9,842 research outputs found

    Investigating the role of model-based reasoning while troubleshooting an electric circuit

    Full text link
    We explore the overlap of two nationally-recognized learning outcomes for physics lab courses, namely, the ability to model experimental systems and the ability to troubleshoot a malfunctioning apparatus. Modeling and troubleshooting are both nonlinear, recursive processes that involve using models to inform revisions to an apparatus. To probe the overlap of modeling and troubleshooting, we collected audiovisual data from think-aloud activities in which eight pairs of students from two institutions attempted to diagnose and repair a malfunctioning electrical circuit. We characterize the cognitive tasks and model-based reasoning that students employed during this activity. In doing so, we demonstrate that troubleshooting engages students in the core scientific practice of modeling.Comment: 20 pages, 6 figures, 4 tables; Submitted to Physical Review PE

    PLC-CONTROLLED OF A CONVEYOR SYSTEM (SYSTEM III)

    Get PDF
    This project entitled PLC-Controlled of a Conveyor System (System III), which is an integrated system that is operated and controlled by the PLC used itself. A project that made to study the capabilities of the conveyor system installed in one of UTP’s laboratory. Besides that, this project also requires study for developing the set of PLC programming routines using structured method as to allow the modifications of the system operation that is proper and preferable. This system has been rarely used and only operated for the demonstration purposes, which lead to the inflexibility of the system. In addition, none of work to develop and understand the system’s programming routines ever conducted which also cause no research activities made for quite some time. As a solution, the study to develop the programming routines for the system through structured method is implemented. This method is a step-by-step method to develop the PLC programming routines using ladder diagram, which begins with the program description, to the timing / sequence diagram until the PLC ladder diagram is developed. Based on this method, the system capabilities can be studied in details and the system operation is successfully being modified along the project is conducted. In conclusion, the project was successful, and in future it is believed the development of PLC programming routines could be easily done for advance or complex operation. The system also could be improved to cope with the modern technological growth in the Flexible Manufacturing System (FMS) field, as well to assist the possible project and research activities later

    Uses and applications of artificial intelligence in manufacturing

    Get PDF
    The purpose of the THESIS is to provide engineers and personnels with a overview of the concepts that underline Artificial Intelligence and Expert Systems. Artificial Intelligence is concerned with the developments of theories and techniques required to provide a computational engine with the abilities to perceive, think and act, in an intelligent manner in a complex environment. Expert system is branch of Artificial Intelligence where the methods of reasoning emulate those of human experts. Artificial Intelligence derives it\u27s power from its ability to represent complex forms of knowledge, some of it common sense, heuristic and symbolic, and the ability to apply the knowledge in searching for solutions. The Thesis will review : The components of an intelligent system, The basics of knowledge representation, Search based problem solving methods, Expert system technologies, Uses and applications of AI in various manufacturing areas like Design, Process Planning, Production Management, Energy Management, Quality Assurance, Manufacturing Simulation, Robotics, Machine Vision etc. Prime objectives of the Thesis are to understand the basic concepts underlying Artificial Intelligence and be able to identify where the technology may be applied in the field of Manufacturing Engineering

    Establishment of checklist of design for safety (DfS), life-cycle analysis (LCA) and design for manufacturing (DFM) for IVD medical device based on IEC 60601

    Get PDF
    By 2030, medical industries is projected to grow exponentially, progressive to more sustainable policies and better performance towards achieving healthcare Sustainable Development Goals (SDGs). Designing the uprising star of In-Vitro Diagnostic (IVD) device casing is choose as a case study in this research because the current discovery of non-invasive jaundice meter in Malaysia are still in lab scale form with wooding casing thus made it not user friendly and not safe to be used. Therefore, this research purpose a comprehensive checklist for designing new medical device casing by considering Design for Safety (DfS) extracted from the famous international standards on safety MS IEC 60601 and Life-Cycle Assessment (LCA) principles for environmental impact with real side-by-side industrial manufacturing requirement for injection molding process applied on a case study of jaundice meter casing. The checklist have help to minimize modification period thus comply to safety standards (MS IEC 60601). As a result, DfS-LCA-DFM comprehensive checklist helps to decrease trouble for designers to read on long pages of regulatory book to comply to safety standards, doing forensic of redesigning due to not suitable design for manufacturing and saving cost of raw material during early design stage

    Data Acquisition and Control System of Hydroelectric Power Plant Using Internet Techniques

