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Performance Analysis of Machine Learning for 
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Luong Pham Van, Johan De Praeter, Glenn Van Wallendael, Jan De Cock, and Rik Van de Walle 

 
Abstract — Nowadays, broadcasters deliver ultra-high 

resolution video to their consumers. This live video is sent to a 
set-top box for display on a television. However, if one or 
more users in the home want to view the same video on their 
personal mobile devices with a lower display resolution and 
limited processing power, decoding the original ultra-high 
resolution video would result in stuttering and quickly drain 
the battery life on these devices. To enable a satisfactory 
consumer experience, the resolution of the video stream 
should be adapted to the target mobile device at the set-top 
box. The aim of this paper is to investigate the performance of 
different machine learning strategies to arbitrary downsize 
video pre-encoded with the high efficiency video coding 
standard (HEVC). These machine learning techniques exploit 
correlation between input and output coding information to 
predict the splitting behavior of HEVC coding units. Several 
machine learning algorithms are optimized. Additionally, both 
online and offline training strategies are tested. Of the tested 
algorithms, online-trained random forests achieve the best 
compression-efficiency with a bit rate increase of 5.4% and an 
average complexity reduction of 70%1. 
 

Index Terms — Video adaptation, arbitrary downsizing, high 
efficiency video coding, machine learning. 

I. INTRODUCTION 

Ultra-high definition displays have become commonplace 
in the current consumer electronics market, leading to an 
increased demand for ultra-high definition content. When a 
consumer watches a live broadcast of such content over 
satellite, the video is received by a set-top box and decoded 
for display on a TV. However, if one or more users want to 
follow the live broadcast on their mobile devices when 
leaving the room, the video would have to be transmitted to 
the mobile device at full resolution. Due to the high decoding 
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complexity of ultra-high resolution video, the mobile device 
would have insufficient processing power to deliver a fluid 
viewing experience, and the limited battery life would drain 
quickly. 

To enable this kind of second-screen viewing for the 
consumer without video stuttering and while maximizing the 
battery life, the decoding complexity of the video should be 
minimized. Therefore, the video arriving at the mobile device 
should have the same resolution as the target display. To 
achieve this, the video resolution can be adapted to the target 
mobile device at the set-top box by using transcoding 
techniques [1]. 

Transcoding is an adaptation technique which modifies the 
properties of a video stream. Depending on the type of 
modified properties, transcoding can be classified into three 
main categories including bit rate reduction [2], [3], spatial 
resolution reduction [4], and frame rate reduction [5]. Bit rate 
reducing techniques are recommended for small reductions in 
bit rate. When more drastic reductions are needed, spatial 
downsizing is advised. 

This paper extends previous work [6] to optimize 
downsizing of videos pre-encoded with HEVC. As the main 
contribution to the state-of-the-art, the performance of 
different machine learning strategies is investigated. To 
determine the optimal strategy, optimized and non-optimized 
versions of different algorithms are compared. Additionally, 
the benefits of content-adaptive feature selection are examined 
and both online and offline training strategies are tested. 

The rest of this paper is organized as follows. First, an 
overview of the related works in transcoding is given in 
Section II. The proposed arbitrary downsizing architecture is 
described in Section III. Then, the machine learning model for 
predicting coding unit splits is proposed in Section IV. In this 
section, the optimization of machine learning is elaborated on. 
Thereafter, a transcoding complexity control mechanism is 
presented in Section V. The performance of the proposed 
techniques is then evaluated in Section VI. Finally, the 
conclusion is drawn in Section VII. 

II. RELATED WORKS 

A typical downsizing transcoder consists of a decoder-
encoder cascade. Such a transcoder decodes the input video, 
resizes it, and then re-encodes the result. However, the re-
encoding step has a high computational complexity. Several 
techniques have been proposed to reduce the complexity of 
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the re-encoding step by predicting coding information. Doing 
video downsizing for the advanced video coding standard 
(H.264/AVC) [7], the motion of the output video is derived 
from the input motion vectors using a weighted median filter. 
By predicting the motion vectors, the motion estimation 
process in the encoder can be accelerated. However, this 
method leads to a high subjective quality loss. 

Alternative fast transcoding techniques predict encoding 
information by using machine learning to exploit the 
correlation between the coding information of the input and 
output video [8]-[13].  Different machine learning algorithms 
have been used in these transcoding techniques. Support 
vector machines (SVM [14]) have been applied for 
transcoding H.264/AVC bitstreams [8]. Decision trees (DT 
[15]) are also widely used for transcoding [9]-[12]. More 
recently, the linear discriminant function has been used for 
transcoding a video from H.264/AVC to the high efficiency 
video coding (HEVC) standard [13], [16]. 

