
Journal of Computational and Applied Mathematics 212 (2008) 260–271
www.elsevier.com/locate/cam

A communication-less parallel algorithm for tridiagonal
Toeplitz systems

Jeffrey M. McNallya,∗, L.E. Gareyb, R.E. Shawb

aDepartment of Mathematics, Statistics and Computer Science, Saint Francis Xavier University, Antigonish, Nova Scotia, Canada B2G 2W5
bDepartment of Computer Science and Applied Statistics, University of New Brunswick, Saint John, New Brunswick, Canada E2L 4L5

Received 26 October 2006

Abstract

Diagonally dominant tridiagonal Toeplitz systems of linear equations arise in many application areas and have been well studied
in the past. Modern interest in numerical linear algebra is often focusing on solving classic problems in parallel. In McNally [Fast
parallel algorithms for tri-diagonal symmetric Toeplitz systems, MCS Thesis, University of New Brunswick, Saint John, 1999], an m
processor Split & Correct algorithm was presented for approximating the solution to a symmetric tridiagonal Toeplitz linear system of
equations. Nemani [Perturbation methods for circulant-banded systems and their parallel implementation, Ph.D. Thesis, University
of New Brunswick, Saint John, 2001] and McNally (2003) adapted the works of Rojo [A new method for solving symmetric circulant
tri-diagonal system of linear equations, Comput. Math. Appl. 20 (1990) 61–67],Yan and Chung [A fast algorithm for solving special
tri-diagonal systems, Computing 52 (1994) 203–211] and McNally et al. [A split-correct parallel algorithm for solving tri-diagonal
symmetric Toeplitz systems, Internat. J. Comput. Math. 75 (2000) 303–313] to the non-symmetric case. In this paper we present
relevant background from these methods and then introduce an m processor scalable communication-less approximation algorithm
for solving a diagonally dominant tridiagonal Toeplitz system of linear equations.
© 2007 Elsevier B.V. All rights reserved.

MSC: 65F05; 65Y05; 68M14

Keywords: Parallel computing; Communication-less algorithms; Toeplitz; Tridiagonal; Distributed; Linear systems; Fast algorithms; Perturbation
analysis

1. Introduction

Consider the tridiagonal Toeplitz system of linear equations Ax = b given by⎡
⎢⎢⎢⎢⎣

d 1
� d 1

. . .

� d 1
� d

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

x1
x2
...

xn−1
xn

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

b1
b2
...

bn−1
bn

⎤
⎥⎥⎥⎥⎦ , (1)

∗ Corresponding author. Tel.: +1 902 867 3341; fax: +1 902 867 3302.
E-mail address: jmcnally@stfx.ca (J.M. McNally).
URL: http://www.people.stfx.ca/JMCNALLY/ (J.M. McNally).

0377-0427/$ - see front matter © 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.cam.2006.12.001

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82291883?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/cam
mailto:jmcnally@stfx.ca
http://www.people.stfx.ca/JMCNALLY/

J.M. McNally et al. / Journal of Computational and Applied Mathematics 212 (2008) 260–271 261

where strict diagonal dominance is given by the condition |d| > 1 + |�|. It has been well established in McNally [4],
McNally et al. [6] and Nemani [7] that this is a well motivated and frequently occurring problem which arises in such
application areas as second order differential equations, signal/image processing and numerical solutions to integral
equations [3,9].

In Rojo [8] an algorithm was presented for exactly solving system (1) when � = 1 based upon the perturbation
A = LU + P and in Yan and Chung [10] a fast algorithm was presented for approximating the solution to within a
given tolerance. McNally [4] and McNally et al. [6] presented fast parallel algorithms for approximating the solution
to system (1) in parallel when � = 1 through the use of a Split & Correct algorithm. This algorithm performs well on
both shared and distributed memory systems as it incorporates only minimal inter-processor communication. Nemani
[7] and McNally [5] both adapted these methods for solving the general non-symmetric problem of system (1).

