10,048 research outputs found

    Implementation of Nonlinear Model Predictive Path-Following Control for an Industrial Robot

    Full text link
    Many robotic applications, such as milling, gluing, or high precision measurements, require the exact following of a pre-defined geometric path. In this paper, we investigate the real-time feasible implementation of model predictive path-following control for an industrial robot. We consider constrained output path following with and without reference speed assignment. We present results from an implementation of the proposed model predictive path-following controller on a KUKA LWR IV robot.Comment: 8 pages, 3 figures; final revised versio

    Timing-Constrained Global Routing with Buffered Steiner Trees

    Get PDF
    This dissertation deals with the combination of two key problems that arise in the physical design of computer chips: global routing and buffering. The task of buffering is the insertion of buffers and inverters into the chip's netlist to speed-up signal delays and to improve electrical properties of the chip. Insertion of buffers and inverters goes alongside with construction of Steiner trees that connect logical sources with possibly many logical sinks and have buffers and inverters as parts of these connections. Classical global routing focuses on packing Steiner trees within the limited routing space. Buffering and global routing have been solved separately in the past. In this thesis we overcome the limitations of the classical approaches by considering the buffering problem as a global, multi-objective problem. We study its theoretical aspects and propose algorithms which we implement in the tool BonnRouteBuffer for timing-constrained global routing with buffered Steiner trees. At its core, we propose a new theoretically founded framework to model timing constraints inherently within global routing. As most important sub-task we have to compute a buffered Steiner tree for a single net minimizing the sum of prices for delays, routing congestion, placement congestion, power consumption, and net length. For this sub-task we present a fully polynomial time approximation scheme to compute an almost-cheapest Steiner tree with a given routing topology and prove that an exact algorithm cannot exist unless P=NP. For topology computation we present a bicriteria approximation algorithm that bounds both the geometric length and the worst slack of the topology. To improve the practical results we present many heuristic modifications, speed-up- and post-optimization techniques for buffered Steiner trees. We conduct experiments on challenging real-world test cases provided by our cooperation partner IBM to demonstrate the quality of our tool. Our new algorithm could produce better solutions with respect to both timing and routability. After post-processing with gate sizing and Vt-assignment, we can even reduce the power consumption on most instances. Overall, our results show that our tool BonnRouteBuffer for timing-constrained global routing is superior to industrial state-of-the-art tools

    Timing-Constrained Global Routing with RC-Aware Steiner Trees and Routing Based Optimization

    Get PDF
    In this thesis we consider the global routing problem, which arises as one of the major subproblems in the physical design step in VLSI design. In global routing, we are given a three-dimensional grid graph G with edge capacities representing available routing space, and we have to connect a set of nets in G without overusing any edge capacities. Here, each net consists of a set of pins corresponding to vertices of G, where one pin is the sender of signals, while all other pins are receivers. Traditionally, next to obeying all edge capacity constraints, the objective has been to minimize wire length and possibly via (edges in z-direction) count, and timing constraints on the chip were only modeled indirectly. We present a new approach, where timing constraints are modeled directly during global routing: In joint work with Stephan Held, Dirk Mueller, Daniel Rotter, Vera Traub and Jens Vygen, we extend the modeling of global routing as a Min-Max Resource Sharing Problem to also incorporate timing constraints. For measuring signal delays we use the well-established Elmore delay model. One of the key subproblems here is the computation of Steiner trees minimizing a weighted sum of routing space usages and signal delays. For k pins, this problem is NP-hard to approximate within o(log k), and even the special case k = 2 is NP-hard, as was shown by Haehnle and Rotter. We present a fast approximation algorithm with strong approximation bounds for the case k = 2. For k > 2 we use a multi-stage approach based on modifying the topology of a short Steiner tree and using our algorithm for the two-pin case for computing new connections. Moreover, we present a layer assignment algorithm that assigns z-coordinates to the edges of a given two-dimensional tree. We also discuss the topic of routing based optimization. Here, the starting point is a complete routing, and timing optimization tools make changes that require incremental adaptations of the underlying routing. We investigate several aspects of this problem and derive a new routing flow that includes our timing-aware global router and routing based optimization steps. We evaluate our results from this thesis in practice on industrial 14nm microprocessor designs from IBM. Our theoretical results are validated in practice by a strong performance of our timing-aware global routing framework and our new routing flow, yielding significant improvements over the traditional global routing method and the previously used routing flow. Therefore, we conclude that our approaches and results from this thesis are not only theoretically sound but also give compelling results in practice