In the existing literature, most machine learning techniques 
for transcoding are based on offline training [8]-[12]. This 
means that the prediction model is trained on a set of videos 
(the training set) and evaluated on a separate test set. In this 
case, the prediction model only has to be trained once. 
However, such a model is not content-adaptive. This problem 
is solved by using an online training approach [13]. The 
prediction model is made content-adaptive by training on the 
first N frames of the sequence to predict the decisions for the 
following frames. A disadvantage of this approach is that 
retraining might be needed after changes in the video content. 

In the above machine learning methods for transcoding, a 
fixed feature set is used. This feature set is often determined 
through observations by selecting features from a larger set, 
without an automatic mechanism. The reduced feature set is 
then used for training. However, the features providing the 
most information might be different depending on the 
sequence. Therefore, there is a need to adaptively determine 
the optimal features to use for given training data. 

Since the accuracy of the machine learning model might be 
low, some existing techniques modify the generated model. 
For example, several coding modes (skip and 2Nx2N modes) 
are always tested even when they are not recommended by the 
machine learning model [13]. On the other hand, only the 
highest levels in the decision tree are used in order to avoid 
overtraining on the training set [12]. Another method to 
handle the low accuracy of the machine learning model is to 
take the confidence of a prediction into account [10]. In that 
case, only predictions with a confidence above a certain 
threshold will be used to skip decisions in the encoder. 

The existing transcoding techniques demonstrate that the 
re-encoding complexity can be significantly reduced by using 
machine learning. However, the following problems should be 
considered to achieve the best performance of transcoding. 
First, only a single machine learning algorithm is applied in 
existing techniques. However, it is unknown what the effects 
would be if a different algorithm were applied. Second, 

although attempts have been made to make a model adaptive 
by using online training, an adaptive feature selection has not 
been taken into account. Finally, the optimization of machine 
learning parameters has not been focused on. 

III. ARBITRARY DOWNSIZING ARCHITECTURE 

Many downsizing transcoding techniques have been 
proposed for previous video coding standards (e.g. 
H.264/AVC). However, these transcoding techniques cannot 
be directly applied to the HEVC standard due to the 
differences in block structure, motion estimation and residual 
coding. Therefore, to apply HEVC for a diverse set of 
applications, a novel efficient downsizing technique is needed 
for this new standard. 

This paper proposes several techniques to accelerate the 
downsizing process of HEVC video using machine learning. 
An overview of the splitting process of coding units (CUs) in 
HEVC is presented first. Then, the proposed system for fast 
arbitrary downsizing of HEVC video is given. 

A. Overview of the HEVC CU Splitting Process 

The goal of the HEVC CU splitting process is to obtain the 
optimal block structure for coding a video frame. The largest 
block in the structure, i.e. the coding tree unit (CTU), which is 
typically 64x64 pixels, is recursively split into CUs from 
depth 0 (64x64 pixel CU) to depth 3 (8x8 pixel CU) [16]. For 
each CU, three prediction modes (i.e. skip, inter, and intra 
modes) are supported. Each CU is the root for further 
evaluation of prediction units (PU), and transform units 
(TUs). Depending on the mode, eight different PU sizes can 
be chosen. To obtain the most efficient mode for a CU at 
depth d, all PU partitions and all Residual Quad-Tree (RQT) 
configurations are evaluated during the rate distortion 
optimization (RDO) process. This RDO process is recursively 
performed on the four sub-CUs at depth d + 1. After 
evaluating the rate distortion (RD) cost of a CU at depth d and 
the combined RD-costs of its sub-CUs, the splitting of the CU 
is decided and signaled by a split-flag. 

The HEVC encoder is very complex due to the flexibility of 
CU splitting. This complexity can be reduced by limiting the 
number of RD-evaluations. Several techniques for fast CU 
size decisions have been proposed [17]-[19]. The complexity 
of CU partitioning is the motivation for designing transcoding 
models that predict the splitting behavior of CUs. 

B. Arbitrary Downsizing Architecture 

The proposed transcoding system is depicted in Fig.  1. 
First, the input high resolution HEVC video is decoded 
followed by the extraction of coding information and raw 
video features of the reconstructed video. Based on the 
network bandwidth constraints and/or the screen resolution of 
playback devices, the downsizing scaling factor can be 
chosen. Using a non-normative downsampling filter [20], the 
decoded video is then resized by dividing its width and height 
by this scaling factor. Meanwhile, the splitting behaviour of 
the CUs in the output video stream is predicted using machine 
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learning models. Finally, the resized video is re-encoded using 
this predicted information. The details of building and 
optimizing the prediction model are elaborated on in Section 
IV.  

 

 
Fig.  1. Proposed arbitrary downsizing architecture for HEVC video. 

 

It should be noted that the arbitrary scaling factor may lead 
to misalignment between the co-located area of the output CU 
and the co-located input CUs (Fig.  2). In this case, the 
existing mode mapping algorithms [21] cannot be used. 
However, this problem can be solved by the proposed 
machine learning method. The correlation between the block 
size of the output CU and the coding information of partially 
co-located and fully co-located CUs is exploited by machine 
learning. 