Here we present relevant background from these methods and introduce a fast m processor parallel scalable
communication-less approximation algorithm for solving a diagonally dominant tridiagonal Toeplitz system of lin-
ear equations. This algorithm, based upon two perturbations A=LU +P and A=UL+P ′, eliminates the correction
step required by all previous algorithms, and in doing so, also eliminates the need for any inter-processor commu-
nication. An error analysis will be presented which results in a tighter error bounds that previously given for this
problem [5].

2. Background

Rojo [8], Yan and Chung [10], and McNally et al. [6] previously dealt with solving symmetric diagonally dominant
Toeplitz system of linear equations. In Garey and Shaw [1,2], Nemani [7] and McNally [5] the non-symmetric case
was addressed and solved in similar fashion.

The initial step used in the aforementioned works was to determine a matrix splitting which allowed for a fast solution
due to a Toeplitz LU factorization of the perturbed matrix. Here we consider the splitting A = LU + P given by

⎡
⎢⎢⎢⎢⎣

1
r1 1

. . .

r1 1
r1 1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

r2 1
r2 1

. . .

r2 1
r2

⎤
⎥⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎣

d − r2
⎤
⎥⎥⎥⎦ ,

where

r2 = d + √
d2 − 4�

2
or r2 = d − √

d2 − 4�

2
.

In Nemani [7], it was shown that, for the given system, r2 can always be chosen such that r2 is real with |r2| > 1. Also
shown is r1 = d − r2, r1 is real and |r1| < 1.

The system LUz = b is readily solved in 4n + O(1) operations using forward/backward substitution. The method
used by Rojo [8] is to determine a vector of length n which exactly corrects z using the Sherman–Morrison formula
for a total of 8n + 2 log n + O(1) operations. Yan and Chung [10] determined a vector p of length t such that z could
be corrected to within given tolerance resulting in an approximate solution x̂ to the system Ax = b. Provided t < n

(in general we see that t>n) the method requires only 4n + 2t + O(1) operations.
In McNally [4] and McNally et al. [6] algorithms were presented which use a matrix splitting to create a set of m

sub-systems which could then be solved in parallel. A set of correction vectors pi and qi , i = 1(1)m, each of length
t were then used to correct these solutions to within acceptable tolerance levels. Once again, the value of t was easily
determined and provided that 2mt < n these methods could be applied. On two processors this took only 2n+3t +O(1)

operations, and on m processors it required 4 n
m

+ 4t + O(1) operations.
These methods, referred to as Split & Correct methods, consist of a matrix splitting and a correction step. In requiring

a correction step, the parallel methods also required a small communication step where each processor was required to
send and receive a value to and from each of its adjacent processors.

262 J.M. McNally et al. / Journal of Computational and Applied Mathematics 212 (2008) 260–271

3. The Stacked method—2 processors

Given system (1), the Split & Correct algorithm introduced in McNally [4] divided the system into two independent
systems which could be solved in parallel using the following steps:

(1) Solve LUx′ = b′ on each processor.
(2) Communicate a single value to each adjacent processors.
(3) Perform a correction on x′ resulting in an approximate solution x̃.

Here we show that by over-extending the two sub-systems, we not only eliminating the requirements for the correction
steps, but also the requirements for communication between processors. Consider solving in parallel the following two
systems of equations, each of size (n

2 + t) × (n
2 + t)

⎡
⎢⎢⎢⎢⎣

d 1
� d 1

. . .
. . .

. . .

� d 1
� r2

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

x′
1

x′
2
...

x′
n
2 +t−1

x′
n
2 +t

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

b1
b2
...

bn
2 +t−1

bn
2 +t

⎤
⎥⎥⎥⎥⎥⎦ (2)

and

⎡
⎢⎢⎢⎢⎣

r2 1
� d 1

. . .
. . .

. . .

