather in the largest variable xl such that
f ∈ K[Xl]. The reason for doing this is to further shrink the variety V(Jl). This leads
to a tighter approximation of the elimination ideals and simplifies the Gröbner basis
computation.

It is easy to see that the procedure in Theorem 2, using this clique decomposition,
preserves chordality. We state that now.

Proposition 1. Let I be an ideal with chordal graph G. If we follow the procedure
in Theorem 2 using the clique decomposition, then the graph associated to Il is a
subgraph of G.

Proof. Observe that we do not modify the generators of Kl+1, and thus the only
part where we may alter the sparsity pattern is when we compute eliml+1(Jl) and
coeff l+1(Jl). However, the variables involved in Jl are contained in the clique Xl and
thus, independent of which operations we apply to its generators, we will not alter
the structure.

In the above discussion we resolved the ambiguity problem of step (i) in Theo-
rem 2. However, there is still an issue regarding the “error ideal” W of (7). We recall
that Wl+1 depends on the coefficient ideal of Jl. Thus, Wl+1 does not only depend
on the ideal Jl, but it also depends on the specific set of generators that we are using.
In particular, some set of generators might lead to a larger/worse variety V(Wl+1)
than others. This problem is inherent to the closure theorem, and it is discussed
in [10, Chapter 3]. It turns out that a lex Gröbner basis of Jl is an optimal set of
generators, as shown in [10]. Therefore, it is convenient to find this Gröbner basis
before computing the coefficient ideal.

Algorithm 2 presents the chordal elimination algorithm. The output of the al-
gorithm is the inner approximation IL to the Lth elimination ideal and the ideals
W1, . . . ,WL that satisfy (6). In the event that V(Wl) = ∅ for all l, the elimination
was correct. This is the case that we focus on in the rest of the paper.

Remark. Observe that in line 14 of Algorithm 2 we append a Gröbner basis to Jl,
so that we do not remove the old generators. There are two reasons to compute this
lex Gröbner basis: it allows us to find the eliml+1(Jl) easily, and we obtain a tighter
Wl+1 as discussed above. However, we do not replace the old set of generators but
instead append to them this Gröbner basis. We will explain the reason for doing this
in section 3.5.

3.5. Elimination tree. We now introduce the concept of elimination tree and
show its connection with chordal elimination. This concept will help us to analyze
our methods.

Definition 4. Let G be an ordered graph with vertex set x0 > · · · > xn−1. We
associate to G the following directed spanning tree T that we refer to as the elimina-
tion tree: For each xl > xn−1 there is an arc from xl towards the largest xp that is
adjacent to xl and xp < xl. We will say that xp is the parent of xl and that xl is a
descendant of xp. Note that T is rooted at xn−1.

Figure 3 shows an example of the elimination tree of a given graph. It is easy

D
ow

nl
oa

de
d

03
/2

7/
17

 to
 1

8.
51

.1
.6

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1546 D. CIFUENTES AND P. A. PARRILO

Algorithm 2 Chordal elimination to find the Lth elimination ideal.

Input: An ideal I, given by generators with chordal graph G, and an integer L
Output: Ideals IL and W1, . . . ,WL approximating elimL(I) as in (6)

1: procedure ChordElim(I,G, L)
2: I0 = I
3: for l = 0 : L− 1 do
4: get clique Xl of G
5: Jl,Kl+1 = SplitGens(Il, Xl)
6: FindElim&Coeff(Jl)
7: Il+1 = eliml+1(Jl) +Kl+1

8: Wl+1 = coeff l+1(Jl) +Kl+1

9: return IL,W1, . . . ,WL

10: procedure SplitGens(Il, Xl) . Partition generators of Il
11: Jl = 〈f : f generator of Il and f ∈ K[Xl]〉
12: Kl+1 = 〈f : f generator of Il and f /∈ K[Xl]〉

13: procedure FindElim&Coeff(Jl) . Eliminate xl in the ring K[Xl]
14: append to Jl its lex Gröbner basis
15: eliml+1(Jl) = 〈f : f generator of Jl with no xl〉
16: coeff l+1(Jl) = 〈leading coefficient of f : f generator of Jl〉

Fig. 3. Chordal graph G and its elimination tree T .

to see that eliminating a variable xl corresponds to pruning one of the leaves of the
elimination tree. We now present a simple property of such a tree.

Lemma 2. Let G be a chordal graph, let xl be some vertex, and let xp be its parent
in the elimination tree T . Then,

Xl \ {xl} ⊆ Xp,

where Xi is as in (1).

Proof. Let C = Xl \ {xl}. Note that C is a clique that contains xp. Even more,
xp is its largest variable because of the definition of T . As Xp is the unique largest
clique satisfying such a property, we must have C ⊆ Xp.

A consequence of the lemma above is the following relation:

eliml+1(I ∩K[Xl]) ⊆ I ∩K[Xp],(8)

where I ∩ K[Xl] is the set of all polynomials in I that involve only variables in Xl.

D
ow

nl
oa

de
d

03
/2

7/
17

 to
 1

8.
51

.1
.6

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CHORDAL STRUCTURE IN POLYNOMIAL IDEALS 1547

The reason for the relation above is

eliml+1(I ∩K[Xl]) = (I ∩K[Xl]) ∩K[xl+1, . . . , xn−1] = I ∩K[Xl \ {xl}].

There is a simple geometric interpretation of (8). The variety V(I ∩ K[Xl]) can
be interpreted as the set of partial solutions restricted to the set Xl. Thus, (8) is
telling us that any partial solution on Xp extends to a partial solution on Xl (the
inclusion is reversed). Even though this equation is very simple, this is a property
that we would like to keep in chordal elimination.

Clearly, we do not have a representation of the clique elimination ideal I ∩K[Xl].
However, the natural relaxation to consider is the ideal Jl ⊆ K[Xl] that we compute
in Algorithm 2. To preserve the property above (i.e., every partial solution of Xp

extends to Xl), we would like to have the following relation:

eliml+1(Jl) ⊆ Jp.(9)

It turns out that there is a very simple way to ensure this property: we preserve
the old generators of the ideal during the elimination process. This is precisely the
reason why in line 14 of Algorithm 2 we append a Gröbner basis to Jl.

We now prove that (9) holds. We need the following lemma.

Lemma 3. In Algorithm 2, let f ∈ Il be one of its generators. If xm is such that
xm ≤ xl and f ∈ K[Xm], then f is a generator of Jm. In particular, this holds if xm
is the largest variable in f .

Proof. For a fixed xm, we will show this by induction on xl.
The base case is l = m. In such a case, by construction of Jm we have that

f ∈ Jm.
Assume now that the assertion holds for any x′l with xm ≤ xl′ < xl, and let f be a

generator of Il. There are two cases: either f ∈ Jl or f ∈ Kl+1. In the second case, f
is a generator of Il+1, and using the induction hypothesis we get f ∈ Jm. In the first
case, as f ∈ K[Xm], all variables of f are less than or equal to xm and thus strictly
smaller than xl. Following Algorithm 2, we see that f is a generator of eliml+1(Jl).
Thus, f is again a generator of Il+1, and we conclude by induction.

We now prove the second part; i.e., it holds if xm is the largest variable. We just
need to show that f ∈ K[Xm]. Let Xlm := Xl ∩ {xm, . . . , xn−1}; then f ∈ K[Xlm],
as xm is the largest variable. Note that as f ∈ K[Xl] and f involves xm, we have
xm ∈ Xl. Thus, Xlm is a clique of G|{xm,...,xn−1} and contains xm. However, Xm

is the unique largest clique that satisfies this property. Then Xlm ⊆ Xm so that
f ∈ K[Xlm] ⊆ K[Xm].

Corollary 1. Let xl be arbitrary, and let xp be its parent in the elimination
tree T . Then (9) holds for Algorithm 2.

Proof. Let f ∈ eliml+1(Jl) be one of its generators. Then f is also one of the
generators of Il+1 by construction. It is clear that the variables of f are contained
in Xl \ {xl} ⊆ Xp, where we used Lemma 2. From Lemma 3 we get that f ∈ Jp,
concluding the proof.

The reader may believe that preserving the old set of generators is not necessary.
The following example shows that it is necessary in order to have the relation in (9).

Example 7. Consider the ideal

I = 〈x0 − x2, x0 − x3, x1 − x3, x1 − x4, x2 − x3, x3 − x4, x
2
2〉,

D
ow

nl
oa

de
d

03
/2

7/
17

 to
 1

8.
51

.1
.6

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1548 D. CIFUENTES AND P. A. PARRILO

whose associated graph consists of two triangles {x0, x2, x3} and {x1, x3, x4}. Note
that the parent of x0 is x2. If we preserve the old generators (as in Algorithm 2),
we get I2 = 〈x2 − x3, x3 − x4, x

2
2, x

2
3, x

2
4〉. If we do not preserve them, we get instead

Î2 = 〈x2 − x3, x3 − x4, x
2
4〉. In the last case we have Ĵ2 = 〈x2 − x3〉 so that x2

2 /∈ Ĵ2,
even though x2

2 ∈ J0. Moreover, the ideal J0 is zero-dimensional, but Ĵ2 has positive
dimension. Thus, (9) does not hold.

4. Successful elimination.

Notation. We will write I
rad
= J whenever we have V(I) = V(J).

In section 3 we showed an algorithm that gives us an approximate elimination
ideal. In this section we are interested in finding conditions under which such an
algorithm returns the actual elimination ideal. We will say that chordal elimination,
i.e., Algorithm 2, succeeds if we have V(Il) = V(eliml(I)). Following the convention

above, we write Il
rad
= eliml(I).

4.1. The domination condition. Theorem 2 gives us lower and upper bounds
on the actual elimination ideals. We use these bounds to obtain a condition that
guarantees that chordal elimination succeeds.

Definition 5. We say that a polynomial f is xi-dominated if its leading mono-
mial has the form xdi for some d. We say that an ideal J is xi-dominated if there is
some f ∈ J that is xi-dominated. Equivalently, J is xi-dominated if its initial ideal
in(J) contains a pure power of xi.

Definition 6 (domination condition). Let I be an ideal and use Algorithm 2.
We say that the domination condition holds if Jl is xl-dominated for each l.

The domination condition implies that chordal elimination succeeds, as shown in
the next lemma.

Lemma 4 (domination implies success). If the domination condition holds, then

Il
rad
= eliml(I) and the corresponding variety is πl(V(I)) for all l.

Proof. As Jl is xl-dominated, its initial ideal in(Jl) contains a pure power of xl.
Thus, there must be a g that is part of the Gröbner basis of Jl and is xl-dominated.
The coefficient ut that corresponds to such a g is ut = 1, and therefore 1 ∈ Wl

and V(Wl) = ∅. Thus, the two bounds in Theorem 2 are the same, and the result
follows.