 

 
Fig.  2. The misalignment of co-located input CUs. 

IV. FAST CU SPLITTING PREDICTION MODEL USING 

MACHINE LEARNING 

The CU splitting prediction models are constructed using 
machine learning algorithms to predict the CU structure of the 
output video. There are several challenges that should be 
considered when building the prediction models in order to 
improve the transcoding performance. Firstly, the accuracy of 
the prediction should be improved as much as possible. If the 
prediction is more accurate, the quality loss will be smaller. 
Furthermore, the complexity of the prediction step needs to be 
small. Finally, the model should be adaptive. In other words, it 
should be possible to construct a model and optimize it 
regardless of transcoding parameters such as the scaling factor 
of the video resolution. 

This paper proposes several techniques to handle the above 
challenges of transcoding based on machine learning. Since 
either an online or offline training mechanism can be applied, 
these mechanisms are described in the following subsection. 
To achieve an optimal accuracy level of prediction, several 
machine learning algorithms are then investigated. The 
optimal parameters of these algorithms are adaptively chosen 
depending on the training data as described thereafter. As the 
last part of this section, a description is given about how the 
best features are selected during training by using an adaptive 
feature selection mechanism. This mechanism aims to lower 
the overall complexity of the machine learning system. 

A. Training Mechanism 

Three prediction models, which respectively predict the 
splitting behavior of CUs at depth 0, 1, and 2, are constructed 
with machine learning algorithms. For these algorithms, either 
an online or offline training strategy can be applied. 

For online training, a set of N frames is first transcoded 
without acceleration. Then, the coding information from the 
input bit stream, the features of the decoded video and the CU 
depths in the resized video are extracted from these N frames. 
Based on this training data, the machine learning parameters 
and the important features are selected. The three prediction 
models are then built using these optimal settings. Using these 
models, the CU structure of the following frames can be 
predicted to reduce the complexity of the re-encoding step. 

The advantage of this online training mechanism is that the 
parameters of the machine learning models are adapted to the 
content of the input sequence. Additionally, this method does 
not depend on the coding configuration, e.g. it is independent 
of the scaling factor used during transcoding. However, if the 
properties of the video content change significantly, the 
prediction accuracy of the model might be reduced and 
retraining might be necessary. 

An alternative training strategy is offline training. With this 
technique, the first K frames of selected sequences are used as 
a training set to build the three prediction models. The other 
sequences are then encoded using these models. One of the 
challenges of offline training is to find a set of training 
sequences that sufficiently represents the complete test set. To 
achieve this, the training sequences are selected by using a 
cross-validation technique. The prediction models are first 
constructed using only a single training sequence with input 
resolutions varying from 832x480 up to 1920x1080 pixels 
[22]. The number of training frames is based on the resolution 
of the sequence. The 1920x1080, 1280x720, and 832x480 
sequences respectively use 50, 75, 100 frames for training. 
After a prediction model is built using a single sequence, all 
other sequences are transcoded using this model. The three 
sequences that result in the highest compression efficiency for 
the test set are then combined as the final training set. The 
offline prediction models are trained on this combined set. 

The advantage of offline training is that the model only 
needs to be trained once for a single scaling factor. However, 
this also means that for each possible scaling factor, a 
different model is needed. This might make offline training 
less fitting for arbitrary downscaling than for dyadic 
downscaling or transcoding between different video standards. 
Moreover, the performance of the models might be negatively 
affected if the videos in the test set differ from the training set. 

B. Overview of Selected Machine Learning Algorithms 

Several supervised machine learning algorithms, which 
label training data and predict the correct label for an input 
sample, can be used for classifying a set of input data. One of 
the goals of this paper is to investigate if there is a significant 
difference between machine learning techniques. Therefore, 
this paper elaborates on the performance of four commonly 
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used algorithms: decision trees (DT) [15], random forests 
(RF) [23], adaptive boosting (AdaBoost) [24], and support 
vector machines (SVM) [14]. An overview of these 
algorithms will be provided next. 

The DT algorithm is a technique for classification based on 
simple decision rules. The model consists of a root, internal 
nodes, leaf nodes, and branches. At the root and each internal 
node, the input sample is evaluated using the decision rule of 
that node. Depending on the outcome of that rule, the input 
sample follows one of the branches originating from the node. 
When the input sample reaches a leaf node, the DT model 
returns the prediction given by that leaf node. Implementation-
wise, a tree consists of many if-else statements, which results 
in a low complexity for generating predictions. However, a 
disadvantage of this algorithm is that a tree might become 
overly complex, resulting in overfitting, which negatively 
impacts the performance of the DT model on test sets. A 
decision tree is also highly sensitive to small variations in the 
data set, meaning that it can produce different results when 
some samples are removed or added. 