� d 1
� d

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

x′′
n
2 +1−t

x′′
n
2 +2−t

...

x′′
n−1
x′′
n

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

bn
2 +1−t

b n
2 +2−t

...

bn−1
bn

⎤
⎥⎥⎥⎥⎥⎥⎦

. (3)

These systems, (A′x′ = b′ and A′′x′′ = b′′, respectively) can be solved using fast Toeplitz LU decomposition with for-
ward/backwards substitution, and a fast Toeplitz UL decomposition with backward/forwards substitution, respectively.

Examining system (2) in Yan and Chung [10] tells us that only the last t equations of x′ differ from the true solution
x by more than the given tolerance �. Therefore, assuming 2t < n the first n

2 equations do not require correcting and
are acceptable as approximate solutions to the true solution without being corrected. For system (3) we see that only
the first t equations of x′′ are not within the given acceptable tolerance levels (easily shown from a UL implementation
of the algorithm in Yan and Chung [10]) implying that the last n

2 solutions are within the given tolerance and do not
require correction. Combining these results, we present the following theorem:

Theorem 1. The solution x̃ defined as

x̃ = [x′
1, x

′
2, . . . , x

′
n
2
, x′′

n
2 +1

, x′′
n
2 +2

, . . . , x′′
n−1, x

′′
n]

is a valid approximate solution to the original problem Ax = b provided t < n
2 where

t �

ln � − ln

⎛
⎜⎜⎝ 1 + |r2|

|r2 − r1|

(|r1|
|r2| + 1

)
|d| − |�| − 1

⎞
⎟⎟⎠

ln g

and g = max{|r1|, | 1
r2

|}. The total operation count for this algorithm is 2n + 2t + O(1) with no correction step or
communication between processors.

J.M. McNally et al. / Journal of Computational and Applied Mathematics 212 (2008) 260–271 263

Proof. The first n
2 + t equations of the original system Ax = b can be written as

⎡
⎢⎢⎢⎢⎣

d 1
� d 1

. . .
. . .

. . .

� d 1
� r2

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

x1
x2
...

xn
2 +t−1
xn

2 +t

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

b1
b2
...

bn
2 +t−1

bn
2 +t

− r1xn
2 +t

− xn
2 +t+1

⎤
⎥⎥⎥⎥⎥⎦

and recall that system (2) is

⎡
⎢⎢⎢⎢⎣

d 1
� d 1

. . .
. . .

. . .

� d 1
� r2

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

x′
1

x′
2
...

x′
n
2 +t−1

x′
n
2 +t

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

b1
b2
...

bn
2 +t−1

bn
2 +t

⎤
⎥⎥⎥⎥⎥⎦ .

Subtracting these two equations and letting h′
j = xj − x′

j results in the 3-term recurrence relation

�h′
j−1 + dh′

j + h′
j+1 = 0, j = 2 . . .

(n

2
+ t − 1

)
with the boundary conditions

dh′
1 + h′

2 = 0

and

�h′
n
2 +t−1

+ r2h
′
n
2 +t

= −r1xn
2 +t

− xn
2 +t+1.

The solution to this difference equation is well known to us from both Rojo [8] and Yan and Chung [10] as

h′
j = c1(−r1)

j + c2(−r2)
j .

Substituting this solution into the two boundary conditions gives us

c2 = −c1 = (−r2)
−n

2 −t
−r1xn

2 +t
− xn

2 +t+1

r2 − r1

which results in

xj − x′
j =

r1xn
2 +t

+ xn
2 +t+1

r2 − r1
(−r1)

j (−r2)
−n

2 −t −
r1xn

2 +t
+ xn

2 +t+1

r2 − r1
(−r2)

j−n
2 −t .

Taking the sup-norm of the above equations results in

|xj − x′
j |�

∣∣∣∣ 1

r2

∣∣∣∣
t 1 + |r1|
|r2 − r1|

∣∣∣(−r1)
j (−r2)

−n
2 − (−r2)

j−n
2
∣∣∣ ‖x‖.