We will now show some classes of ideals in which the domination condition holds.
Using the previous lemma, this guarantees that chordal elimination succeeds.

Corollary 2. Let I be an ideal, and assume that for each l such that Xl is a
maximal clique of G, the ideal Jl ⊆ K[Xl] is zero-dimensional. Then the domination
condition holds and chordal elimination succeeds.

Proof. Let xm be arbitrary, and let xl ≥ xm be such that Xm ⊆ Xl and Xl is a
maximal clique. As Jl ⊆ K[Xl] is zero-dimensional, it is xj-dominated for all xj ∈ Xl.
Thus, there is a g that is part of the Gröbner basis of Jl and is xm-dominated. From
Lemma 3 we obtain that g ∈ Jm, and thus the domination condition holds.

Corollary 3. Let I be an ideal, and assume that for each l there is a genera-
tor fl of I that is xl-dominated. Then the domination condition holds and chordal
elimination succeeds.

Proof. It follows from Lemma 3 that fl ∈ Jl, so that Jl is xl-dominated and the
domination condition holds.

D
ow

nl
oa

de
d

03
/2

7/
17

 to
 1

8.
51

.1
.6

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CHORDAL STRUCTURE IN POLYNOMIAL IDEALS 1549

The previous corollary presents a first class of ideals for which we are guaranteed
to have successful elimination. Note that when we solve equations over a finite field Fq,
usually we include equations of the form xql −xl, so the corollary holds. In particular,
it holds for 0/1 problems.

4.2. Simplicial equations. The assumptions of Corollary 3 are too strong for
many cases. In particular, if l = n− 2, the only way that such an assumption holds is
if there is a polynomial that only involves xn−2, xn−1. We will show now a larger class
of ideals for which the domination condition also holds and thus chordal elimination
succeeds. The following concept is the basis for this class.

Definition 7. Let f ∈ K[x0, . . . , xn−1] be such that for each variable xl of posi-
tive degree, the monomial ml of f with largest degree in xl is unique and has the form
ml = xdll for some dl > 0. We say that f is simplicial.

Example 8. Consider the polynomials of Example 5:

f1 = x0x1 + 1, f2 = x1 + x2, f3 = x1x2.

Then f2 is simplicial, as for both x1, x2 the monomials of largest degree in these
variables are pure powers. In general, linear equations are always simplicial. On the
other hand, f1, f3 are not simplicial. This makes sense, as we will see that if all
polynomials are simplicial, then chordal elimination succeeds, which was not the case
of Example 5. On the contrary, all the polynomials of Example 4 are simplicial.

Note that the definition of simplicial is independent of the monomial ordering
used, as opposed to xi-domination. The reason for the term simplicial is that the
(scaled) standard simplex

∆ =

x : x ≥ 0,
∑
xl∈Xf

xl/dl = |Xf |

 ,

where Xf are the variables of f , is a face of the Newton polytope of f, and it is the
whole polytope if f is homogeneous.

We will make an additional genericity assumption on the simplicial polynomials.
Concretely, we assume that the coefficients of ml = xdll are generic, in a sense that
will be clear in the next lemma.

Lemma 5. Let q1, q2 be generic simplicial polynomials. Let X1, X2 denote their
sets of variables, and let x ∈ X1 ∩ X2. Then h = Resx(q1, q2) is generic simplicial,
and its set of variables is X1 ∪X2 \ x.

Proof. Let q1, q2 be of degree m1,m2 when viewed as univariate polynomials in
x. As q2 is simplicial, for each xi ∈ X2 \ x the monomial with the largest degree in
xi has the form xd2i . It is easy to see that the largest monomial of h, as a function

of xi, that comes from q2 will be xd2m1
i . Such a monomial arises from the product

of the main diagonal of the Sylvester matrix. In the same way, the largest monomial
that comes from q1 has the form xd1m2

i . If d2m1 = d1m2, the genericity guarantees
that such monomials do not cancel each other out. Thus, the leading monomial of h

in xi has the form x
max{d2m1,d1m2}
i , and then h is simplicial. The coefficients of the

extreme monomials are polynomials in the coefficients of q1, q2, so if they were not
generic (they satisfy certain polynomial equation), then q1, q2 would not be generic
either.

D
ow

nl
oa

de
d

03
/2

7/
17

 to
 1

8.
51

.1
.6

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1550 D. CIFUENTES AND P. A. PARRILO

Observe that in the lemma above we required the coefficients to be generic in
order to avoid cancellations in the resultant. This is the only part where we need this
assumption.

We recall that elimination can be viewed as pruning the elimination tree T of
G (Definition 4). We attach each of the generators of I to some node of T . More
precisely, we attach a generator f to the largest variable it contains, which we denote
as x(f). The following lemma tells us that if there are many simplicial polynomials
attached to the subtree of T rooted in xl, then Jl is xl-dominated.

Lemma 6. Let I = 〈f1, . . . , fs〉 and let 1 ≤ l < n. Let Tl be a subtree of T with t
vertices and minimal vertex xl. Assume that there are fi1 , . . . , fit generic simplicial
with largest variable x(fij) ∈ Tl for 1 ≤ j ≤ t. Then Jl is xl-dominated.

Proof. We will show that we can find a simplicial polynomial fl ∈ Jl that contains
xl, which implies the desired result. Let us ignore all ft such that its largest variable
is not in Tl. By doing this, we get smaller ideals Jl, so it does not help to prove the
statement. Let us also ignore all vertices which do not involve one of the remaining
equations. Let S be the set of variables which are not in Tl. As in any of the remaining
equations the largest variable should be in Tl, then for any xi ∈ S there is some xj ∈ Tl
with xj > xi. We will show that for any xi ∈ S we have xl > xi.

Assume by contradiction that this is not true, and let xi be the smallest coun-
terexample. Let xp be the parent of xi. Note that xp /∈ S because of the minimality
of xi, and thus xp ∈ Tl. As mentioned earlier, there is some xj ∈ Tl with xj > xi. As
xj > xi and xp is the parent of xi, this means that xi is in the path of T that joins
xj and xp. However, xj , xp ∈ Tl and xi /∈ Tl, so this contradicts that Tl is connected.

Thus, for any xi ∈ S, we have that xi < xl. This says that to obtain Jl we do
not need to eliminate any of the variables in S. Therefore, we can ignore all variables
in S. Thus, we can assume that l = n − 1 and Tl = T . This reduces the problem to
the specific case considered in the following lemma.

Lemma 7. Let I = 〈f1, . . . , fn〉 such that fj is generic simplicial for all j. Then
there is a simplicial polynomial f ∈ In−1 = Jn−1.

Proof. We will prove the more general result: for each l there exist f l1,f
l
2, . . . , f

l
n−l∈

Il which are all simplicial and generic. Moreover, we will show that if xj denotes the
largest variable of some f li , then f li ∈ Jj . Note that as xj ≤ xl, we have Jj ⊆ Ij ⊆ Il.
We will explicitly construct such polynomials.

Such a construction is very similar to the chordal elimination algorithm. The only
difference is that instead of elimination ideals we use resultants.

Initially, we assign f0
i = fi for 1 ≤ i ≤ n. Inductively, we construct the next

polynomials,

f l+1
i =

{
Resxl

(f l0, f
l
i+1) if f li+1 involves xl,

f li+1 if f li+1 does not involve xl,

for 1 ≤ i ≤ n − l, where we assume that f l0 involves xl, possibly after rearranging
them. In the event that no f li involves xl, we can ignore such a variable. Notice that
Lemma 5 tells us that f li are all generic and simplicial.

We need to show that f li ∈ Jj , where xj is the largest variable of f li . We will
prove this by induction on l.

The base case is l = 0, where f0
i = fi are generators of I, and thus Lemma 3 says

that fi ∈ Jj .

D
ow

nl
oa

de
d

03
/2

7/
17

 to
 1

8.
51

.1
.6

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CHORDAL STRUCTURE IN POLYNOMIAL IDEALS 1551

Assume that the hypothesis holds for some l and consider some f := f l+1
i . Let

xj be its largest variable. Consider first the case where f = f li+1. By the induction
hypothesis, f ∈ Jj , and we are done.

Now consider the case when f = Resxl
(f l0, f

l
i+1). In this case the largest variable

of both f l0, f
l
i+1 is xl and thus, using the induction hypothesis, both of them lie in

Jl. Let xp be the parent of xl. Using (9) we get f ∈ eliml+1(Jl) ⊆ Jp. Let us see
now that xj ≤ xp. The reason is because xj ∈ Xp, as f ∈ K[Xp] and xj is its largest
variable. Thus, we found an xp with xj ≤ xp < xl and f ∈ Jp. If xj = xp, we are
done. Otherwise, if xj < xp, let xr be the parent of xp. As f does not involve xp, we
have f ∈ elimp+1(Jp) ⊆ Jr. In the same way as before we get that xj ≤ xr < xp and
f ∈ Jr. Note that we can repeat this argument again, until we get that f ∈ Jj . This
concludes the induction.

Lemma 6 can be used to show the domination condition and thus certify that
chordal elimination succeeds. In particular, we can do this in the special case when
all polynomials are simplicial, as we show in the next theorem.

Theorem 3. Let I = 〈f1, . . . , fs〉 be an ideal such that for each 1 ≤ i ≤ s, fi is
generic simplicial. Then chordal elimination succeeds.

Proof. For each l, let Tl be the largest subtree of T with minimal vertex xl.
Equivalently, Tl consists of all the descendants of xl. Let tl := |Tl|, and let x(fj)
denote the largest variable of fj . If for all xl there are at least tl generators fj
with x(fj) ∈ Tl, then Lemma 6 implies the domination condition and we are done.
Otherwise, let xl be the largest where this fails. The maximality of xl guarantees
that elimination succeeds up to such a point, i.e., Im = elimm(I) for all xm ≥ xl. We
claim that no equation of Il involves xl, and thus we can ignore it. Proving this claim
will conclude the proof.

If xl is a leaf of T , then tl = 1, which means that no generator of I involves xl.
Otherwise, let xs1 , . . . , xsr be its children. Note that Tl = {xl} ∪ Ts1 ∪ · · · ∪ Tsr . We
know that there are at least tsi generators with x(fj) ∈ Tsi for each si, and such a
bound has to be exact, as xl does not have such a property. Thus, for each si there
are exactly tsi generators with x(fj) ∈ Tsi , and there is no generator with x(fj) = xl.
Then, for each si, when we eliminate all the tsi variables in Tsi in the corresponding
tsi equations we must get the zero ideal, i.e., elimsi+1(Jsi) = 0. On the other hand,
as there is no generator with x(fj) = xl, all generators that involve xl are in some
Tsi . But we observed that the lth elimination ideal in each Tsi is zero, so that Il does
not involve xl, as we wanted.