The RF and AdaBoost algorithms try to overcome the 
disadvantages of the DT algorithm by combining several trees. 
RF constructs decision trees by randomly selecting a subset of 
features from all available features to determine the decision 
rule at each internal node. The decision rule is based on a 
single feature from this random subset. On the other hand, 
AdaBoost improves the performance of a weak classifier such 
as DT by using an iterative approach. At each iteration, 
training samples are assigned weights, and incorrectly 
classified training samples will gain a larger weight. The cost 
of overcoming the disadvantages of the DT algorithm is that 
multiple trees need to be trained, which increases the 
complexity of the algorithms. 

While the previous three algorithms use rule-based decision 
tree classification, SVM is more memory-based. In SVM, the 
dataset is mapped in a high-dimensional space with the goal of 
constructing a hyper-plane that maximizes the distance 
between samples belonging to different classes. As a result, 
SVM has higher storage and computing requirements than 
DT-based algorithms. Moreover, the complexity of the 
algorithm greatly increases with the number of features and 
samples. 

C. Parameter Selection for Machine Learning 

The classification performance depends not only on the 
learning algorithm, but also on the parameters of this 
algorithm. For a given algorithm, the classification accuracy 
varies widely when the parameter settings change. Therefore, 
a parameter selection method has to be deployed to select 
proper parameters for a given data set. The meaning of these 
parameters is summarized in Table I. In the tree-based 
algorithms, max_depth and min_samples_leaf of a tree are the 
most important parameters. In SVM, the radial basis function 
(rbf) kernel is used. Two parameters of the kernel, C and γ 
significantly affect the prediction performance. Additionally, 
the number of trees (ntree) in a random forest affects not only 

the coding performance but also the prediction time. A high 
ntree increases the accuracy of the prediction. However, it 
leads to a higher prediction complexity since the number of 
trees that need to be evaluated increases linearly with ntree 
[25]. The parameter selection for tree-based algorithms and 
SVM is presented first. Then, the proposed method for ntree 
selection is given. 

TABLE I 
THE NON-OPTIMIZED MACHINE LEARNING PARAMETERS 

Algorithm Parameter Meaning Default

C Parameter C of the error term 1 
SVM 

γ Kernel coefficient for the kernel 0 

max_depth The maximum depth of the tree None 
Adaboost, 

DT, RF min_sam- 
ples_leaf 

The minimum number of samples 
required to be at a leaf node 

1 

RF ntree Number of trees in the forest 10 

 
1) Optimization of General Parameters 

General parameters of machine learning algorithms can be 
derived by using a ‘grid-search’ with cross-validation [26]. 
This approach tests all possible combinations for a set of 
parameters. The combination with the best cross-validation 
accuracy is chosen. In this paper, max_depth is selected from 
{3, 6, 9, 12} whereas min_samples_leaf is {1%, 2%, 3%, 4%, 
5%, 6%} of the total number of samples in training data. C is 
in the range of {1, 10, 50, 100, 500, 1000} whereas γ is {10-1, 
10-2, 10-3, 10-4, 10-5}.  

2) Proposed ntree Selection Mechanism 
Selecting ntree in RF should achieve a trade-off between 

prediction accuracy and prediction time. If a ‘grid-search’ is 
applied, a high ntree is often selected from the given set, 
resulting in a high prediction complexity. Hence, this 
approach is not an optimal method for selecting ntree. 

 

 
Fig.  3. ntree selection for RF, with block size = 32. The input bit stream 
was encoded using QP = 32 and is downsized by a factor of 2. 

 
This paper proposes an efficient ntree selection mechanism 

based on the Out-of-Bag (oob) score. The oob score is a 
parameter to estimate the prediction accuracy of a model for an 
unknown data set [25]. When ntree increases, the score 
increases accordingly. However, after a certain number of trees, 
this score stabilizes around a threshold Thr. The threshold is 
derived by fitting a curve using a classification and regression 
trees (CART) [27] model as follows. First, oob scores are 
obtained for values of ntree from 5 to 50. A CART model is 
then generated to fit the oob scores (Fig.  3). Thr is set as the 
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maximum oob score of the CART model, since this is the value 
to which the oob score converges. Then, the optimal ntree is 
selected by using (1), with oobn being the oob score with n 
trees: 

                  
 

 
5:50

arg n
n

ntree min oob Thr


                      (1) 

 Since this ntree is the minimal value for which the oob score 
is equal to or greater than the chosen threshold, this number of 
trees is assumed to be the optimal trade-off between prediction 
accuracy and the complexity of the model. 

D. Content-Adaptive Feature Selection 

The splitting behavior of a CU in the output video is highly 
dependent on not only the features of the decoded video, but 
also on the coding information of the co-located CUs in the 
input video. Hence, a number of metrics describing the relevant 
characteristics of the content of the decoded video and the 
coding information of the input video have been acquired to get 
an accurate prediction model of the splitting behavior. However, 
using all of the features might not be optimal since irrelevant 
features may introduce noise. On the other hand, using only a 
small set of features results in a larger generalization error. 
Therefore, it is necessary to select the most important features 
[28]. First, an overview of the features is given. Then, a feature 
elimination mechanism is provided.  

