14,587 research outputs found

    The quantum H3H_3 integrable system

    Full text link
    The quantum H3H_3 integrable system is a 3D system with rational potential related to the non-crystallographic root system H3H_3. It is shown that the gauge-rotated H3H_3 Hamiltonian as well as one of the integrals, when written in terms of the invariants of the Coxeter group H3H_3, is in algebraic form: it has polynomial coefficients in front of derivatives. The Hamiltonian has infinitely-many finite-dimensional invariant subspaces in polynomials, they form the infinite flag with the characteristic vector \vec \al\ =\ (1,2,3). One among possible integrals is found (of the second order) as well as its algebraic form. A hidden algebra of the H3H_3 Hamiltonian is determined. It is an infinite-dimensional, finitely-generated algebra of differential operators possessing finite-dimensional representations characterized by a generalized Gauss decomposition property. A quasi-exactly-solvable integrable generalization of the model is obtained. A discrete integrable model on the uniform lattice in a space of H3H_3-invariants "polynomially"-isospectral to the quantum H3H_3 model is defined.Comment: 32 pages, 3 figure

    N=2 supersymmetric QCD and elliptic potentials

    Get PDF
    We investigate the relation between the four dimensional N=2 SU(2) super Yang-Mills theory with four fundamental flavors and the quantum mechanics model with Treibich-Verdier potential described by the Heun equation in the elliptic form. We study the precise correspondence of quantities in the gauge theory and the quantum mechanics model. An iterative method is used to obtain the asymptotic expansion of the spectrum for the Schr\"{o}dinger operator, we are able to fix the precise relation between the energy spectrum and the instanton partition function of the gauge theory. We also study asymptotic expansions for the spectrum which correspond to the strong coupling regions of the Seiberg-Witten theory.Comment: Latex, 29pp, published version, content restructured and simplifie

    Quasi-Exactly Solvable Potentials on the Line and Orthogonal Polynomials

    Get PDF
    In this paper we show that a quasi-exactly solvable (normalizable or periodic) one-dimensional Hamiltonian satisfying very mild conditions defines a family of weakly orthogonal polynomials which obey a three-term recursion relation. In particular, we prove that (normalizable) exactly-solvable one-dimensional systems are characterized by the fact that their associated polynomials satisfy a two-term recursion relation. We study the properties of the family of weakly orthogonal polynomials defined by an arbitrary one-dimensional quasi-exactly solvable Hamiltonian, showing in particular that its associated Stieltjes measure is supported on a finite set. From this we deduce that the corresponding moment problem is determined, and that the kk-th moment grows like the kk-th power of a constant as kk tends to infinity. We also show that the moments satisfy a constant coefficient linear difference equation, and that this property actually characterizes weakly orthogonal polynomial systems.Comment: 22 pages, plain TeX. Please typeset only the file orth.te

    Quantum Super-Integrable Systems as Exactly Solvable Models

    Get PDF
    We consider some examples of quantum super-integrable systems and the associated nonlinear extensions of Lie algebras. The intimate relationship between super-integrability and exact solvability is illustrated. Eigenfunctions are constructed through the action of the commuting operators. Finite dimensional representations of the quadratic algebras are thus constructed in a way analogous to that of the highest weight representations of Lie algebras.Comment: This is a contribution to the Vadim Kuznetsov Memorial Issue on Integrable Systems and Related Topics, published in SIGMA (Symmetry, Integrability and Geometry: Methods and Applications) at http://www.emis.de/journals/SIGMA

    Energy dependent Schrödinger operators and complex Hamiltonian systems on Riemann surfaces

    Get PDF
    We use so-called energy-dependent Schrödinger operators to establish a link between special classes of solutions on N-component systems of evolution equations and finite dimensional Hamiltonian systems on the moduli spaces of Riemann surfaces. We also investigate the phase-space geometry of these Hamiltonian systems and introduce deformations of the level sets associated to conserved quantities, which results in a new class of solutions with monodromy for N-component systems of PDEs. After constructing a variety of mechanical systems related to the spatial flows of nonlinear evolution equations, we investigate their semiclassical limits. In particular, we obtain semicalssical asymptotics for the Bloch eigenfunctions of the energy dependent Schrödinger operators, which is of importance in investigating zero-dispersion limits of N-component systems of PDEs

    Baxter's Relations and Spectra of Quantum Integrable Models

    Full text link
    Generalized Baxter's relations on the transfer-matrices (also known as Baxter's TQ relations) are constructed and proved for an arbitrary untwisted quantum affine algebra. Moreover, we interpret them as relations in the Grothendieck ring of the category O introduced by Jimbo and the second author in arXiv:1104.1891 involving infinite-dimensional representations constructed in arXiv:1104.1891, which we call here "prefundamental". We define the transfer-matrices associated to the prefundamental representations and prove that their eigenvalues on any finite-dimensional representation are polynomials up to a universal factor. These polynomials are the analogues of the celebrated Baxter polynomials. Combining these two results, we express the spectra of the transfer-matrices in the general quantum integrable systems associated to an arbitrary untwisted quantum affine algebra in terms of our generalized Baxter polynomials. This proves a conjecture of Reshetikhin and the first author formulated in 1998 (arXiv:math/9810055). We also obtain generalized Bethe Ansatz equations for all untwisted quantum affine algebras.Comment: 41 pages (v3: New Section 5.6 added in which Bethe Ansatz equations are written explicitly for all untwisted quantum affine algebras. New examples, references, and historical comments added plus some minor edits. v4: References added.

    Algebraic Structures and Eigenstates for Integrable Collective Field Theories

    Full text link
    Conditions for the construction of polynomial eigen--operators for the Hamiltonian of collective string field theories are explored. Such eigen--operators arise for only one monomial potential v(x)=μx2v(x) = \mu x^2 in the collective field theory. They form a ww_{\infty}--algebra isomorphic to the algebra of vertex operators in 2d gravity. Polynomial potentials of orders only strictly larger or smaller than 2 have no non--zero--energy polynomial eigen--operators. This analysis leads us to consider a particular potential v(x)=μx2+g/x2v(x)= \mu x^2 + g/x^2. A Lie algebra of polynomial eigen--operators is then constructed for this potential. It is a symmetric 2--index Lie algebra, also represented as a sub--algebra of U(s(2)).U (s\ell (2)).Comment: 27 page

    On determinant representations of scalar products and form factors in the SoV approach: the XXX case

    Full text link
    In the present article we study the form factors of quantum integrable lattice models solvable by the separation of variables (SoV) method. It was recently shown that these models admit universal determinant representations for the scalar products of the so-called separate states (a class which includes in particular all the eigenstates of the transfer matrix). These results permit to obtain simple expressions for the matrix elements of local operators (form factors). However, these representations have been obtained up to now only for the completely inhomogeneous versions of the lattice models considered. In this article we give a simple algebraic procedure to rewrite the scalar products (and hence the form factors) for the SoV related models as Izergin or Slavnov type determinants. This new form leads to simple expressions for the form factors in the homogeneous and thermodynamic limits. To make the presentation of our method clear, we have chosen to explain it first for the simple case of the XXXXXX Heisenberg chain with anti-periodic boundary conditions. We would nevertheless like to stress that the approach presented in this article applies as well to a wide range of models solved in the SoV framework.Comment: 46 page
    corecore