5. Elimination ideals of cliques.

Notation. We will write I
rad
= J whenever we have V(I) = V(J).

Algorithm 2 allows us to compute (or bound) the elimination ideals
I ∩ K[xl, . . . , xn−1]. In this section we will show that once we compute such ideals,
we can also compute many other elimination ideals. In particular, we will compute
the elimination ideals of the maximal cliques of G.

We recall the definition of the cliques Xl from (1). Let Hl := I ∩ K[Xl] be the
corresponding elimination ideal. As any clique is contained in some Xl, we can restrict
our attention to computing Hl. In particular, all maximal cliques of the graph are of
the form Xl for some l.

The motivation behind these clique elimination ideals is to find sparse generators
of the ideal that are the closest to a Gröbner basis. Lex Gröbner bases can be very

D
ow

nl
oa

de
d

03
/2

7/
17

 to
 1

8.
51

.1
.6

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1552 D. CIFUENTES AND P. A. PARRILO

large, and thus finding a sparse approximation to them might be much faster, as will
be seen in section 7. We attempt to find such an “optimal” sparse representation by
using chordal elimination.

Specifically, let gbHl
denote a lex Gröbner basis of each Hl. We argue that the

concatenation
⋃
l gbHl

constitutes such a closest sparse representation. In particular,
the following proposition says that if there exists a lex Gröbner basis of I that preserves
the structure, then

⋃
l gbHl

is also one.

Proposition 2. Let I be an ideal with graph G, and let gb be a lex Gröbner
basis. Let Hl denote the clique elimination ideals, and let gbHl

be the corresponding
lex Gröbner bases. If gb preserves the graph structure, i.e., G(gb) ⊆ G, then

⋃
l gbHl

is a lex Gröbner basis of I.

Proof. It is clear that gbHl
⊆ Hl ⊆ I. Let m ∈ in(I) be some monomial; we just

need to show that m ∈ in(
⋃
l gHl

). As in(I) = in(gb), we can restrict m to be the
leading monomial m = lm(p) of some p ∈ gb. By the assumption on gb, the variables
of p are in some clique Xl of G. Thus, p ∈ Hl so that m = lm(p) ∈ in(Hl) = in(gbl).
This concludes the proof.

Before computing Hl, we will show how to obtain elimination ideals of simpler
sets. These sets are determined by the elimination tree of the graph, and we will
find the corresponding elimination ideals in section 5.1. After that we will come back
to computing the clique elimination ideals in section 5.2. Finally, we will elaborate
more on the relationship between lex Gröbner bases and clique elimination ideals in
section 5.3.

5.1. Elimination ideals of lower sets. Now we will show how to find elimi-
nation ideals of some simple sets of the graph, which depend on the elimination tree.
To do so, we recall that in chordal elimination we decompose Il = Jl + Kl+1, which
allows us to compute next Il+1 = eliml+1(Jl) +Kl+1. Observe that

Il = Jl +Kl+1

= Jl + eliml+1(Jl) +Kl+1

= Jl + Il+1

= Jl + Jl+1 +Kl+2

= Jl + Jl+1 + eliml+2(Jl+1) +Kl+2.

Continuing this way, we conclude that

Il = Jl + Jl+1 + · · ·+ Jn−1.(10)

We will obtain a similar summation formula for other elimination ideals apart from
Il.

Consider again the elimination tree T . We present another characterization of it.

Proposition 3. Consider the directed acyclic graph (DAG) obtained by orienting
the edges of G with the order of its vertices. Then the elimination tree T corresponds
to the transitive reduction of such a DAG. Equivalently, T is the Hasse diagram of
the poset associated to the DAG.

Proof. As T is a tree, it is reduced, and thus we just need to show that any arc
from the DAG corresponds to a path of T . Let xi → xj be an arc in the DAG,
and observe that being an arc is equivalent to xj ∈ Xi. Let xp be the parent of xi.
Then Lemma 2 implies xj ∈ Xp, and thus xp → xj is in the DAG. Similarly, if xr

D
ow

nl
oa

de
d

03
/2

7/
17

 to
 1

8.
51

.1
.6

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CHORDAL STRUCTURE IN POLYNOMIAL IDEALS 1553

is the parent of xp, then xr → xj is another arc. By continuing this way we find a
path xi, xp, xr, . . . in T that connects xi → xj , proving that T is indeed the transitive
reduction.

Definition 8. We say a set of variables Λ is a lower set if T |Λ is also a tree
rooted in xn−1. Equivalently, Λ is a lower set of the poset associated to the DAG of
Proposition 3.

Observe that {xl, xl+1, . . . , xn−1} is a lower set, as when we remove x0, x1, . . . we
are pruning some leaf of T . The following lemma gives a simple property of lower
sets.

Lemma 8. If X is a set of variables such that G|X is a clique, then T |X is con-
tained in some branch of T . In particular, if xl > xm are adjacent, then any lower
set containing xl must also contain xm.

Proof. For the first part, note that the DAG induces a poset on the vertices, and
restricted to X we get a linear order. Thus, in the Hasse diagram, X must be part
of a chain (branch). The second part follows by considering the clique X = {xl, xm}
and using the previous result.

The next lemma tells us how to obtain the elimination ideals of any lower set.

Lemma 9. Let I be an ideal, let V = V(I), and assume that the domination
condition holds for chordal elimination. Let Λ ⊆ {x0, . . . , xn−1} be a lower set. Then,

I ∩K[Λ]
rad
=
∑
xi∈Λ

Ji

and the corresponding variety is πΛ(V), where πΛ : Kn → KΛ is the projection onto
Λ.

Proof. See section A.2 in the appendix.

5.2. Cliques elimination algorithm. Lemma 9 tells us that we can very easily
obtain the elimination ideal of any lower set. We return now to the problem of
computing the elimination ideals of the cliques Xl, which we denoted as Hl. Before
showing how to get them, we need a simple lemma.

Lemma 10. Let G be a chordal graph, and let X be a clique of G. Then there
is a perfect elimination ordering v0, . . . , vn−1 of G such that the last vertices of the
ordering correspond to X, i.e., X = {vn−1, vn−2, . . . , vn−|X|}.

Proof. We can apply MCS (Algorithm 1) to the graph, choosing at the beginning
all the vertices of clique X. As the graph is chordal, this gives a reversed perfect
elimination ordering.

Theorem 4. Let I be a zero-dimensional ideal with chordal graph G. Assume
that the domination condition holds for chordal elimination. Then we can further

compute ideals Hl ∈ K[Xl] such that Hl
rad
= I ∩K[Xl], preserving the structure.

Proof. We will further prove that the corresponding variety is πXl
(V), where

V = V(I) and πXl
: Kn → KXl is the projection onto Xl. We proceed by induction

on l.
The base case is l = n−1. As chordal elimination is successful, In−1

rad
= elimn−1(I)

and the variety is πn−1(V), so we can set Hn−1 = In−1.
Assume that we found Hm for all xm < xl. Let Λ be a lower set with largest

element xl. By Lemma 9, we can compute an ideal IΛ with V(IΛ) = πΛ(V). Note

D
ow

nl
oa

de
d

03
/2

7/
17

 to
 1

8.
51

.1
.6

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1554 D. CIFUENTES AND P. A. PARRILO

that Xl ⊆ Λ because of Lemma 8. Thus, we should use as Hl the ideal IΛ ∩ K[Xl].
Naturally, we will use chordal elimination to approximate this ideal. For a reason that
will be clear later, we modify IΛ, appending to it the ideals Hr for all xr ∈ Λ \ {xl}.
Observe that this does not change the variety.

Consider the induced graph G|Λ, which is also chordal as G is chordal. Thus,
Lemma 10 implies that there is a perfect elimination ordering σ of G|Λ, where the
last clique is Xl. We can now use Algorithm 2 in the ideal IΛ using such ordering of
the variables to find an ideal Hl that approximates IΛ ∩ K[Xl]. We will show now

that this elimination is successful and thus Hl
rad
= IΛ ∩K[Xl].

Let Xσ
j ⊆ G|Λ denote the cliques as defined in (1) but using the new ordering

σ in G|Λ. Similarly, let Iσj = Jσj + Kσ
j+1 denote the clique decompositions used in

chordal elimination with such an ordering. Let xm be one variable that we need to
eliminate to obtain Hl, i.e., xm ∈ Λ \ Xl. Let us assume that xm is such that Xσ

m

is a maximal clique of G|Λ. As the maximal cliques do not depend on the ordering,
it means that Xσ

m = Xr for some xr < xl, and thus we already found an Hr with

Hr
rad
= I ∩ K[Xσ

m]. Observe that Hr ⊆ Jσm by recalling that we appended Hr to IΛ
and using Lemma 3. As Hr is zero-dimensional, Jσm is also zero-dimensional for all
such xm. Therefore, Corollary 2 says that the domination condition holds and chordal
elimination succeeds.

Finally, let us prove thatHl
rad
= I∩K[Xl]. Observe that as the domination condition

holds in the elimination above (to get Hl), we have

V(Hl) = V(IΛ ∩K[Xl]) = πXl
(V(IΛ)).

As V(IΛ) = πΛ(V), we obtain that V(Hl) = πXl
(V). On the other hand, we also

have Hl ⊆ I ∩K[Xl], so that

V(Hl) ⊇ V(I ∩K[Xl]) ⊇ πXl
(V).

Therefore, the three terms above must be equal.

Observe that the above proof hints at an algorithm for computing Hl. However,
the proof depends on the choice of some lower set Λ for each xl. To avoid eliminations
we want to use a lower set Λ as small as possible. By making a good choice we
can greatly simplify the procedure, and we get, after some observations made in
Corollary 4, Algorithm 3. Note that this procedure recursively computes the clique
elimination ideals: for a given node xl it only requires Jl and the clique elimination
ideal of its parent xp.

Corollary 4. Let I be a zero-dimensional ideal with chordal graph G. Assume
that the domination condition holds for chordal elimination. Then Algorithm 3 cor-

rectly computes the clique elimination ideals, i.e., Hl
rad
= I ∩K[Xl].

Proof. We refer the reader to the proof of Theorem 4. For a given xl, let xp be its
parent, and let Pl denote the directed path in T from xl to the root xn−1. It is easy
to see that Pl is a lower set and that Pl = Pp ∪ {xl}. We will see that Algorithm 3
corresponds to selecting the lower set Λ to be this Pl and reusing the eliminations
performed to get Hp when we compute Hl.