We are only interested in this equation for j = 1 . . . n
2 . Observing∣∣∣∣∣ (−r1)

j

(−r2)
n
2

− (−r2)
j

(−r2)
−n

2

∣∣∣∣∣ � |r1|j
|r2|

n
2

+ |r2|j
|r2|

n
2

<
|r1|
|r2| + 1

results in

|xj − x′
j | <

∣∣∣∣ 1

r2

∣∣∣∣
t 1 + |r1|
|r2 − r1|

(|r1|
|r2| + 1

)
‖x‖.

264 J.M. McNally et al. / Journal of Computational and Applied Mathematics 212 (2008) 260–271

From Yan and Chung [10] it is shown that

‖x‖ <
1

|d| − |�| − 1
‖b‖

resulting in

|xj − x′
j | <

∣∣∣∣ 1

r2

∣∣∣∣
t 1 + |r1|
|r2 − r1|

(|r1||r2| + 1
)

|d| − |�| − 1
‖b‖.

Consider now system (3). The final n
2 + t equations of the original system Ax = b can be written as

⎡
⎢⎢⎢⎢⎣

r2 1
� d 1

. . .
. . .

� d 1
� d

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

xn
2 −t+1

xn
2 −t+2

...

xn−1
xn

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

bn
2 −t+1 − �xn

2 −t
− r1xn

2 −t+1

bn
2 −t+2

...

bn−1
bn

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Subtracting from this system (3) and letting h′′
j = xj − x′′

j results in the difference equation

�h′′
j−1 + dh′′

j + h′′
j+1 = 0, j =

(n

2
− t + 2

)
· · · (n − 1)

with the boundary condition

r2h
′′
n
2 −t+1

+ h′′
n
2 −t+2

= −�xn
2 −t

− r1xn
2 −t+1

and

�h′′
n−1 + dh′′

n = 0.

Again the solution to this difference equation is well known to us as

h′′
j = c1(−r1)

j + c2(−r2)
j

which we choose to write as

h′′
j = w1(−r1)

j−n
2 + w2(−r2)

j−n
2 .

Substituting this into our two boundary conditions results in

w1 = r2xn
2 −t + xn

2 −t+1

(r2 − r1)
(−r1)

t

and

w2 = − (−r1)
n
2 +1

(−r2)
n
2 +1

r2xn
2 −t + xn

2 −t+1

(r2 − r1)
(−r1)

t .

This gives the difference between this approximate solution x′′ and the true solution x for the given indices as

xj − x′′
j = r2xn

2 −t + xn
2 −t+1

(r2 − r1)
(−(−r1)

j− n
2 +t + (−r1)

n
2 +1+t (−r2)

j−n−1).

J.M. McNally et al. / Journal of Computational and Applied Mathematics 212 (2008) 260–271 265

Taking the sup-norm of both sides and considering only the cases j = n
2 . . . n results in

|xj − x′′
j | < |r1|t 1 + |r2|

|r2 − r1|

(|r1||r2| + 1
)

|d| − |�| − 1
‖b‖.

Defining x̃ as before, letting g = max{|r1|,
∣∣∣ 1
r2

∣∣∣}, and recalling that |r2| > |r1| results in

‖x − x̃‖ < gt 1 + |r2|
|r2 − r1|

(|r1|
|r2| + 1

)
|d| − |�| − 1

‖b‖.

