483 research outputs found

    Feature extraction and selection for myoelectric control based on wearable EMG sensors

    Full text link
    © 2018 by the authors. Licensee MDPI, Basel, Switzerland. Specialized myoelectric sensors have been used in prosthetics for decades, but, with recent advancements in wearable sensors, wireless communication and embedded technologies, wearable electromyographic (EMG) armbands are now commercially available for the general public. Due to physical, processing, and cost constraints, however, these armbands typically sample EMG signals at a lower frequency (e.g., 200 Hz for the Myo armband) than their clinical counterparts. It remains unclear whether existing EMG feature extraction methods, which largely evolved based on EMG signals sampled at 1000 Hz or above, are still effective for use with these emerging lower-bandwidth systems. In this study, the effects of sampling rate (low: 200 Hz vs. high: 1000 Hz) on the classification of hand and finger movements were evaluated for twenty-six different individual features and eight sets of multiple features using a variety of datasets comprised of both able-bodied and amputee subjects. The results show that, on average, classification accuracies drop significantly (p < 0.05) from 2% to 56% depending on the evaluated features when using the lower sampling rate, and especially for transradial amputee subjects. Importantly, for these subjects, no number of existing features can be combined to compensate for this loss in higher-frequency content. From these results, we identify two new sets of recommended EMG features (along with a novel feature, L-scale) that provide better performance for these emerging low-sampling rate systems

    Review on EMG Acquisition and Classification Techniques: Towards Zero Retraining in the Influence of User and Arm Position Independence

    Get PDF
    The surface electromyogram (EMG) is widely studied and applied in machine control. Recent methods of classifying hand gestures reported classification rates of over 95%. However, the majority of the studies made were performed on a single user, focusing solely on the gesture classification. These studies are restrictive in practical sense: either focusing on just gestures, multi-user compatibility, or rotation independence. The variations in EMG signals due to these conditions present a challenge to the practical application of EMG devices, often requiring repetitious training per application. To the best of our knowledge, there is little comprehensive review of works done in EMG classification in the combined influence of user-independence, rotation and hand exchange. Therefore, in this paper we present a review of works related to the practical issues of EMG with a focus on the EMG placement, and recent acquisition and computing techniques to reduce training. First, we provided an overview of existing electrode placement schemes. Secondly, we compared the techniques and results of single-subject against multi-subject, multi-position settings. As a conclusion, the study of EMG classification in this direction is relatively new. However the results are encouraging and strongly indicate that EMG classification in a broad range of people and tolerance towards arm orientation is possible, and can pave way for more flexible EMG devices

    Towards electrodeless EMG linear envelope signal recording for myo-activated prostheses control

    Get PDF
    After amputation, the residual muscles of the limb may function in a normal way, enabling the electromyogram (EMG) signals recorded from them to be used to drive a replacement limb. These replacement limbs are called myoelectric prosthesis. The prostheses that use EMG have always been the first choice for both clinicians and engineers. Unfortunately, due to the many drawbacks of EMG (e.g. skin preparation, electromagnetic interferences, high sample rate, etc.); researchers have aspired to find suitable alternatives. One proposes the dry-contact, low-cost sensor based on a force-sensitive resistor (FSR) as a valid alternative which instead of detecting electrical events, detects mechanical events of muscle. FSR sensor is placed on the skin through a hard, circular base to sense the muscle contraction and to acquire the signal. Similarly, to reduce the output drift (resistance) caused by FSR edges (creep) and to maintain the FSR sensitivity over a wide input force range, signal conditioning (Voltage output proportional to force) is implemented. This FSR signal acquired using FSR sensor can be used directly to replace the EMG linear envelope (an important control signal in prosthetics applications). To find the best FSR position(s) to replace a single EMG lead, the simultaneous recording of EMG and FSR output is performed. Three FSRs are placed directly over the EMG electrodes, in the middle of the targeted muscle and then the individual (FSR1, FSR2 and FSR3) and combination of FSR (e.g. FSR1+FSR2, FSR2-FSR3) is evaluated. The experiment is performed on a small sample of five volunteer subjects. The result shows a high correlation (up to 0.94) between FSR output and EMG linear envelope. Consequently, the usage of the best FSR sensor position shows the ability of electrode less FSR-LE to proportionally control the prosthesis (3-D claw). Furthermore, FSR can be used to develop a universal programmable muscle signal sensor that can be suitable to control the myo-activated prosthesis