1) Overview of all Features 
A total of 52 features were extracted from the decoded video 

and the input bit stream. These features were used as the initial 
feature set for training. 

Features from the decoded video: A set of 36 features [29] 
from the decoded video were considered. They are based on 
Sobel filtering on frame pixel values, consecutive frame 
comparison, pixel value variations, and various combinations 
and variations of the aforementioned. The calculations were 
performed on the luminance component of the region of the 
picture that is co-located with the block for which the splitting 
behavior needs to be determined. These features mostly describe 
spatial and temporal activity in the picture. Examples include 
temporal and spatial indexes. 

Features from the input bit stream: 16 features are based 
on coding information of the co-located input blocks. These 
features are the following: 
 At the CU level, the mean, variance, maximum, and 

minimum of the input CU depths are included. 
 At the TU level, the mean, variance, maximum, and 

minimum of input TU depths are also used. 
 At the PU level, the depth of a PU is defined as the CU 

depth if the PU is not split. Otherwise; the PU depth 
equals the CU depth plus 1. The mean, variance, 
maximum, and minimum of the input PU depths are 
included. 

 Additionally, the variance of the input motion vectors is 
taken into account. 

 The last two features are the variance and the mean of the 
transform coefficient variance. 

2) Feature Elimination using Random Forests 
Selection of effective and relevant features is crucial for 

classification. A good feature selector could help reduce training 
time, prediction time, as well as reduce memory requirements. 
In addition, this eliminates irrelevant or noisy features, which 
can result in an increase of the prediction accuracy. Feature 
selection approaches can be classified into three categories 
including filter, wrapper, and embedded [30]: 
 The filter approach uses general characteristics of the 

training data to select interesting features. Since the 
relationships between features are not considered, this 
method tends to select redundant features. Thanks to the 
computational efficiency, the filter method is usually 
chosen as a preprocessing method.  

 The wrapper approach performs a preprocessing step. 
However, it uses a machine learning algorithm as a part 
of the feature selection process. For example, the RF 
algorithm inherently allows the calculation of feature 
importances [31]. The features with the highest 
importance can then be retained. This method provides a 
superior performance compared to the filter approach. 
However, its complexity depends on the training 
complexity of the machine learning algorithm. 

 The embedded approach performs feature selection 
automatically as part of the machine learning algorithm. 

This paper applies a content-adaptive feature selection 
algorithm based on the wrapper approach. The machine learning 
algorithm used in the selection process is RF, which provides 
high prediction performance and low training complexity. The 
selection process consists of the following three steps: 

Feature ranking: The importance of each feature is 
determined for 50 runs of RF training (Fig.  4). This importance 
is calculated during each run as the expected fraction of samples 
that the feature will contribute to. The features are then sorted in 
descending order based on the average value over the 50 runs. 

 

 
Fig.  4. Feature importance for 50 runs. The variance of the feature 
importance becomes smaller as the average importance reaches zero. 
 

 
Fig.  5. Feature selection for transcoding the FourPeople sequence. The 
input video (QP = 27), is downsized by a scaling factor of 1.5. The 
standard deviation of important features is larger than for the noisy 
features, which have a standard deviation close to zero. The threshold, 
which is the minimum of the CART model, results in selecting the 29 most 
important features. 
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Determining the threshold: The standard deviation (STD) 
of the feature importance of each feature is calculated. These 
results are plotted using the same order generated by the 
feature ranking step. A CART model is then fitted to this data 
(Fig.  5). The threshold for feature selection is set as the 
minimum prediction of the CART model. This threshold is a 
measure for the minimal noise of the feature importance. If a 
feature has an importance below this threshold, the importance 
can therefore be considered as 0. 
Feature elimination: Only features with an average feature 
score greater than the threshold are retained. 

V. TRANSCODING COMPLEXITY CONTROL 

Reducing the transcoding complexity usually results in a 
decrease in coding performance. However, for some use cases, a 
high coding performance might be necessary. Therefore, an 
optimal trade-off should be made between transcoding 
complexity and coding performance. 

In order to achieve a trade-off between complexity and coding 
performance, some machine learning algorithms such as decision 
trees and random forests can be modified to output probabilistic 
values for each prediction. This means that the splitting behavior 
of a CU is predicted with a confidence c. To achieve higher 
coding performance, only decisions with a higher c should be 
allowed. To control this trade-off between coding performance 
and transcoding complexity, a threshold Tc is defined. If c is 
larger than Tc, the predicted split-flag directly controls the 
splitting behavior of CUs. Otherwise, the CU is fully evaluated 
for both split and not split. With a high Tc, the number of full 
evaluations increases, resulting in a higher transcoding 
complexity while improving coding performance. Consequently, 
the transcoding complexity can be controlled by adjusting Tc to 
achieve a trade-off between complexity and coding performance.  