Setting this less than the desired level of tolerance �‖b‖ gives an equation for t as

t �
ln � − ln

(
1 + |r2|
|r2 − r1|

(|r1|
|r2| + 1

)
1

|d| − |�| − 1

)
ln g

,

where t < n
2 is also necessary. �

The following table demonstrates some t values for given values of |d| − |�| − 1 and � for the cases of � = 10, 1 and
0.05, respectively.

|d| − |�| − 1/� 10−4 10−8 10−16

0.001 147737 230635 396433
0.01 12709 21804 27594
0.1 1070 1905 3574
0.5 190 361 704
2 45 92 185
4 23 49 100
6 16 34 72

0.001 641 932 1515
0.01 168 260 445
0.1 43 72 130
0.5 16 29 56
2 7 14 28
4 5 10 21
6 4 9 18

0.001 16075 24830 42340
0.01 1396 2276 4036
0.1 123 216 401
0.5 26 48 92
2 8 17 33
4 5 11 23
6 4 9 19

We observe that as the system loses symmetry, the calculated values of t increase. T values of t, however, are not
significant enough to cause overall operational concern when N is of sufficient size such as in problems with very small
step sizes demanding precise accuracy. We also note the effect that diagonal dominance has on t.

266 J.M. McNally et al. / Journal of Computational and Applied Mathematics 212 (2008) 260–271

4. The Stacked method—m processors

To expand the 2 processor Stacked method to m processors we propose a new set of systems to solve. Consider the
following m systems of equations (the first and last are each of size (n

m
+ t) × (n

m
+ t) and the middle m − 2 of which

are of size (n
m

+ 2t) × (n
m

+ 2t))

⎡
⎢⎢⎢⎢⎣

d 1
� d 1

. . .
. . .

. . .

� d 1
� r2

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

x′
1

x′
2
...

x′
n
m

+t−1

x′
n
m

+t

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

b1
b2
...

b n
m

+t−1

b n
m

+t

⎤
⎥⎥⎥⎥⎥⎦ , (4)

⎡
⎢⎢⎢⎢⎣

r2 1
� d 1

. . .
. . .

. . .

� d 1
� d

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x′′i
in
m

+1−t

x′′i
in
m

+2−t

...

x′′i
(i+1)n

m
+t−1

x′′i
(i+1)n

m
+t

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

b in
m

+1−t

b in
m

+2−t

...

b (i+1)n
m

+t−1

b (i+1)n
m

+t

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5)

and

⎡
⎢⎢⎢⎢⎣

r2 1
� d 1

. . .
. . .

. . .

� d 1
� d

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

x′′′
n
m

+1−t

x′′′
n
m

+2−t

...

x′′′
n−1
x′′′
n

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

b n
m

+1−t

b n
m

+2−t

...

bn−1
bn

⎤
⎥⎥⎥⎥⎥⎥⎦

. (6)

Each of these systems (4), (5) [for i=1, . . . , m−2], and (6) can be solved using fast Toeplitz LU (or UL) decomposition
as described earlier.

In system (4) Yan and Chung [10] tells us that only the last t value of x′ differ from the true solution x by more than
the given tolerance �. This gives us that the first n

m
equations are acceptable as approximate solutions to within given

tolerance. In system (6), we observe that only the first t values of x′′′ are not within the given acceptable tolerance levels
implying that the last n

m
solutions are acceptable as approximate solutions to within given tolerance.

For each of the middle systems (5) [i =1, . . . , m−2] we will show that only the first t and last t values of x′′i are not
within the given acceptable tolerance levels and as such that the middle n

m
solutions are. From these results we state

the following:

Theorem 2. The solution x̃ defined as

x̃ =
[
x′

1, . . . , x
′
n
m

, x′′1
n
m

+1, . . . , x
′′1

2n
m

, x′′2
2n
m

+1
, . . . , x′′m−2

(m−1)n
m

, x′′′
(m−1)n

m
+1

, . . . , x′′′
n

]

is a valid approximate solution to the original problem Ax = b provided 2mt < n where

t >

ln � − ln

(
1 + |r2|
|r2 − r1|

(
1 + |r1|

|r2| + |r1|
)

1

(|d| − |�| − 1)

)
ln g

and g = max{|r1|, | 1
r2

|} and the total operation count for this algorithm is 4 n
m

+ 6t + O(1) with no correction step or
communication between processors.