In the proof of Theorem 4, to get Hl we need a perfect elimination ordering (PEO)
σl of G|Λ that ends in Xl. This order σl determines the eliminations performed in IΛ.
Let σp be a PEO of G|Pp

, whose last vertices are Xp. Let us see that we can extend
σp to obtain the PEO σl of G|Pl

. Let C := Xp ∪ {xl}, and observe that Xl ⊆ C due

D
ow

nl
oa

de
d

03
/2

7/
17

 to
 1

8.
51

.1
.6

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CHORDAL STRUCTURE IN POLYNOMIAL IDEALS 1555

Algorithm 3 Compute elimination ideals of cliques.

Input: An ideal I, given by generators with chordal graph G

Output: Ideals Hl such that Hl
rad
= I ∩K[Xl]

1: procedure CliquesElim(I,G)
2: get cliques X0, . . . , Xn−1 of G
3: get J0, . . . , Jn−1 from ChordElim(I,G)
4: Hn−1 = Jn−1

5: for l = n− 2 : 0 do
6: xp = parent of xl
7: C = Xp ∪ {xl}
8: IC = Hp + Jl
9: order = MCS(G|C , start = Xl)

10: Hl = ChordElim(IorderC , G|orderC)

11: return H0, . . . ,Hn−1

to Lemma 2, and thus Pl = Pp ∪ C. Let σC be a PEO of G|C whose last vertices are
Xp (using Lemma 10). We will argue that the following ordering works:

σl := (σp \Xp) + σC .

By construction, the last vertices of σl are Xl, so we just need to show that it
is indeed a PEO of G|Pl

. Let v ∈ Pl, and let Xσl
v be the vertices adjacent to it that

follow v in σl. We need to show that Xσl
v is a clique. There are two cases: v ∈ C or

v /∈ C. If v ∈ C, then Xσl
v is the same as with σC , so that it is a clique because σC is

a PEO. If v /∈ C, we will see that Xσl
v is the same as with σp, and thus it is a clique.

Consider the partition Xσl
v = (Xσl

v \Xp)∪ (Xσl
v ∩Xp), and note that the part that is

not in Xp depends only on σp. The part in Xp is just adj (v) ∩Xp, i.e., its neighbors
in Xp, given that we put σC at the end of σl. Observe that the same happens for σp,
i.e., X

σp
v ∩Xp = adj (v)∩Xp, by construction of σp. Thus Xσl

v = X
σp
v , as we wanted.

The argument above shows that given any PEO of Pp and any PEO of C, we
can combine them into a PEO of Pl. This implies that the eliminations performed to
obtain Hp can be reused to obtain Hl, and the remaining eliminations correspond to
G|C . Thus, we can obtain these clique elimination ideals recursively, as it is done in
Algorithm 3.

Computing a Gröbner basis for all maximal cliques in the graph might be useful,
as it decomposes the system of equations into simpler ones. We can extract the
solutions of the system by solving the subsystems in each clique independently and
“glueing” them. We elaborate on this now.

Lemma 11. Let I be an ideal, and let Hj = I ∩K[Xj] be the cliques elimination
ideals. Then,

I = H0 +H1 + · · ·+Hn−1.

Proof. As Hj ⊆ I for any xj , we have H0 + · · ·+Hn−1 ⊆ Il. On the other hand,
let f ∈ I be one of its generators. By definition of G, the variables of f must be
contained in some Xj , so we have f ∈ Hj . This implies I ⊆ H0 + · · ·+Hn−1.

Lemma 11 gives us a strategy for solving zero-dimensional ideals. Note that Hj

is also zero-dimensional. Thus, we can compute the elimination ideals of the maximal
cliques, solve each Hj independently, and finally merge the solutions. We illustrate
this now.

D
ow

nl
oa

de
d

03
/2

7/
17

 to
 1

8.
51

.1
.6

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1556 D. CIFUENTES AND P. A. PARRILO

Example 9. Let G be the blue/solid graph in Figure 1, and let I be given by

x3
i − 1 = 0, 0 ≤ i ≤ 8,

x9 − 1 = 0,

x2
i + xixj + x2

j = 0, (i, j) blue/solid edge.

Note that the graph associated to the above equations is precisely G. However, to
use chordal elimination we need to consider the chordal completion G, which includes
the three green/dashed edges of Figure 1. In such a completion, we identify seven
maximal cliques:

X0 = {x0,x6, x7}, X1 = {x1, x4, x9}, X2 = {x2, x3, x5},
X3 = {x3, x5, x7, x8}, X4 = {x4, x5, x8, x9},
X5 = {x5, x7, x8, x9}, X6 = {x6, x7, x8, x9}.

With Algorithm 3 we can find the associated elimination ideals. Some of them are

H0 = 〈x0 + x6 + 1, x2
6 + x6 + 1, x7 − 1〉,

H5 = 〈x5 − 1, x7 − 1, x2
8 + x8 + 1, x9 − 1〉,

H6 = 〈x6 + x8 + 1, x7 − 1, x2
8 + x8 + 1, x9 − 1〉.

Denoting ζ = e2πi/3, the corresponding varieties are

H0 : {x0, x6, x7} →
{
ζ, ζ2, 1

}
,
{
ζ2, ζ, 1

}
,

H5 : {x5, x7, x8, x9} → {1, 1, ζ, 1} ,
{

1, 1, ζ2, 1
}
,

H6 : {x6, x7, x8, x9} →
{
ζ2, 1, ζ, 1

}
,
{
ζ, 1, ζ2, 1

}
.

There are only two solutions to the whole system, one of which corresponds to the
values on the left and the other to the values on the right.

From the example above we can see that to obtain a solution of I we have to match
solutions from different cliques Hl. We can do this matching iteratively following the
elimination tree. Any partial solution is guaranteed to extend, as the elimination was
successful. Let us see now an example where this matching gets a bit more complex.

Example 10. Consider again the blue/solid graph in Figure 1, and let I be given
by:

x4
i − 1 = 0, 0 ≤ i ≤ 8,

x9 − 1 = 0,

x3
i + x2

ixj + xix
2
j + x3

j = 0, (i, j) blue/solid edge.

The graph (and cliques) is/are the same as in Example 9, but this time the variety is
larger. This time we have |V(H0)| = 18, |V(H5)| = 27, |V(H6)| = 12. These numbers
are still small. However, when we merge all partial solutions we obtain |V(I)| = 528.

5.3. Lex Gröbner bases and chordal elimination. To finalize this section,
we will show the relationship between lex Gröbner bases of I and lex Gröbner bases
of the clique elimination ideals Hl. We will see that both share many structural
properties. This justifies our claim that these polynomials are the closest sparse

D
ow

nl
oa

de
d

03
/2

7/
17

 to
 1

8.
51

.1
.6

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CHORDAL STRUCTURE IN POLYNOMIAL IDEALS 1557

representation of I to a lex Gröbner basis. In some cases, the concatenation of the
clique Gröbner bases might already be a lex Gröbner basis of I. This was already
seen in Proposition 2, and we will see now another situation where this holds. In
other cases, a lex Gröbner basis can be much larger than the concatenation of the
clique Gröbner bases. As we can find Hl while preserving sparsity, we can outperform
standard Gröbner bases algorithms in many cases, as will be seen in section 7.

We focus on radical zero-dimensional ideals I. Note that this radicality assump-
tion is not restrictive, as we have always been concerned with V(I), and we can
compute

√
Hl for each l. We recall now that in many cases (e.g., generic coordinates)

a radical zero-dimensional ideal has a very special type of Gröbner basis. We say that
I is in shape position if the reduced lex Gröbner basis has the structure

x0 − g0(xn−1), x1 − g1(xn−1), . . . , xn−2 − gn−2(xn−1), gn−1(xn−1).

Later we will prove the following result for ideals in shape position.

Proposition 4. Let I be a radical zero-dimensional ideal in shape position. Let
gbHl

be a lex Gröbner basis of Hl. Then
⋃
l gbHl

is a lex Gröbner basis of I.

If the ideal is not in shape position, then the concatenation of such smaller
Gröbner bases might not be a Gröbner basis for I. Indeed, in many cases any Gröbner
basis for I is extremely large, while the concatenated polynomials gbHl

are relatively
small, as they preserve the structure. This will be seen in the application studied in
section 7.1, where we will show how much simpler

⋃
l gbHl

can be compared to a full
Gröbner basis.

Even when the ideal is not in shape position, the concatenated polynomials al-
ready have some of the structure of a lex Gröbner basis of I, as we will show. There-
fore, it is usually simpler to find such a Gröbner basis starting from such concatenated
polynomials. In fact, in section 7.1 we show that by doing this we can compute a lex
Gröbner basis faster than a degrevlex Gröbner basis.

Theorem 5. Let I be a radical zero-dimensional ideal. For each xl let gbIl and
gbHl

be minimal lex Gröbner bases for the elimination ideals Il = eliml(I) and Hl =
I ∩K[Xl]. Denoting deg as the degree, the following sets are equal:

DIl = {degxl
(p) : p ∈ gbIl},

DHl
= {degxl

(p) : p ∈ gbHl
}.

Proof. See section A.2 in the appendix.

Corollary 5. Let I be a radical zero-dimensional ideal; then for each xl we have
that xdl ∈ in(I) if and only if xdl ∈ in(Hl), using lex ordering.

Proof. Let gbIl , gbHl
be minimal lex Gröbner bases of Il, Hl. As I is zero-

dimensional, there are dl, dH such that xdll is the leading monomial of some poly-

nomial in gbIl , and xdHl is the leading monomial of some polynomial in gbHl
. All

we need to show is that dl = dH . This follows by noting that dl = max{DIl} and
dH = max{DHl

}, following the notation from Theorem 5.

Proof of Proposition 4. As I is in shape position, its initial ideal has the form

in(I) = 〈x0, x1, . . . , xn−2, x
d
n−1〉

for some d. For each xl > xn−1, Corollary 5 implies that gbHl
contains some fl with

leading monomial xl. For xn−1, the corollary says that there is an fn−1 ∈ gbHn−1
with

leading monomial xdn−1. Then in(I) = 〈lm(f0), . . . , lm(fn−1)〉 and as fl ∈ Hl ⊆ I,
these polynomials form a Gröbner basis of I.

D
ow

nl
oa

de
d

03
/2

7/
17

 to
 1

8.
51

.1
.6

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1558 D. CIFUENTES AND P. A. PARRILO

6. Complexity analysis. Solving systems of polynomials in the general case is
hard even for small treewidth, as was shown in Example 1. Therefore, we need some
additional assumptions to ensure tractable computation. In this section we study the
complexity of chordal elimination for a special type of ideals, where we can prove such
tractability.

Chordal elimination shares the same limitations as other elimination methods.
In particular, for zero-dimensional ideals its complexity is intrinsically related to the
size of the projection |πl(V(I))|. Thus, we will make certain assumptions on the ideal
that allow us to bound the size of this projection. The following concept will be key.