VI. EXPERIMENTAL RESULTS 

The proposed downsizing transcoder was tested with various 
machine learning algorithms. First, the methodology of 
experiments is presented. Then, the machine learning algorithms 
are compared to each other, and they are also compared to a 
trivial method. The performance of online and offline training 
strategies and the effects of optimizations are considered as well. 
Thereafter, the influence of the complexity control mechanism is 
shown. 

A. Methodology of the Experiments 

In the following experiments, the original video is encoded 
using an HEVC encoder following a low delay prediction 
structure. This structure is characterized by an IPPP prediction 
order using four reference frames. The QP is set to {22, 27, 32, 
37}. Version 12 of the HEVC reference software [32] is used. 
Search mode "TZSearch" and "FEN" (fast encoder decision) are 
enabled. All sequences (18 in total) have input resolutions 
varying from 832x480 up to 1920x1080 pixels except two 
sequences Traffic (3840x2048) and PeopleOnStreet (3840x2160) 
[22] which are bigger. 

After the initial encoding step, the HEVC bit stream is 
decoded and downsized by a scaling factor of σ {1.33, 2.00, 
4.00, 1.50} using a non-normative downsampling filter [20]. 
Although the algorithm can handle any possible scaling factor, 
these factors have been selected as a representative set. They 
respectively reduce the dimensions of the picture to 3/4, 2/4, 
1/4 and 2/3 of the original dimensions. A maximum reduction 
of 1/4 is used since this decreases the total number of pixels 
with 1/16. Additionally, the value of 2/3 was tested since this 
occurs in a scenario where 1080p video is downsized to 720p. 

Following the downsizing step, the resulting video is re-
encoded using the proposed machine learning prediction 
models with the number of training frames N set to 10. Since 
only the impact of σ on the transcoding performance is 
evaluated, the other coding conditions of the output video 
(profile, QP) are left unchanged as in the input video. 

The performance of the proposed transcoding technique is 
evaluated by comparing it to a non-optimized decoder-
encoder cascade (Ref) in terms of Bjøntegaard Delta Bit Rate 
(BDBR) [33] and time saving (TS). The downsized version of 
the original video is used as a reference for calculating the 
Peak Signal-to-Noise Ratio (PSNR). Bjøntegaard Delta PSNR 
(BDPSNR) has been evaluated as well. The experimental 
results show that the BDPSNR loss and BDBR have the same 
behavior when comparing different transcoding strategies. 
Therefore, only BDBR is mentioned in this paper. Time 
saving is given by (2) in which TPro is the total transcoding 
time using the proposed method and TRef is the total 
transcoding time using Ref. For the online training strategy, 
training time is included in the transcoding time. 

     
 

% 100Ref Pro

Ref

T ms T ms
TS

T ms


             (2) 

This paper proposes a trivial method for comparison with 
the machine learning based transcoding techniques. The trivial 
method predicts the splitting behavior of an output CU using 
the mean depth of the co-located input CUs. If the mean depth 
is higher than the current depth of the output CU, the output 
CU is split immediately. Else, the output CU is not split 
further and is encoded using the current depth. The motivation 
of using the mean depth of the input co-located CUs is that 
this feature and the output splitting behavior have a high 
correlation, as the importance of this feature has been 
observed to consistently rank high compared to other features. 

B. Evaluation of the Performance of Machine Learning 
Algorithms for Downsizing 

The performance of different machine learning algorithms 
without optimizing the parameters is presented first. In these 
tests, the online training mechanism was used. Then, the 
results using parameter optimization are elaborated on. The 
offline training mechanism is also evaluated. Finally, the 
results of feature selection are given. 

In a first experiment, non-optimized parameters are used. 
The chosen values for the parameters with a high impact on 
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the prediction accuracy are given in Table I [25]. Note that 
setting max_depth to ‘None’ and min_samples_leaf to 1 
means that the complete tree will be generated, i.e. the 
model will likely be overfitted to the training data.  

The experimental result of using non-optimized machine 
learning parameters is shown in Table II. It is seen that all 
machine learning methods achieve the same complexity 
reduction as the trivial method (about 71% on average). 
These results are similar since the CU structure is always 
completely predicted, which means that the encoder can skip 
the complete CU partitioning. Any slight differences in 
complexity reduction are due to the fact that less blocks 
need to be evaluated if the predicted structure contains more 
large blocks. In the other tables (Table III, IV, and V) the 
complexity reduction is similar for the same reasons. 