    Myoelectric Control Systems for Hand Rehabilitation Device: A Review

    Get PDF
    One of the challenges of the hand rehabilitation device is to create a smooth interaction between the device and user. The smooth interaction can be achieved by considering myoelectric signal generated by human's muscle. Therefore, the so-called myoelectric control system (MCS) has been developed since the 1940s. Various MCS's has been proposed, developed, tested, and implemented in various hand rehabilitation devices for different purposes. This article presents a review of MCS in the existing hand rehabilitation devices. The MCS can be grouped into main groups, the non-pattern recognition and pattern recognition ones. In term of implementation, it can be classified as MCS for prosthetic and exoskeleton hand. Main challenges for MCS today is the robustness issue that hampers the implementation of MCS on the clinical application

    Real-time EMG based pattern recognition control for hand prostheses : a review on existing methods, challenges and future implementation

    Get PDF
    Upper limb amputation is a condition that significantly restricts the amputees from performing their daily activities. The myoelectric prosthesis, using signals from residual stump muscles, is aimed at restoring the function of such lost limbs seamlessly. Unfortunately, the acquisition and use of such myosignals are cumbersome and complicated. Furthermore, once acquired, it usually requires heavy computational power to turn it into a user control signal. Its transition to a practical prosthesis solution is still being challenged by various factors particularly those related to the fact that each amputee has different mobility, muscle contraction forces, limb positional variations and electrode placements. Thus, a solution that can adapt or otherwise tailor itself to each individual is required for maximum utility across amputees. Modified machine learning schemes for pattern recognition have the potential to significantly reduce the factors (movement of users and contraction of the muscle) affecting the traditional electromyography (EMG)-pattern recognition methods. Although recent developments of intelligent pattern recognition techniques could discriminate multiple degrees of freedom with high-level accuracy, their efficiency level was less accessible and revealed in real-world (amputee) applications. This review paper examined the suitability of upper limb prosthesis (ULP) inventions in the healthcare sector from their technical control perspective. More focus was given to the review of real-world applications and the use of pattern recognition control on amputees. We first reviewed the overall structure of pattern recognition schemes for myo-control prosthetic systems and then discussed their real-time use on amputee upper limbs. Finally, we concluded the paper with a discussion of the existing challenges and future research recommendations

    Using Artificial Intelligence To Improve The Control Of Prosthetic Legs

    Get PDF
    For as long as people have been able to survive limb threatening injuries prostheses have been created. Modern lower limb prostheses are primarily controlled by adjusting the amount of damping in the knee to bend in a suitable manner for walking and running. Often the choice of walking state or running state has to be controlled manually by pressing a button. While this simple tuning strategy can work for many users it can be limiting and there is the tendency that controlling the leg is not intuitive and the wearer has to learn how to use leg. This thesis examines how this control can be improved using Artificial Intelligence (AI) to allow the system to be tuned for each individual. A wearable gait lab was developed consisting of a number of sensors attached to the limbs of eight volunteers. The signals from the sensors were analysed and features were extracted from them which were then passed through 2 separate Artificial Neural Networks (ANN). One network attempted to classify whether the wearer was standing still, walking or running. The other network attempted to estimate the wearer’s movement speed. A Genetic Algorithm (GA) was used to tune the ANNs parameters for each individual. The results showed that each individual needed different parameters to tune the features presented to the ANN. It was also found that different features were needed for each of the two problems presented to the ANN. Two new features are presented which identify the movement states of standing, walking and running and the movement speed of the volunteer. The results suggest that the control of the prosthetic limb can be improved
    • …
    corecore