Definition 9 (q-domination). We say that a polynomial f is (xi, q)-dominated
if its leading monomial has the form xdi for some d ≤ q. Let I = 〈f1, . . . , fs〉; we say
that I is q-dominated if for each xi there is a generator fj that is (xi, q)-dominated.

We will assume that I satisfies this q-dominated condition. Observe that Corol-
lary 3 holds, and thus chordal elimination succeeds. Note that this condition also
implies that I is zero-dimensional.

It should be mentioned that the q-dominated condition applies to finite fields. Let
Fq denote the finite field of size q. If we are interested in solving a system of equations
in Fq (as opposed to its algebraic closure), we can add the equations xqi − xi. Even
more, by adding such equations we obtain the radical ideal I(VFq

(I)) [23].
We need to know the complexity of computing a lex Gröbner basis. To simplify

the analysis, we assume from now on that the generators of the ideal have been
preprocessed to avoid redundancies. Specifically, we make the assumption that the
polynomials have been reduced so that no two of them have the same leading monomial
and no monomial is divisible by xq+1

i . Note that the latter assumption can be made
because the ideal is q-dominated. These conditions allow us to bound the number of
polynomials.

Lemma 12. Let I = 〈f1, . . . , fs〉 be a preprocessed q-dominated ideal. Then s =
O(qn).

Proof. As I is q-dominated, for each 0 ≤ i < n there is a generator gi with leading
monomial xdii with di ≤ q. The leading monomials of all generators, other than the
gi’s, are not divisible by xqi . There are only qn monomials with degrees less than q
in any variable. As the leading monomials of the generators are different, the result
follows.

The complexity of computing a Gröbner basis for a zero-dimensional ideal is
known to be single exponential in n [30]. This motivates the following definition.

Definition 10. Let α be the smallest constant such that the complexity of com-
puting a Gröbner basis is Õ(qαn) for any (preprocessed) q-dominated ideal. Here Õ
ignores polynomial factors in n.

A rough estimate of α is stated next. The proof in [23] is for the case of Fq, but
the only property used there is that the ideal is q-dominated.

Proposition 5 (see [23]). Buchberger’s algorithm in a q-dominated ideal re-
quires O(q6n) field operations.

We should mention that the complexity of Gröbner bases has been actively stud-
ied, and different estimates are available. For instance, Faugère et al. [19] show that

for generic ideals the complexity is Õ(Dω), where D is the number of solutions and
2 < ω < 3 is the exponent of matrix multiplication. Thus, if we only considered

D
ow

nl
oa

de
d

03
/2

7/
17

 to
 1

8.
51

.1
.6

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CHORDAL STRUCTURE IN POLYNOMIAL IDEALS 1559

generic polynomials we could interpret such a condition as saying that α ≤ ω. How-
ever, even if the generators of I are generic, our intermediate calculations are not
generic, and thus we cannot make such an assumption.

Nevertheless, to obtain good bounds for chordal elimination we need a slightly
stronger condition than I being q-dominated. Let X1, . . . , Xr denote the maximal
cliques of the graph G, and let

Ĥj = 〈f : f generator of I, f ∈ K[Xj]〉.(11)

Note that Ĥj ⊆ I ∩K[Xj]. We assume that each (maximal) Ĥj is q-dominated. Note
that such a condition is also satisfied in the case of finite fields. The following lemma
shows the reason why we need this assumption.

Lemma 13. Let I be such that for each maximal clique Xj the ideal Ĥj (as
in (11)) is q-dominated. Then in Algorithm 2 we have that Jl is q-dominated for
any xl.

Proof. See section A.3 in the appendix.

It should be mentioned that whenever we have a zero-dimensional ideal I such
that each Ĥj is also zero-dimensional, the same results apply by letting q be the

largest degree in a Gröbner basis of any Ĥj .
Now we derive complexity bounds, in terms of field operations, for chordal elim-

ination under the assumptions of Lemma 13. We use the following parameters: n is
the number of variables, s is the number of equations, and κ is the clique number (or
treewidth), i.e., the size of the largest clique of G.

Theorem 6. Let I be such that each (maximal) Ĥj is q-dominated. In Algo-

rithm 2, the complexity of computing Il is Õ(s + lqακ). We can find all elimination

ideals in Õ(nqακ). Here Õ ignores polynomial factors in κ.

Proof. In each iteration there are essentially only two relevant operations: de-
composing Il = Jl +Kl+1 and finding a Gröbner basis for Jl.

For each xl, Lemma 13 tells us that Jl is q-dominated. Thus, we can compute a
lex Gröbner basis of Jl in Õ(qακ). Here we assume that the initial s equations were
preprocessed and note that the following equations are also preprocessed as they are
obtained from minimal Gröbner bases. To obtain Il we compute at most l Gröbner
bases, which we do in Õ(lqακ).

It remains only to bound the time of decomposing Il = Jl + Kl+1. Note that
if we do this decomposition in a naive way, we will need Θ(ls) operations. But we
can improve such a bound easily. For instance, assume that in the first iteration we
compute for every generator fj the largest xl such that fj ∈ Jl. Thus, fj will be
assigned to Km+1 for all xm > xl, and then it will be assigned to Jl. We can do

this computation in Õ(s). We can repeat the same process for all polynomials p that
we get throughout the algorithm. Let sl be the number of generators of eliml+1(Jl).

Then we can do all decompositions in Õ(s + s0 + s1 + · · · + sl−1). We just need to
bound sl.

It follows from Lemma 12 that for each clique Xl, the size of any minimal Gröbner
basis of arbitrary polynomials in Xl is at most qκ + κ. As the number of generators
of eliml+1(Jl) is bounded by the size of the Gröbner basis of Jl ⊆ K[Xl], we have

sl = Õ(qκ). Thus, we can do all decompositions in Õ(s+ lqκ).
Hence, the total cost to compute Il is

Õ(s+ lqκ + lqακ) = Õ(s+ lqακ).

D
ow

nl
oa

de
d

03
/2

7/
17

 to
 1

8.
51

.1
.6

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1560 D. CIFUENTES AND P. A. PARRILO

In particular, we can compute In−1 in Õ(s+ nqακ). Note that as each of the original
s equations is in some Xl, Lemma 12 implies that s = O(nqκ). Thus, we can find all

elimination ideals in Õ(nqακ).

Remark. Note that to compute the bound W of (7) we need to use chordal elim-
ination l times, so the complexity is O(ls+ l2qακ).

Corollary 6. Let I be such that each (maximal) Ĥj is q-dominated. The com-

plexity of Algorithm 3 is Õ(nqακ). Thus, we can also describe V(I) in Õ(nqακ). Here

Õ ignores polynomial factors in κ.

Proof. The first part of the algorithm is chordal elimination, which we can do
in O(nqακ), as shown above. Observe also that MCS runs in linear time, so we can
ignore it. The only missing part is computing the elimination ideas of IC , where
C = Xp ∪ {xl}. As |C| ≤ κ+ 1, the cost of chordal elimination is Õ(κqακ) = Õ(qακ).

Thus, the complexity of Algorithm 3 is still Õ(nqακ).
We now prove the second part. As mentioned, Corollary 3 applies for q-dominated

ideals, so all eliminations are successful. From Lemma 11 and the following remarks we
know that the elimination idealsHl, found with Algorithm 3, give a natural description
of V(I).

The bounds above tell us that for a fixed κ, we can find all clique elimination
ideals, and thus describe the variety, in O(n). This is reminiscent of many graph
problems (e.g., Hamiltonian circuit, vertex colorings, vertex cover) which are NP-
hard in general, but are linear for fixed treewidth [6]. Similar results hold for some
types of CSPs [16]. These types of problems are said to be fixed-parameter-tractable
(FPT) with treewidth as the parameter.

Our methods provide an algebraic solution to some classical graph problems.
In particular, we show an application of the bounds above for finding graph color-
ings. It is known that the coloring problem can be solved in linear time for bounded
treewidth [6]. We can prove the same result by encoding colorings into polynomials.

Corollary 7. Let G be a graph, and let Ḡ be a chordal completion with largest
clique of size κ. We can describe all q-colorings of G in Õ(nqακ).

Proof. It is known that graph q-colorings can be encoded with the following sys-
tem of polynomials:

xqi − 1 = 0, i ∈ V,(12a)

xq−1
i + xq−2

i xj + · · ·+ xix
q−2
j + xq−1

j = 0, (i, j) ∈ E,(12b)

where V,E denote the vertices and edges, and where each color corresponds to a
different square root of unity [3, 28]. Note that the ideal IG given by these equations
satisfies the q-dominated condition stated before. The chordal graph associated to
such an ideal is Ḡ. The result follows from Corollary 6.

To conclude, we emphasize the differences between our results and results using
similar methods in graph theory and constraint satisfaction. First, note that for
systems of polynomials we do not know a priori a discrete set of possible solutions.
And even if the variety is finite, the solutions may not have a rational (or radical)
representation. In addition, by using Gröbner bases methods we take advantage
of many well-studied algebraic techniques. Finally, even though our analysis here
assumes zero dimensionality, we can use our methods in underconstrained systems,
and if they are close to satisfying the q-dominated condition, they should perform
well. Indeed, in section 7.3 we test our methods on underconstrained systems.

D
ow

nl
oa

de
d

03
/2

7/
17

 to
 1

8.
51

.1
.6

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CHORDAL STRUCTURE IN POLYNOMIAL IDEALS 1561

7. Applications. In this section we show numerical evaluations of the approach
proposed in some concrete applications. Our algorithms were implemented using
Sage [41]. Gröbner bases are computed with Singular’s interface [17], except when
K = F2 for which we use PolyBoRi’s interface [7]. Chordal completions of small
graphs (n < 32) are found using Sage’s vertex separation algorithm. The experiments
were performed on an i7 PC with 3.40GHz, 15.6 GB RAM, running Ubuntu 12.04.

We will show the performance of chordal elimination compared to the Gröbner
bases algorithms from Singular and PolyBoRi. In all of the applications we give here,
chordal elimination is successful because of the results of section 4. It can be seen
below that in all of the applications, as the problem gets bigger our methods perform
better than the algorithms from Singular and PolyBoRi.

As mentioned, chordal elimination shares some of the limitations of other elimi-
nation methods, and it performs the best under the conditions studied in section 6.
We show two examples that meet such conditions in sections 7.1 and 7.2. The first
case relates to the coloring problem, which was already mentioned in Corollary 7.
The second case is an application to cryptography, where we solve equations over the
finite field F2.

Sections 7.3 and 7.4 show cases where the conditions from section 6 are not
satisfied. We use two of the examples from [34], where the authors study a similar
chordal approach for semidefinite programming (SDP) relaxations. Gröbner bases are
not as fast as SDP relaxations, as they contain more information, so we use smaller
scale problems. The first example is the sensor localization problem and the second
is given by discretizations of differential equations.