    Algorithms for Circuit Sizing in VLSI Design

    Get PDF
    One of the key problems in the physical design of computer chips, also known as integrated circuits, consists of choosing a  physical layout  for the logic gates and memory circuits (registers) on the chip. The layouts have a high influence on the power consumption and area of the chip and the delay of signal paths.  A discrete set of predefined layouts  for each logic function and register type with different physical properties is given by a library. One of the most influential characteristics of a circuit defined by the layout is its size. In this thesis we present new algorithms for the problem of choosing sizes for the circuits and its continuous relaxation,  and  evaluate these in theory and practice. A popular approach is based on Lagrangian relaxation and projected subgradient methods. We show that seemingly heuristic modifications that have been proposed for this approach can be theoretically justified by applying the well-known multiplicative weights algorithm. Subsequently, we propose a new model for the sizing problem as a min-max resource sharing problem. In our context, power consumption and signal delays are represented by resources that are distributed to customers. Under certain assumptions we obtain a polynomial time approximation for the continuous relaxation of the sizing problem that improves over the Lagrangian relaxation based approach. The new resource sharing algorithm has been implemented as part of the BonnTools software package which is developed at the Research Institute for Discrete Mathematics at the University of Bonn in cooperation with IBM. Our experiments on the ISPD 2013 benchmarks and state-of-the-art microprocessor designs provided by IBM illustrate that the new algorithm exhibits more stable convergence behavior compared to a Lagrangian relaxation based algorithm. Additionally, better timing and reduced power consumption was achieved on almost all instances. A subproblem of the new algorithm consists of finding sizes minimizing a weighted sum of power consumption and signal delays. We describe a method that approximates the continuous relaxation of this problem in polynomial time under certain assumptions. For the discrete problem we provide a fully polynomial approximation scheme under certain assumptions on the topology of the chip. Finally, we present a new algorithm for timing-driven optimization of registers. Their sizes and locations on a chip are usually determined during the clock network design phase, and remain mostly unchanged afterwards although the timing criticalities on which they were based can change. Our algorithm permutes register positions and sizes within so-called  clusters  without impairing the clock network such that it can be applied late in a design flow. Under mild assumptions, our algorithm finds an optimal solution which maximizes the worst cluster slack. It is implemented as part of the BonnTools and improves timing of registers on state-of-the-art microprocessor designs by up to 7.8% of design cycle time. </div

    Security and Privacy in Dynamic Spectrum Access: Challenges and Solutions

    Get PDF
    abstract: Dynamic spectrum access (DSA) has great potential to address worldwide spectrum shortage by enhancing spectrum efficiency. It allows unlicensed secondary users to access the under-utilized spectrum when the primary users are not transmitting. On the other hand, the open wireless medium subjects DSA systems to various security and privacy issues, which might hinder the practical deployment. This dissertation consists of two parts to discuss the potential challenges and solutions. The first part consists of three chapters, with a focus on secondary-user authentication. Chapter One gives an overview of the challenges and existing solutions in spectrum-misuse detection. Chapter Two presents SpecGuard, the first crowdsourced spectrum-misuse detection framework for DSA systems. In SpecGuard, three novel schemes are proposed for embedding and detecting a spectrum permit at the physical layer. Chapter Three proposes SafeDSA, a novel PHY-based scheme utilizing temporal features for authenticating secondary users. In SafeDSA, the secondary user embeds his spectrum authorization into the cyclic prefix of each physical-layer symbol, which can be detected and authenticated by a verifier. The second part also consists of three chapters, with a focus on crowdsourced spectrum sensing (CSS) with privacy consideration. CSS allows a spectrum sensing provider (SSP) to outsource the spectrum sensing to distributed mobile users. Without strong incentives and location-privacy protection in place, however, mobile users are reluctant to act as crowdsourcing workers for spectrum-sensing tasks. Chapter Four gives an overview of the challenges and existing solutions. Chapter Five presents PriCSS, where the SSP selects participants based on the exponential mechanism such that the participants' sensing cost, associated with their locations, are privacy-preserved. Chapter Six further proposes DPSense, a framework that allows the honest-but-curious SSP to select mobile users for executing spatiotemporal spectrum-sensing tasks without violating the location privacy of mobile users. By collecting perturbed location traces with differential privacy guarantee from participants, the SSP assigns spectrum-sensing tasks to participants with the consideration of both spatial and temporal factors. Through theoretical analysis and simulations, the efficacy and effectiveness of the proposed schemes are validated.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201
    • …
    corecore