390 research outputs found

    A communication-less parallel algorithm for tridiagonal Toeplitz systems

    Get PDF
    AbstractDiagonally dominant tridiagonal Toeplitz systems of linear equations arise in many application areas and have been well studied in the past. Modern interest in numerical linear algebra is often focusing on solving classic problems in parallel. In McNally [Fast parallel algorithms for tri-diagonal symmetric Toeplitz systems, MCS Thesis, University of New Brunswick, Saint John, 1999], an m processor Split & Correct algorithm was presented for approximating the solution to a symmetric tridiagonal Toeplitz linear system of equations. Nemani [Perturbation methods for circulant-banded systems and their parallel implementation, Ph.D. Thesis, University of New Brunswick, Saint John, 2001] and McNally (2003) adapted the works of Rojo [A new method for solving symmetric circulant tri-diagonal system of linear equations, Comput. Math. Appl. 20 (1990) 61–67], Yan and Chung [A fast algorithm for solving special tri-diagonal systems, Computing 52 (1994) 203–211] and McNally et al. [A split-correct parallel algorithm for solving tri-diagonal symmetric Toeplitz systems, Internat. J. Comput. Math. 75 (2000) 303–313] to the non-symmetric case. In this paper we present relevant background from these methods and then introduce an m processor scalable communication-less approximation algorithm for solving a diagonally dominant tridiagonal Toeplitz system of linear equations

    Block Circulant and Toeplitz Structures in the Linearized Hartree–Fock Equation on Finite Lattices: Tensor Approach

    Get PDF
    This paper introduces and analyses the new grid-based tensor approach to approximate solution of the elliptic eigenvalue problem for the 3D lattice-structured systems. We consider the linearized Hartree-Fock equation over a spatial L1×L2×L3L_1\times L_2\times L_3 lattice for both periodic and non-periodic problem setting, discretized in the localized Gaussian-type orbitals basis. In the periodic case, the Galerkin system matrix obeys a three-level block-circulant structure that allows the FFT-based diagonalization, while for the finite extended systems in a box (Dirichlet boundary conditions) we arrive at the perturbed block-Toeplitz representation providing fast matrix-vector multiplication and low storage size. The proposed grid-based tensor techniques manifest the twofold benefits: (a) the entries of the Fock matrix are computed by 1D operations using low-rank tensors represented on a 3D grid, (b) in the periodic case the low-rank tensor structure in the diagonal blocks of the Fock matrix in the Fourier space reduces the conventional 3D FFT to the product of 1D FFTs. Lattice type systems in a box with Dirichlet boundary conditions are treated numerically by our previous tensor solver for single molecules, which makes possible calculations on rather large L1×L2×L3L_1\times L_2\times L_3 lattices due to reduced numerical cost for 3D problems. The numerical simulations for both box-type and periodic L×1×1L\times 1\times 1 lattice chain in a 3D rectangular "tube" with LL up to several hundred confirm the theoretical complexity bounds for the block-structured eigenvalue solvers in the limit of large LL.Comment: 30 pages, 12 figures. arXiv admin note: substantial text overlap with arXiv:1408.383

    Rates of convergence for the approximation of dual shift-invariant systems in l2(Z)l_2(Z)

    Full text link
    A shift-invariant system is a collection of functions {gm,n}\{g_{m,n}\} of the form gm,n(k)=gm(k−an)g_{m,n}(k) = g_m(k-an). Such systems play an important role in time-frequency analysis and digital signal processing. A principal problem is to find a dual system γm,n(k)=γm(k−an)\gamma_{m,n}(k) = \gamma_m(k-an) such that each function ff can be written as f=∑gm,nf = \sum g_{m,n}. The mathematical theory usually addresses this problem in infinite dimensions (typically in L2(R)L_2(R) or l2(Z)l_2(Z)), whereas numerical methods have to operate with a finite-dimensional model. Exploiting the link between the frame operator and Laurent operators with matrix-valued symbol, we apply the finite section method to show that the dual functions obtained by solving a finite-dimensional problem converge to the dual functions of the original infinite-dimensional problem in l2(Z)l_2(Z). For compactly supported gm,ng_{m,n} (FIR filter banks) we prove an exponential rate of convergence and derive explicit expressions for the involved constants. Further we investigate under which conditions one can replace the discrete model of the finite section method by the periodic discrete model, which is used in many numerical procedures. Again we provide explicit estimates for the speed of convergence. Some remarks on tight frames complete the paper

    The asymptotic spectra of banded Toeplitz and quasi-Toeplitz matrices

    Get PDF
    Toeplitz matrices occur in many mathematical, as well as, scientific and engineering investigations. This paper considers the spectra of banded Toeplitz and quasi-Toeplitz matrices with emphasis on non-normal matrices of arbitrarily large order and relatively small bandwidth. These are the type of matrices that appear in the investigation of stability and convergence of difference approximations to partial differential equations. Quasi-Toeplitz matrices are the result of non-Dirichlet boundary conditions for the difference approximations. The eigenvalue problem for a banded Toeplitz or quasi-Toeplitz matrix of large order is, in general, analytically intractable and (for non-normal matrices) numerically unreliable. An asymptotic (matrix order approaches infinity) approach partitions the eigenvalue analysis of a quasi-Toeplitz matrix into two parts, namely the analysis for the boundary condition independent spectrum and the analysis for the boundary condition dependent spectrum. The boundary condition independent spectrum is the same as the pure Toeplitz matrix spectrum. Algorithms for computing both parts of the spectrum are presented. Examples are used to demonstrate the utility of the algorithms, to present some interesting spectra, and to point out some of the numerical difficulties encountered when conventional matrix eigenvalue routines are employed for non-normal matrices of large order. The analysis for the Toeplitz spectrum also leads to a diagonal similarity transformation that improves conventional numerical eigenvalue computations. Finally, the algorithm for the asymptotic spectrum is extended to the Toeplitz generalized eigenvalue problem which occurs, for example, in the stability of Pade type difference approximations to differential equations
    • …
    corecore