7.1. Graph colorings. We consider the q-colorings equations from (12) over
the field K = Q. We fix the graph G of Figure 4 and vary the number of colors
q. Such a graph was considered in [28] to illustrate a characterization of uniquely
colorable graphs using Gröbner bases. We use a different ordering of the vertices that
determines a simpler chordal completion (the clique number is 5).

Fig. 4. Graph with a unique 3-coloring [28].

Table 1 shows the performance of Algorithms 2 and 3, compared to Singular’s
default Gröbner basis algorithm using degrevlex order (lex order takes much longer).
It can be seen how the cost of finding a Gröbner basis increases very rapidly as we
increase q, as opposed to our approach. In particular, for q = 4 we could not find a
Gröbner basis after 60000 seconds (16.7 hours), but our algorithms ran in less than
one second. The underlying reason for such a long time is the large size of the solution

D
ow

nl
oa

de
d

03
/2

7/
17

 to
 1

8.
51

.1
.6

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1562 D. CIFUENTES AND P. A. PARRILO

set (number of 4-colorings), which is |V(I)| = 572656008. Therefore, it is expected
that the size of its Gröbner basis is also very large. On the other hand, the projection
on each clique is much smaller, |V(Hl)| ≤ 576, and thus the corresponding Gröbner
bases (found with Algorithm 3) are also much simpler.

Table 1
Performance (in seconds) on (12) (graph of Figure 4) for Algorithms 2 and 3, computing a

degrevlex Gröbner basis with the original equations (Singular). One experiment was interrupted
after 60000 seconds.

q Variables Equations Monomials ChordElim CliquesElim DegrevlexGB

2 24 69 49 0.058 0.288 0.001

3 24 69 94 0.141 0.516 5.236

4 24 69 139 0.143 0.615 > 60000

5 24 69 184 0.150 0.614 -

6 24 69 229 0.151 0.638 -

We repeat the same experiments, this time with the blue/solid graph of Figure 1.
Table 2 shows the results. This time we also show the cost of computing a lex Gröbner
basis, using as input the clique elimination ideals Hl. Again, we observe that chordal
elimination is much faster than finding a Gröbner basis. We also see that we can more
quickly find a lex Gröbner basis than a degrevlex by using the output from chordal
elimination.

Table 2
Performance (in seconds) on (12) (blue/solid graph of Figure 1) for Algorithms 2 and 3, com-

puting a lex Gröbner basis with input Hl, and computing a degrevlex Gröbner basis with the original
equations (Singular).

q Vars Eqs Mons ChordElim CliquesElim LexGB from Hl DegrevlexGB

5 10 28 75 0.035 0.112 0.003 0.003

10 10 28 165 0.044 0.130 0.064 0.202

15 10 28 255 0.065 0.188 4.539 8.373

20 10 28 345 0.115 0.300 73.225 105.526

7.2. Cryptography. We consider the parametric family SR(n, r, c, e) of variants
of the advanced encryption standard (AES) from [8]. Such a cipher can be embedded
into a structured system of polynomial equations over K = F2, as shown in [8]. Note
that as the field is finite the analysis from section 6 holds.

We compare the performance of Algorithm 2 to PolyBoRi’s default Gröbner bases
algorithm, using both lex and degrevlex order. As the input to the cipher is proba-
bilistic, for the experiments we seed the pseudorandom generator in fixed values of 0,
1, 2. We fix the values r = 1, c = 2, e = 4 for the experiments and vary the parameter
n, which corresponds to the number of identical blocks used for the encryption.

Table 3 shows the results of the experiments. We observe that for small problems,
standard Gröbner bases outperform chordal elimination, particularly using degrevlex
order. Nevertheless, chordal elimination scales better, being faster than both methods
for n = 10. In addition, standard Gröbner bases have higher memory requirements,
which is reflected in the many experiments that aborted for this reason.

D
ow

nl
oa

de
d

03
/2

7/
17

 to
 1

8.
51

.1
.6

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CHORDAL STRUCTURE IN POLYNOMIAL IDEALS 1563

Table 3
Performance (in seconds) on the equations of SR(n, 1, 2, 4) for Algorithm 2, and computing

(lex/degrevlex) Gröbner bases (PolyBoRi). Three different experiments (seeds) are considered for
each n. Some experiments aborted due to insufficient memory.

n Variables Equations Seed ChordElim LexGB DegrevlexGB

4 120 216
0 517.018 217.319 71.223

1 481.052 315.625 69.574

2 507.451 248.843 69.733

6 176 320
0 575.516 402.255 256.253

1 609.529 284.216 144.316

2 649.408 258.965 133.367

8 232 424
0 774.067 1234.094 349.562

1 771.927 > 1500, aborted 369.445

2 773.359 1528.899 357.200

10 288 528
0 941.068 > 1100, aborted 1279.879

1 784.709 > 1400, aborted 1150.332

2 1124.942 > 3600, aborted > 2500, aborted

7.3. Sensor network localization. We consider the sensor network localiza-
tion problem, also called graph realization problem, given by the equations

‖xi − xj‖2 = d2
ij , (i, j) ∈ A,(13a)

‖xi − ak‖2 = e2
ik, (i, k) ∈ B,(13b)

where x1, . . . , xn are unknown sensor positions, a1, . . . , am are some fixed anchors,
and A,B are some sets of pairs which correspond to sensors that are close enough.
We consider the problem over the field K = Q. Observe that the set A determines
the graph structure of the system of equations. Note also that the equations are sim-
plicial (see Definition 7), and thus Theorem 3 says that chordal elimination succeeds.
However, the conditions from section 6 are not satisfied.

We generate random test problems in a way similar to that in [34]. First, we
generate n = 20 random sensor locations x∗i from the unit square [0, 1]2. The m = 4
fixed anchors are (1/2±1/4, 1/2±1/4). We fix a proximity threshold D which we set
to either D = 1/4 or D = 1/3. Set A is such that every sensor is adjacent to at most
three more sensors and ‖xi − xj‖ ≤ D. Set B is such that every anchor is related
to all sensors with ‖xi − ak‖ ≤ D. For every (i, j) ∈ A and (i, k) ∈ B we compute
dij , eik.

We compare the performance of Algorithm 2 and Singular’s algorithms. We
consider Singular’s default Gröbner bases algorithms, with both degrevlex and lex
orderings, and the FGLM algorithm if the ideal is zero-dimensional.

We use two different values for the proximity threshold: D = 1/4 and D = 1/3.
For D = 1/4 the system of equations is underconstrained (positive dimensional), and
for D = 1/3 the system is overconstrained (zero-dimensional). We will observe that
in both cases chordal elimination performs well. Degrevlex Gröbner bases perform
slightly better in the overconstrained case, but poorly in the underconstrained case.
Lex Gröbner bases do not compete with chordal elimination in either case.

D
ow

nl
oa

de
d

03
/2

7/
17

 to
 1

8.
51

.1
.6

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1564 D. CIFUENTES AND P. A. PARRILO

Table 4 summarizes the results. We used 50 random instances for the undercon-
strained case (D = 1/4) and 100 for the overconstrained case (D = 1/3). We can see
that in the underconstrained case neither lex nor degrevlex Gröbner bases ever finish
within 1000 seconds. On the other hand, chordal elimination completes more than
half of the instances. For the overconstrained case, the lex Gröbner basis algorithm
continues to perform poorly. On the other hand, degrevlex Gröbner bases and the
FGLM algorithm have slightly better statistics than chordal elimination.

Table 4
Statistics of experiments performed on random instances of (13). We consider two situations:

50 cases of underconstrained systems (D = 1/4) and 100 cases of overconstrained systems (D = 1/3).
Experiments are interrupted after 1000 seconds.

D Repet. Vars Eqs ChordElim LexGB DegrevlexGB LexFGLM

1/4 50 40 39 ± 5
478.520 1000 1000 - Mean time (s)

56% 0% 0% - Completed

1/3 100 40 48 ± 6
298.686 1000 219.622 253.565 Mean time (s)

73% 0% 81% 77% Completed

Despite the better statistics of degrevlex and FGLM in the overconstrained case,
one can identify that for several of such instances chordal elimination performs much
better. This can be seen in Figure 5, where we observe the scatter plot of the perfor-
mance of both FGLM and Algorithm 2. In about half of the cases (48) both algorithms
are within one second, and for the rest, in 29 cases FGLM is better, and in 23 chordal
elimination is better. To understand the difference between these two groups, we can
look at the clique number of the chordal completions. Indeed, the 23 cases where
chordal elimination is better have a mean clique number of 5.48, compared to 6.97
of the 29 cases where FGLM was better. This confirms that chordal elimination is a
suitable method for cases with chordal structure, even in the overconstrained case.

Fig. 5. Scatter plot of the time used by Singular’s FGLM and Algorithm 2 on 100 random
overconstrained (D = 1/3) instances of (13). Darker points indicate overlap.

D
ow

nl
oa

de
d

03
/2

7/
17

 to
 1

8.
51

.1
.6

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CHORDAL STRUCTURE IN POLYNOMIAL IDEALS 1565

7.4. Differential equations. Now we consider the following equations over the
field K = Q:

0 = 2x1 − x2 +
1

2
h2(x1 + t1)3,(14a)

0 = 2xi − xi−1 − xi+1 +
1

2
h2(xi + ti)

3 for i = 2, . . . , n− 1,(14b)

0 = 2xn − xn−1 +
1

2
h2(xn + tn)3,(14c)

with h = 1/(n + 1) and ti = i/(n + 1). Such equations were used in [34] and arise
from discretizing the following differential equation with boundary conditions:

x′′ +
1

2
(x+ t)3 = 0, x(0) = x(1) = 0.

Note that these polynomials are simplicial (see Definition 7), and thus chordal elim-
ination succeeds because of Theorem 3. Even more, the equations Jl obtained in
chordal elimination form a lex Gröbner basis. However, the results from section 6 do
not hold. Nevertheless, we compare the performance of chordal elimination to Sin-
gular’s default Gröbner basis algorithm with lex order. We also consider Singular’s
FGLM implementation.

Table 5
Performance (in seconds) on (14) for Algorithm 2, and computing a lex Gröbner basis with

two standard methods (Singular’s default and FGLM).

n Variables Equations ChordElim LexGB LexFGLM

3 3 3 0.008 0.003 0.007

4 4 4 0.049 0.044 0.216

5 5 5 1.373 1.583 8.626

6 6 6 76.553 91.155 737.989

7 7 7 7858.926 12298.636 43241.926

Table 5 shows the results of the experiments. The fast increase in the timings
observed is common to all methods. Nevertheless, it can be seen that chordal elimina-
tion performs faster and scales better than standard Gröbner bases algorithms. Even
though the degrevlex term order is much simpler in this case, the FGLM algorithm
is not efficient enough to obtain a lex Gröbner basis.