As is also seen in Table II, contrary to the TS, the 
performance of the methods differs in terms of BDBR. 
Using AdaBoost and DT leads to high bit rate increases 
(around 11.7% on average for each). These two methods 
perform worse than the trivial method, which has a BDBR 
increase of 8.44%. The performance of RF and SVM is 
better with an increase of 7.42% and 8.85%, respectively. 
Compared to the trivial method, while the performance of 
RF is slightly better, the performance of other machine 
learning algorithms is worse. In other words, non-optimized 
machine learning models produce a bad fit for the given data 
set. Therefore, they should always be optimized if machine 
learning is used for transcoding. In terms of BDPSNR, 
quality losses of 0.50 dB, 0.51 dB, 0.38 dB, 0.33 dB, and 
0.37 dB are measured for DT, AdaBoost, SVM, RF, and 
Trivial, respectively. 

The transcoding performance with optimized machine 
learning algorithms as described in Section IV is presented 
in Table III, where RF200 is the result of the RF algorithm 
with a fixed ntree of 200. These experiments use the 
complete set of 52 features. As can be seen from these 
results, the coding performance significantly improves 
compared to using non-optimized parameters. With a 
slightly different complexity reduction, the bit rate penalty 
of using optimized parameters is clearly reduced. The SVM, 
AdaBoost, and DT algorithms demonstrate a similar 
performance with bit rate increases of 7.16%, 7.15%, and 
7.38%, respectively. The RF algorithm is better than the 
others with a 5.41% bit rate penalty. By using the proposed 
ntree selection, the number of trees varies from 10 to 30. 
Although the number of trees is very low compared to 200, 
the performance of RF remains the same whereas the 
prediction time is significantly reduced, indicating that the 
proposed ntree selection indeed selects an optimal number 
of trees. 

The results of offline training are shown in Table IV. 
Online training performs better than offline training even 
when cross-validation is used to select the training 
sequences for offline training. For example, the online 
model has an average BDBR of 5.41% for RF, whereas the 

offline model has a BDBR of 7.07%. The offline model for 
SVM has a higher BDBR than the trivial model since 
optimal machine learning parameters of an offline model may 
not be optimal for every sequence. Moreover, to apply the 
offline strategy to other downsizing scaling factors, the model 
would have to be retrained. Consequently, to achieve the best 
performance, online training should be used whenever 
possible. A drawback of online training compared to offline 
training is training complexity. The time saving of the online 
training strategy is slightly lower than offline training (around 
2%) since the 10 first frames are fully encoded followed by a 
training phase. 

Finally, the performance of the feature elimination 
algorithm has also been analyzed. The result of transcoding 
with optimized parameters and feature selection is shown in 
Table V. In general, the feature elimination algorithm 
succeeds in reducing noisy features while retaining a similar 
coding performance. A comparison of the results in Table V 
and Table III, where the complete feature set was used, shows 
that the BDBR remains similar after feature selection. The 
influence of the feature selection is higher with a BDBR 
increase of 5.50%, 7.33%, and 7.59% for RF, SVM, and DT, 
respectively. On the other hand, the feature selection 
mechanism decreases the BDBR of AdaBoost to 7.10%. 

C. Transcoding Complexity Control Scheme 

The transcoding complexity can be controlled by adjusting 
the threshold of the confidence of prediction Tc. To investigate 
the effect of the threshold on the transcoding complexity, this 
threshold is varied from 0.5 to 0.9 with a step of 0.1. The 
machine learning algorithm used in this experiment is RF, 
which offers the best transcoding performance among the 
investigated algorithms. The experimental results with 
different thresholds are depicted in Fig.  6.  

 

 
Fig.  6. The transcoding complexity using RF can be controlled by 
adjusting the threshold of the prediction confidence. 
 

When the threshold is increased, the bit rate penalty and the 
complexity reduction reduce accordingly. In particularly, when 
Tc is set to 0.5, the complexity reduction is around 70% with a bit 
rate increase of around 6% for σ = 4.0 and 5% for the other 
cases. In contrast, when Tc is 0.9, the complexity reduction drops 
to about 33% with a negligible bit rate penalty. The performance 
of RF is compared with three state-of-the-art fast CU size 
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decision algorithms including Lee’s algorithm [17], Shen’s 
algorithm [18], and Xiong’s algorithm [19], which are applied to 
encode the down-sized version of the reconstructed video. The 
average performance of each algorithm is depicted in Fig.  6. The 

proposed method outperforms these algorithms when changing 
the threshold Tc of the prediction confidence.  When Tc is 0.9, the 
proposed method results in the same bit rate increase (0.15%) 
compared to Lee’s method. However, the proposed method 
achieves 35% time saving while the time saving for Lee’s 
method is only 19%. When Tc is 0.8, the proposed method, 
Shen’s method, and Xiong’s method achieve a similar 
complexity reduction (around 45%). However, the proposed 
method results in only 0.51% BDBR while the other techniques 
have higher bit rate penalties (1.21% for Shen’s method and 
2.16% for Xiong’s method). 