    Get PDF
    Vodní energie se nyní stala nejlepším zdrojem elektrické energie na zemi. Vyrábí se pomocí energie poskytované pohybem nebo pádem vody. Historie dokazuje, že náklady na tuto elektrickou energii zůstávají konstantní v průběhu celého roku. Vzhledem k mnoha výhodám, většina zemí nyní využívá vodní energie jako hlavní zdroj pro výrobu elektrické energie.Nejdůležitější výhodou je, že vodní energie je zelená energie, což znamená, že žádné vzdušné nebo vodní znečišťující látky nejsou vyráběny, také žádné skleníkové plyny jako oxid uhličitý nejsou vyráběny, což činí tento zdroj energie šetrný k životnímu prostředí. A tak brání nebezpečí globálního oteplování. Použití internetové techniky k ovladání několika vodních elektráren má velmi významné výhody, jako snížení provozních nákladů a flexibilitu uspokojení změny poptávky po energii na straně spotřeby. Také velmi efektivně čelí velkým narušením elektrické sítě, jako je například přidání nebo odebrání velké zátěže, a poruch. Na druhou stranu, systém získávání dat poskytuje velmi užitečné informace pro typické i vědecké analýzy, jako jsou ekonomické náklady, predikce poruchy systémů, predikce poptávky, plány údržby, systémů pro podporu rozhodování a mnoho dalších výhod. Tato práce popisuje všeobecný model, který může být použit k simulaci pro sběr dat a kontrolní systémy pro vodní elektrárny v prostředí Matlab / Simulink a TrueTime Simulink knihovnu. Uvažovaná elektrárna sestává z vodní turbíny připojené k synchronnímu generátoru s budicí soustavou, generátor je připojen k veřejné elektrické síti. Simulací vodní turbíny a synchronního generátoru lze provést pomocí různých simulačních nástrojů. V této práci je upřednostňován SIMULINK / MATLAB před jinými nástroji k modelování dynamik vodní turbíny a synchronního stroje. Program s prostředím MATLAB SIMULINK využívá k řešení schematický model vodní elektrárny sestavený ze základních funkčních bloků. Tento přístup je pedagogicky lepší než komplikované kódy jiných softwarových programů. Knihovna programu Simulink obsahuje funkční bloky, které mohou být spojovány, upravovány a modelovány. K vytvoření a simulování internetových a Real Time systémů je možné použít bud‘ knihovnu simulinku Real-Time nebo TRUETIME, v práci byla použita knihovna TRUETIME.Hydropower has now become the best source of electricity on earth. It is produced due to the energy provided by moving or falling water. History proves that the cost of this electricity remains constant over the year. Because of the many advantages, most of the countries now have hydropower as the source of major electricity producer. The most important advantage of hydropower is that it is green energy, which mean that no air or water pollutants are produced, also no greenhouse gases like carbon dioxide are produced which makes this source of energy environment-friendly. It prevents us from the danger of global warming. Using internet techniques to control several hydroelectric plants has very important advantages, as reducing operating costs and the flexibility of meeting changes of energy demand occurred in consumption side. Also it is very effective to confront large disturbances of electrical grid, such as adding or removing large loads, and faults. In the other hand, data acquisition systems provides very useful information for both typical and scientific analysis, such as economical costs reducing, fault prediction systems, demand prediction, maintenance schedules, decision support systems and many other benefits. This thesis describes a generalized model which can be used to simulate a data acquisition and control system of hydroelectric power plant using MATLAB/SIMULINK and TrueTime simulink library. The plant considered consists of hydro turbine connected to synchronous generator with excitation system, and the generator is connected to public grid. Simulation of hydro turbine and synchronous generator can be done using various simulation tools, In this work, SIMULINK/MATLAB is favored over other tools in modeling the dynamics of a hydro turbine and synchronous machine. The SIMULINK program in MATLAB is used to obtain a schematic model of the hydro plant by means of basic function blocks. This approach is pedagogically better than using a compilation of program code as in other software programs .The library of SIMULINK software programs includes function blocks which can be linked and edited to model. Either Simulink Real-Time library or TrueTime library can be used to build and simulate internet and real time systems, in this thesis the TrueTime library was used.

    Expert error in trouble-shooting: an exploratory study in electronics

    No full text
    International audienceIt is known that novices show poor problem-solving performances and that they engage in a relatively inefficient inferential reasoning mode. Experts show high performances in routine situations in which they only activate knowledge. The main purpose of this work was to test the hypothesis that, under some conditions, novices may develop a more efficient diagnostic reasoning than experts, i.e. they may discover the cause of a faulty system conducting fewer tests while avoiding fixation errors. This hypothesis mainly relies on the possibility that experts may be victims of their own knowledge format (French and Sternberg, manuscript). It is tested in a faulty electronic circuit trouble-shooting task. Data suggest that novices perform better than experts. Results are discussed with reference to the concepts of schema and expert error
    corecore