Appendix A. Additional proofs.

A.1. Proofs from section 3.

Proof of Theorem 2. We prove it by induction on l. The base case is Lemma 1.
Assume that the result holds for some l, and let us show it for l + 1.

By induction hypothesis Il,W1, . . . ,Wl satisfy (4) and (5). Lemma 1 with Il as
input tells us that Il+1,Wl+1 satisfy

π(V(Il)) ⊆ V(Il+1),(15)

V(Il+1)−V(Wl+1) ⊆ π(V(Il)),(16)

where π : Kn−l → Kn−l−1 is the projection onto the last factor. Then,

πl+1(V(I)) = π(πl(V(I))) ⊆ π(V(Il)) ⊆ V(Il+1),

D
ow

nl
oa

de
d

03
/2

7/
17

 to
 1

8.
51

.1
.6

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1566 D. CIFUENTES AND P. A. PARRILO

and as V(Il+1) is closed, we can take the closure. This shows (4).
We also have

πl+1(V(I)) = π(πl(V(I))) ⊇ π(V(Il)− [πl(V(W1)) ∪ · · · ∪ πl(V(Wl))])

⊇ π(V(Il))− π[πl(V(W1)) ∪ · · · ∪ πl(V(Wl))]

= π(V(Il))− [πl+1(V(W1)) ∪ · · · ∪ πl+1(V(Wl))]

⊇ (V(Il+1)−V(Wl+1))−[πl+1(V(W1)) ∪ · · · ∪ πl+1(V(Wl))]

= V(Il+1)− [πl+1(V(W1)) ∪ · · · ∪ πl+1(V(Wl+1))],

which proves (5).

A.2. Proofs from section 5.

Proof of Lemma 9. Let HΛ := I ∩ K[Λ] and JΛ :=
∑
xi∈Λ Ji. Let xl ∈ Λ be

its largest element. For a fixed xl, we will show by induction on |Λ| that V(HΛ) =
V(JΛ) = πΛ(V).

The base case is when Λ = {xl, . . . , xn−1}. Note that as xl is fixed, such a Λ is
indeed the largest possible lower set. In such a case, JΛ = Il as seen in (10), and as
we are assuming that the domination condition holds, V(HΛ) = V(Il) = πl(V).

Assume that the result holds for k+1, and let us show it for some Λ with |Λ| = k.
Consider the subtree Tl = T |{xl,...,xn−1} of T . As Tl|Λ is a proper subtree of Tl with
the same root, there must be an xm < xl with xm /∈ Λ and such that xm is a leaf in
Tl|Λ′ , where Λ′ = Λ∪ {xm}. We apply the induction hypothesis in Λ′, obtaining that
V(HΛ′) = V(JΛ′) = πΛ′(V).

Now note that Jm is a subset of both HΛ′ , JΛ′ . Observe also that we want to
eliminate xm from these ideals to obtain HΛ, JΛ. To do so, let us change the term
order to xm > xl > xl+1 > · · · > xn−1. Note that such a change has no effect
inside Xm, and thus the term ordering for Jm remains the same. As the domination
condition holds, Jm is xm-dominated, and thus HΛ′ , JΛ′ are also xm-dominated. This
means that Lemma 4 holds for HΛ′ , JΛ′ when we eliminate xm, and then

V(elimm+1(HΛ′)) = πm+1(V(H ′Λ)) = πΛ(V),

V(elimm+1(JΛ′)) = πm+1(V(J ′Λ)) = πΛ(V).

Notice that HΛ = elimm+1(HΛ′), so all we have to do now is show that JΛ
rad
=

elimm+1(JΛ′). Note that

elimm+1(JΛ′) = elimm+1(Jm + JΛ).

Observe that the last expression is reminiscent of Lemma 1, but in this case we
are eliminating xm. As mentioned, Jm is xm-dominated, so elimination succeeds.
Therefore, we have

elimm+1(Jm + JΛ)
rad
= elimm+1(Jm) + JΛ.

Let xp be the parent of xm in T . Then (9) says that elimm+1(Jm) ⊆ Jp, where we
are using the fact that the term order change maintains Jm. Observe that xp ∈ Λ by
the construction of xm, and then Jp ⊆ JΛ. Then,

elimm+1(Jm) + JΛ = JΛ.

Combining the last three equations, we complete the proof.

D
ow

nl
oa

de
d

03
/2

7/
17

 to
 1

8.
51

.1
.6

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CHORDAL STRUCTURE IN POLYNOMIAL IDEALS 1567

For the proof of Theorem 5, we will need two results.

Lemma 14. Let I be a zero-dimensional ideal, let Hj = I ∩ K[Xj], and let Il =
eliml(I). Then,

Il
rad
= Hl +Hl+1 + · · ·+Hn−1.

Proof. For each xj let gbHj be a lex Gröbner basis of Hj . Let F =
⋃
xj
gbHj

be the concatenation of all gbHj
’s. Then the decomposition of I from Lemma 11

says that I = 〈F 〉. Observe now that if we use chordal elimination on F , at each
step we only remove the polynomials involving some variable; we never generate a
new polynomial. Therefore our approximation of the lth elimination ideal is given by
Fl =

⋃
xj≤xl

gbHj . Now note that as Hj is zero-dimensional it is also xj-dominated,

and thus Corollary 3 says that elimination succeeds. Thus Il
rad
= 〈Fl〉 =

∑
xj≤xl

Hj .

Theorem 7 (see [24]). Let I be a radical zero-dimensional ideal and let V =
V(I). Let gb be a minimal Gröbner basis with respect to an elimination order for x0.
Then the set

D = {degx0
(p) : p ∈ gb},

where deg denotes the degree, is the same as

F = {|π−1(z) ∩ V | : z ∈ π(V)},

where π : Kn → Kn−1 is the projection eliminating x0.

Proof of Theorem 5. If xl = xn−1, then Il = Hl and the assertion holds. Oth-
erwise, note that Il, Hl are also radical zero-dimensional, so we can use Theorem 7.
Let

FIl = {|π−1
Il

(z) ∩V(Il)| : z ∈ πIl(V(Il))},
FHl

= {|π−1
Hl

(z) ∩V(Hl)| : z ∈ πHl
(V(Hl))},

where πIl : Kn−l → Kn−l−1 and πHl
: K|Xl| → K|Xl|−1 are projections eliminating xl.

Then we know that DIl = FIl and DHl
= FHl

, so we need to show that FIl = FHl
.

For some z ∈ Kn−l, let us denote z =: (zl, zH , zI), where zl is the xl coordinate,
zH are the coordinates of Xl \ xl, and zI are the coordinates of {xl, . . . , xn−1} \Xl.
Thus, we have πIl(z) = (zH , zI) and πHl

(zl, zH) = zH .

As I is zero-dimensional, Lemma 14 implies that Il
rad
= Hl + Il+1. Note also that

V(Il+1) = πIl(V(Il)), as it is zero-dimensional. Then,

z ∈ V(Il) ⇐⇒ (zl, zH) ∈ V(Hl) and (zH , zI) ∈ πIl(V(Il)).

Thus, for any (zH , zI) ∈ πIl(V(Il)) we have

(zl, zH , zI) ∈ V(Il) ⇐⇒ (zl, zH) ∈ V(Hl).

Equivalently, for any (zH , zI) ∈ πIl(V(Il)) we have

z ∈ π−1
Il

(zH , zI) ∩V(Il) ⇐⇒ ρ(z) ∈ π−1
Hl

(zH) ∩V(Hl),(17)

where ρ(zl, zH , zI) := (zl, zH). Therefore, FIl ⊆ FHl
.

On the other hand, note that if zH ∈ πHl
(V(Hl)), then there is some zI such that

(zH , zI) ∈ πIl(V(Il)). Thus, for any zH ∈ πHl
(V(Hl)) there is some zI such that (17)

holds. This says that FHl
⊆ FIl , completing the proof.

D
ow

nl
oa

de
d

03
/2

7/
17

 to
 1

8.
51

.1
.6

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1568 D. CIFUENTES AND P. A. PARRILO

A.3. Proofs from section 6.

Proof of Lemma 13. Let xl be arbitrary and let xm ∈ Xl. We want to find a
generator of Jl that is (xm, q)-dominated. Let xj ≥ xl be such that Xl ⊆ Xj and

Xj is a maximal clique. Note that xm ∈ Xj . Observe that Ĥj ⊆ Jj because of
Lemma 3, and thus Jj is q-dominated. Then there must be a generator f ∈ Jj that
is (xm, q)-dominated.

Let us see that f is a generator of Jl, which would complete the proof. To
prove this we will show that f ∈ K[Xl], and then the result follows from Lemma 3.
As the largest variable of f is xm, all its variables are in Xj \ {xm+1, . . . , xj} ⊆
Xj \ {xl+1, . . . , xj}. Thus, it is enough to show that

Xj \ {xl+1, xl+2, . . . , xj} ⊆ Xl.

The equation above follows by iterated application of Lemma 2, as we will see.
Let xp be the parent of xj in T , and observe that xl ∈ Xp as xl ≤ xp and both are
in clique Xj . Then Lemma 2 implies that Xj \ {xp+1, . . . , xj} ⊆ Xp. If xp = xl, we
are done. Otherwise, let xr be the parent of xp, and observe that xl ∈ Xr as before.
Then,

Xj \ {xr+1, . . . , xj} ⊆ Xp \ {xr+1, . . . , xp} ⊆ Xr.

If xr = xl, we are done. Otherwise, we can continue this process until it eventually
terminates. This completes the proof.

REFERENCES

[1] S. Arnborg, D. G. Corneil, and A. Proskurowski, Complexity of finding embeddings in a
k-tree, SIAM J. Algebraic Discrete Methods, 8 (1987), pp. 277–284, doi:10.1137/0608024.

[2] G. V. Bard, N. T. Courtois, and C. Jefferson, Efficient Methods for Conversion and
Solution of Sparse Systems of Low-Degree Multivariate Polynomials over GF(2) via SAT-
Solvers, Report 2007/024, Cryptology ePrint Archive, http://eprint.iacr.org, 2007.

[3] D. A. Bayer, The Division Algorithm and the Hilbert Scheme, Ph.D. thesis, Harvard Univer-
sity, Cambridge, MA, 1982.

[4] C. Beeri, R. Fagin, D. Maier, and M. Yannakakis, On the desirability of acyclic database
schemes, J. ACM, 30 (1983), pp. 479–513.

[5] J. Blair and B. Peyton, An introduction to chordal graphs and clique trees, in Graph Theory
and Sparse Matrix Computation, Springer, Berlin, 1993, pp. 1–29.