VII.  CONCLUSION 

In this paper, different machine learning strategies for 
downsizing HEVC video are investigated. The pre-encoded 
HEVC video stream is decoded. The reconstructed video is then 
downsized using an arbitrary factor, which allows adapting the 

video to the network and/or device constraints. Afterwards, the 
resized video is re-encoded. The machine learning models utilize 
the correlation between coding information of the input and 
output coding units to accelerate the re-encoding process. 

Different optimized and non-optimized machine learning 
algorithms have been tested with both online and offline training 
strategies. The effect of an adaptive feature selection algorithm 
has also been investigated. 

Experimental results have shown that machine learning 
algorithms should only be used when optimized, since otherwise 
a trivial method might perform better.  

If machine learning methods are used with the proposed 
optimizations, an online training strategy is preferred over an 
offline training strategy. This makes the models more adaptive to 
the content and results in a higher coding efficiency. 
Additionally, the transcoding complexity can be controlled to 
achieve a trade-off between transcoding complexity and coding 
performance. Among the investigated machine learning 
algorithms, the random forests resulted in the best transcoding 
performance by reducing 70% complexity on average with a bit 
rate increase of 5.4%. With a negligible bit rate increase, this 
method can reduce the transcoding complexity with 35%. 

TABLE V 
RESULTS FOR AN ONLINE MACHINE LEARNING STRATEGY, USING NON-OPTIMIZED PARAMETERS 

BDBR (%) 
 

TS (%) σ 
Trivial  RF SVM Adaboost DT 

 

Trivial  RF SVM Adaboost DT 
1.33 9.20 7.37 9.27  12.44  12.69 

 

71.65  72.00  71.41  72.01  72.03 
1.50 8.26 7.14 8.87 11.60 11.79 

 

72.23  71.99  71.24  72.00  72.01 
2.00 7.17  7.13 7.98 10.87 10.96 

 

71.16  70.57  70.34  70.23  70.49 
4.00 9.12  8.03 9.27 11.88 11.40 

 

69.49  69.01  69.05  68.54  69.12 
Average 8.44  7.42 8.85 11.70 11.71 

 

71.13  70.89  70.51  70.70  70.91 

TABLE V 
RESULTS FOR AN ONLINE MACHINE LEARNING STRATEGY, USING OPTIMIZED PARAMETERS, WITHOUT FEATURE SELECTION 

BDBR (%) 
 

TS (%) σ 
RF RF200 SVM Adaboost DT  RF RF200 SVM Adaboost DT 

1.33 5.29 5.27 6.67 7.25 7.29  71.01 69.94 72.14 71.19 71.93 
1.50 5.27 5.25 6.98 7.03 6.89  71.15  71.01 72.02 71.05 71.50 
2.00 5.15 5.11 7.04 6.75 6.87  70.00  69.46 70.11 70.12 70.58 
4.00 5.95 5.91 7.94 7.60 8.49  68.25  68.03 67.54 68.27 69.02 

Average 5.41 5.38 7.16 7.15 7.38  70.10  69.61 70.44 70.16 70.76 

TABLE V 
RESULTS FOR AN OFFLINE MACHINE LEARNING STRATEGY, USING OPTIMIZED PARAMETERS, WITHOUT FEATURE SELECTION 

BDBR (%) 
 

TS (%) σ 
Trivial  RF SVM Adaboost DT 

 

Trivial  RF SVM Adaboost DT 
1.33 9.20 6.75 8.56 7.31 7.42 

 

71.65  73.71  74.47 73.93 74.25 
1.50 8.26 6.86 8.47 7.25 8.24 

 

72.23  73.61  73.65 73.94 74.08 
2.00 7.17  6.82 11.12 7.37 7.51 

 

71.16  72.23  73.00 72.38 72.27 
4.00 9.12  7.85 9.82 8.43 9.48 

 

69.49  70.44  70.95  70.82 71.05 
Average 8.44  7.07 9.49 7.68 8.16 

 

71.13  72.50  73.02 72.77 73.04 

TABLE V 
RESULTS FOR AN ONLINE MACHINE LEARNING STRATEGY, USING OPTIMIZED PARAMETERS, WITH FEATURE SELECTION 

BDBR (%) 
 

TS (%) σ 
Trivial  RF SVM Adaboost DT 

 

Trivial  RF SVM Adaboost DT 
1.33 9.20 5.33 6.89 7.21 7.36  71.65 71.06 72.11 71.28 71.91 
1.50 8.26 5.32 7.07 7.01 7.00  72.23 71.21 71.42 72.14 71.98 
2.00 7.17 5.22 6.75 6.78 6.92  71.16 70.28 69.36 70.02 70.17 
4.00 9.12 6.15 8.61 7.41 8.83  69.49 68.03 67.26 67.51 68.22 

Average 8.44 5.50 7.33 7.10 7.59  71.13 70.15 70.04 70.24 70.57 
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