477 research outputs found

    Reducing the complexity of a multiview H.264/AVC and HEVC hybrid architecture

    Get PDF
    With the advent of 3D displays, an efficient encoder is required to compress the video information needed by them. Moreover, for gradual market acceptance of this new technology, it is advisable to offer backward compatibility with existing devices. Thus, a multiview H.264/Advance Video Coding (AVC) and High Efficiency Video Coding (HEVC) hybrid architecture was proposed in the standardization process of HEVC. However, it requires long encoding times due to the use of HEVC. With the aim of tackling this problem, this paper presents an algorithm that reduces the complexity of this hybrid architecture by reducing the encoding complexity of the HEVC views. By using Na < ve-Bayes classifiers, the proposed technique exploits the information gathered in the encoding of the H.264/AVC view to make decisions on the splitting of coding units in HEVC side views. Given the novelty of the proposal, the only similar work found in the literature is an unoptimized version of the algorithm presented here. Experimental results show that the proposed algorithm can achieve a good tradeoff between coding efficiency and complexity

    Efficient HEVC-based video adaptation using transcoding

    Get PDF
    In a video transmission system, it is important to take into account the great diversity of the network/end-user constraints. On the one hand, video content is typically streamed over a network that is characterized by different bandwidth capacities. In many cases, the bandwidth is insufficient to transfer the video at its original quality. On the other hand, a single video is often played by multiple devices like PCs, laptops, and cell phones. Obviously, a single video would not satisfy their different constraints. These diversities of the network and devices capacity lead to the need for video adaptation techniques, e.g., a reduction of the bit rate or spatial resolution. Video transcoding, which modifies a property of the video without the change of the coding format, has been well-known as an efficient adaptation solution. However, this approach comes along with a high computational complexity, resulting in huge energy consumption in the network and possibly network latency. This presentation provides several optimization strategies for the transcoding process of HEVC (the latest High Efficiency Video Coding standard) video streams. First, the computational complexity of a bit rate transcoder (transrater) is reduced. We proposed several techniques to speed-up the encoder of a transrater, notably a machine-learning-based approach and a novel coding-mode evaluation strategy have been proposed. Moreover, the motion estimation process of the encoder has been optimized with the use of decision theory and the proposed fast search patterns. Second, the issues and challenges of a spatial transcoder have been solved by using machine-learning algorithms. Thanks to their great performance, the proposed techniques are expected to significantly help HEVC gain popularity in a wide range of modern multimedia applications

    Decoding-complexity-aware HEVC encoding using a complexity–rate–distortion model

    Get PDF
    The energy consumption of Consumer Electronic (CE) devices during media playback is inexorably linked to the computational complexity of decoding compressed video. Reducing a CE device's the energy consumption is therefore becoming ever more challenging with the increasing video resolutions and the complexity of the video coding algorithms. To this end, this paper proposes a framework that alters the video bit stream to reduce the decoding complexity and simultaneously limits the impact on the coding efficiency. In this context, this paper (i) first performs an analysis to determine the trade-off between the decoding complexity, video quality and bit rate with respect to a reference decoder implementation on a General Purpose Processor (GPP) architecture. Thereafter, (ii) a novel generic decoding complexity-aware video coding algorithm is proposed to generate decoding complexity-rate-distortion optimized High Efficiency Video Coding (HEVC) bit streams. The experimental results reveal that the bit streams generated by the proposed algorithm achieve 29.43% and 13.22% decoding complexity reductions for a similar video quality with minimal coding efficiency impact compared to the state-of-the-art approaches when applied to the HM16.0 and openHEVC decoder implementations, respectively. In addition, analysis of the energy consumption behavior for the same scenarios reveal up to 20% energy consumption reductions while achieving a similar video quality to that of HM 16.0 encoded HEVC bit streams

    End to end Multi-Objective Optimisation of H.264 and HEVC Codecs

    Get PDF
    All multimedia devices now incorporate video CODECs that comply with international video coding standards such as H.264 / MPEG4-AVC and the new High Efficiency Video Coding Standard (HEVC) otherwise known as H.265. Although the standard CODECs have been designed to include algorithms with optimal efficiency, large number of coding parameters can be used to fine tune their operation, within known constraints of for e.g., available computational power, bandwidth, consumer QoS requirements, etc. With large number of such parameters involved, determining which parameters will play a significant role in providing optimal quality of service within given constraints is a further challenge that needs to be met. Further how to select the values of the significant parameters so that the CODEC performs optimally under the given constraints is a further important question to be answered. This thesis proposes a framework that uses machine learning algorithms to model the performance of a video CODEC based on the significant coding parameters. Means of modelling both the Encoder and Decoder performance is proposed. We define objective functions that can be used to model the performance related properties of a CODEC, i.e., video quality, bit-rate and CPU time. We show that these objective functions can be practically utilised in video Encoder/Decoder designs, in particular in their performance optimisation within given operational and practical constraints. A Multi-objective Optimisation framework based on Genetic Algorithms is thus proposed to optimise the performance of a video codec. The framework is designed to jointly minimize the CPU Time, Bit-rate and to maximize the quality of the compressed video stream. The thesis presents the use of this framework in the performance modelling and multi-objective optimisation of the most widely used video coding standard in practice at present, H.264 and the latest video coding standard, H.265/HEVC. When a communication network is used to transmit video, performance related parameters of the communication channel will impact the end-to-end performance of the video CODEC. Network delays and packet loss will impact the quality of the video that is received at the decoder via the communication channel, i.e., even if a video CODEC is optimally configured network conditions will make the experience sub-optimal. Given the above the thesis proposes a design, integration and testing of a novel approach to simulating a wired network and the use of UDP protocol for the transmission of video data. This network is subsequently used to simulate the impact of packet loss and network delays on optimally coded video based on the framework previously proposed for the modelling and optimisation of video CODECs. The quality of received video under different levels of packet loss and network delay is simulated, concluding the impact on transmitted video based on their content and features

    Challenges and solutions in H.265/HEVC for integrating consumer electronics in professional video systems

    Get PDF
    • …
    corecore