[6] H. L. Bodlaender and A. Koster, Combinatorial optimization on graphs of bounded
treewidth, Comput. J., 51 (2008), pp. 255–269.

[7] M. Brickenstein and A. Dreyer, PolyBoRi: A framework for Gröbner-basis computations
with Boolean polynomials, J. Symbol. Comput., 44 (2009), pp. 1326–1345, doi:10.1016/
j.jsc.2008.02.017.

[8] C. Cid, S. Murphy, and M. Robshaw, Small scale variants of the AES, in Fast Software
Encryption, Springer, Berlin, 2005, pp. 145–162.

[9] B. Courcelle and J. Engelfriet, Graph Structure and Monadic Second-Order Logic:
A Language-Theoretic Approach, Encyclopedia Math. Appl. 138, Cambridge University
Press, Cambridge, UK, 2012.

[10] D. A. Cox, J. Little, and D. O’Shea, Ideals, Varieties, and Algorithms: An Introduction to
Computational Algebraic Geometry and Commutative Algebra, Springer, Berlin, 2007.

[11] V. Dalmau, P. G. Kolaitis, and M. Y. Vardi, Constraint satisfaction, bounded treewidth,
and finite-variable logics, in Principles and Practice of Constraint Programming (CP 2002),
Springer, Berlin, 2002, pp. 310–326.

[12] T. A. Davis, J. R. Gilbert, S. I. Larimore, and E. G. Ng, A column approximate minimum
degree ordering algorithm, ACM Trans. Math. Software, 30 (2004), pp. 353–376.

[13] J. A. De Loera, J. Lee, S. Margulies, and S. Onn, Expressing combinatorial problems by
systems of polynomial equations and Hilbert’s nullstellensatz, Combin. Probab. Comput.,
18 (2009), pp. 551–582, doi:10.1017/S0963548309009894.

D
ow

nl
oa

de
d

03
/2

7/
17

 to
 1

8.
51

.1
.6

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

http://dx.doi.org/10.1137/0608024
http://eprint.iacr.org
http://dx.doi.org/DOI:10.1016/j.jsc.2008.02.017
http://dx.doi.org/DOI:10.1016/j.jsc.2008.02.017
http://dx.doi.org/10.1017/S0963548309009894

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CHORDAL STRUCTURE IN POLYNOMIAL IDEALS 1569

[14] J. A. De Loera, S. Margulies, M. Pernpeintner, E. Riedl, D. Rolnick, G. Spencer,
D. Stasi, and J. Swenson, Graph-coloring ideals: Nullstellensatz certificates, Gröbner
bases for chordal graphs, and hardness of Gröbner bases, in Proceedings of the 40th In-
ternational Symposium on Symbolic and Algebraic Computation (ISSAC’15), ACM, New
York, 2015, pp. 133–140, doi:10.1145/2755996.2756639.

[15] R. Dechter, Bucket elimination: A unifying framework for probabilistic inference, in Learning
in Graphical Models, Springer, Berlin, 1998, pp. 75–104.

[16] R. Dechter, Constraint Processing, Morgan Kaufmann, San Francisco, 2003.
[17] W. Decker, G. M. Greuel, G. Pfister, and H. Schönemann, Singular 4-0-2—A Computer

Algebra System for Polynomial Computations, http://www.singular.uni-kl.de, 2015.
[18] I. Z. Emiris and J. F. Canny, Efficient incremental algorithms for the sparse resultant and the

mixed volume, J. Symbol. Comput., 20 (1995), pp. 117–149, doi:10.1006/jsco.1995.1041.
[19] J. C. Faugère, P. Gaudry, L. Huot, and G. Renault, Polynomial Systems Solving by Fast

Linear Algebra, preprint, arXiv:1304.6039 [cs.SC], 2013.
[20] J. C. Faugère and S. Rahmany, Solving systems of polynomial equations with symmetries

using SAGBI-Gröbner bases, in Proceedings of the 34th International Symposium on Sym-
bolic and Algebraic Computation (ISSAC’09), ACM, New York, 2009, pp. 151–158.

[21] J. C. Faugère, M. Safey El Din, and P. J. Spaenlehauer, Gröbner bases of bihomogeneous
ideals generated by polynomials of bidegree (1, 1): Algorithms and complexity, J. Symbol.
Comput., 46 (2011), pp. 406–437.

[22] J. C. Faugère, P. J. Spaenlehauer, and J. Svartz, Sparse Gröbner bases: The unmixed case,
in Proceedings of the 39th International Symposium on Symbolic and Algebraic Compu-
tation (ISSAC’14), ACM, New York, 2014, pp. 178–185, doi:10.1145/2608628.2608663.

[23] S. Gao, Counting Zeros over Finite Fields Using Gröbner Bases, M.S. thesis in Logic and
Computation, Carnegie Mellon University, Pittsburgh, PA, 2009.

[24] S. Gao, V. M. Rodrigues, and J. Stroomer, Gröbner Basis Structure of Finite Sets of
Points, preprint, Department of Mathematical Sciences, Clemson University, Clemson,
SC, http://www.math.clemson.edu/∼sgao/papers/GBstr.pdf, 2003.

[25] K. Gatemann, Symbolic solution polynomial equation systems with symmetry, in Proceed-
ings of the International Symposium on Symbolic and Algebraic Computation (ISSAC’90),
ACM, New York, 1990, pp. 112–119, doi:10.1145/96877.96907.

[26] M. C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Ann. Discrete Math. 57,
Elsevier B. V., Amsterdam, 2004.

[27] J. Herzog, T. Hibi, F. Hreinsdóttir, T. Kahle, and J. Rauh, Binomial edge ideals
and conditional independence statements, Adv. Appl. Math., 45 (2010), pp. 317–333,
doi:10.1145/96877.96907.

[28] C. J. Hillar and T. Windfeldt, Algebraic characterization of uniquely vertex colorable
graphs, J. Combin. Theory Ser. B, 98 (2008), pp. 400–414.

[29] B. Huber and B. Sturmfels, A polyhedral method for solving sparse polynomial systems,
Math. Comp., 64 (1995), pp. 1541–1555.

[30] Y. N. Lakshman, On the complexity of computing a Gröbner basis for the radical of a zero
dimensional ideal, in Proceedings of the 22nd Annual ACM Symposium on Theory of
Computing, ACM, New York, 1990, pp. 555–563.

[31] S. L. Lauritzen and D. J. Spiegelhalter, Local computations with probabilities on graphical
structures and their application to expert systems, J. Roy. Statist. Soc. Ser. B, 50 (1988),
pp. 157–224.

[32] T. Y. Li, Numerical solution of multivariate polynomial systems by homotopy continuation
methods, Acta Numer., 6 (1997), pp. 399–436.

[33] J. A. Makowsky and K. Meer, Polynomials of bounded treewidth, in Foundations of Compu-
tational Mathematics, Proceedings of the Smalefest 2000, F. Cucker and M. Rojas, eds.,
World Scientific, Singapore, 2002, pp. 211–250.

[34] J. Nie and J. Demmel, Sparse SOS relaxations for minimizing functions that are summations
of small polynomials, SIAM J. Optim., 19 (2008), pp. 1534–1558, doi:10.1137/060668791.

[35] S. Parter, The use of linear graphs in Gauss elimination, SIAM Rev., 3 (1961), pp. 119–130,
doi:10.1137/1003021.

[36] V. I. Paulsen, S. C. Power, and R. R. Smith, Schur products and matrix completions, J.
Funct. Anal., 85 (1989), pp. 151–178.

[37] A. Pothen and S. Toledo, Elimination structures in scientific computing, in Handbook on
Data Structures and Applications, D. Mehta and S. Sahni, eds., CRC Press, Boca Raton,
FL, 2004, pp. 59-1–59-29.D

ow
nl

oa
de

d
03

/2
7/

17
 to

 1
8.

51
.1

.6
3.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

http://dx.doi.org/10.1145/2755996.2756639
http://www.singular.uni-kl.de
http://dx.doi.org/10.1006/jsco.1995.1041
http://arxiv.org/abs/1304.6039
http://dx.doi.org/10.1145/2608628.2608663
http://www.math.clemson.edu/~sgao/papers/GBstr.pdf
http://dx.doi.org/10.1145/96877.96907
http://dx.doi.org/10.1016/j.aam.2010.01.003
http://dx.doi.org/10.1137/060668791
http://dx.doi.org/10.1137/1003021

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1570 D. CIFUENTES AND P. A. PARRILO

[38] H. Raddum and I. Semaev, New Technique for Solving Sparse Equation Systems, Report
2006/475, Cryptology ePrint Archive, http://eprint.iacr.org, 2006.

[39] D. J. Rose, Triangulated graphs and the elimination process, J. Math. Anal. Appl., 32 (1970),
pp. 597–609.

[40] A. J. Sommese and C. W. Wampler, The Numerical Solution of Systems of Polynomials
Arising in Engineering and Science, World Scientific, Singapore, 2005.

[41] W. A. Stein et al., SageMath, Free Open-Source Mathematics Software System, http://www.
sagemath.org (accessed 06-20-16).

[42] B. Sturmfels, Gröbner Bases and Convex Polytopes, University Lecture Series 8, American
Mathematical Society, Providence, RI, 1996.

[43] L. Vandenberghe and M. S. Andersen, Chordal graphs and semidefinite optimization, Found.
Trends Optim., 1 (2015), pp. 241–433, doi:10.1561/2400000006.

[44] R. Villarreal, Cohen-Macaulay graphs, Manuscripta Math., 66 (1990), pp. 277–293,
doi:10.1007/BF02568497.

[45] R. Villarreal, Monomial Algebras, 2nd ed., Monogr. Res. Notes Math. 8, CRC Press, Boca
Raton, FL, 2015.

D
ow

nl
oa

de
d

03
/2

7/
17

 to
 1

8.
51

.1
.6

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

http://eprint.iacr.org
http://www.sagemath.org
http://www.sagemath.org
http://dx.doi.org/10.1561/2400000006
http://dx.doi.org/10.1007/BF02568497

	Introduction
	Preliminaries
	Chordal graphs
	Algebraic geometry

	Chordal elimination
	Incremental elimination
	Bounding the first elimination ideal
	Bounding all elimination ideals
	Chordal elimination algorithm
	Elimination tree

	Successful elimination
	The domination condition
	Simplicial equations

	Elimination ideals of cliques
	Elimination ideals of lower sets
	Cliques elimination algorithm
	Lex Gröbner bases and chordal elimination

	Complexity analysis
	Applications
	Graph colorings
	Cryptography
	Sensor network localization
	Differential equations

	Appendix A. Additional proofs
	Proofs from section 3
	Proofs from section 5
	Proofs from section 6

	References