J.M. McNally et al. / Journal of Computational and Applied Mathematics 212 (2008) 260–271 267

Proof. From Section 3 of this paper, we see that the first and last systems both have errors which can be stated as

|xj − x̃j | < gt 1 + |r2|
|r2 − r1|

(|r1|
|r2| + 1

)
|d| − |�| − 1

‖b‖

for j = 1, . . . , n
m

and j = (m−1)n
m+1 , . . . , n where g = max{|r1|, | 1

r2
|}. The middle m − 2 systems all have the same form

given by

⎡
⎢⎢⎢⎢⎣

r2 1
� d 1

. . .
. . .

. . .

� d 1
� d

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x′′i
in
m

+1−t

x′′i
in
m

+2−t

...

x′′i
(i+1)n

m
+t−1

x′′i
(i+1)n

m
+t

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

b in
m

+1−t

b in
m

+2−t

...

b (i+1)n
m

+t−1

b (i+1)n
m

+t

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Subtracting this system from the corresponding equations in the original system and setting hj = xj − x′′i
j results in

the difference equation

�hj−1 + dhj + hj+1 = 0

with two boundary conditions

r2h in
m

+1−t
+ h in

m
+2−t

= −�x in
m

−t
− r1x in

m
+1−t

and

�h(i+1)n
m

+t−1
+ dh(i+1)n

m
+t

= −x (i+1)n
m

+t+1
.

The solution to this difference equation is well known, and can be written as

hj = w1(−r1)
j− in

m + w2(−r2)
j− in

m .

Substituting this into the two boundary conditions gives

w1 = (−r1)
t

r2x in
m

−t
+ x in

m
+1−t

r2 − r1

and

w2 =
x (i+1)n

m
+t+1

− (−r1)
n
m

+t+1
w1

(−r2)
n
m

+t+1

=
(r2 − r1)x (i+1)n

m
+t+1

− (−r1)
n
m

+2t+1(r2x in
m

−t
+ x in

m
+1−t

)

(r2 − r1)(−r2)
n
m

+1+t

resulting in

xj − x′′i
j = (−r1)

t

r2x in
m

−t
+ x in

m
+1−t

r2 − r1
(−r1)

j− in
m

+
(r2 − r1)x (i+1)n

m
+t+1

− (−r1)
n
m

+2t+1(r2x in
m

−t
+ x in

m
+1−t

)

(r2 − r1)(−r2)
(i+1)n

m
+1+t−j

.

268 J.M. McNally et al. / Journal of Computational and Applied Mathematics 212 (2008) 260–271

Letting g = max{|r1|, | 1
r2

|} and taking the absolute value of each side results in

|xj − x′′i
j |�gt 1 + |r2|

|r2 − r1|

⎛
⎝|r1|j− in

m + (1 + |r1|
n
m

+2t+1
)

|r2|
j−(i+1)n

m
−1

⎞
⎠ ‖x‖

which is bounded for each i (for the values j of interest) by

|xj − x′′i
j |�gt 1 + |r2|

|r2 − r1|
(

1 + |r1|
|r2| + |r1|

)
‖x‖.

Again recalling the bounds of ‖x‖ from Yan and Chung [10] results in

|xj − x′′
j |�gt 1 + |r2|

|r2 − r1|

(
1 + |r1||r2| + |r1|

)
|d| − |�| − 1

‖b‖, j = in

m
+ 1, . . . ,

(i + 1)n

m
.

which is necessarily larger than the error bounds for system (4) and (6) giving us the overall result

‖x − x̃‖�gt 1 + |r2|
|r2 − r1|

(
1 + |r1||r2| + |r1|

)
|d| − |�| − 1

‖b‖.

Setting this error to be less than a given tolerance �‖b‖ results in a t value of

t >

ln � − ln

(
1 + |r2|
|r2 − r1|

(
1 + |r1|

|r2| + |r1|
)

1

|d| − |�| − 1

)
ln g

,

where of course we also require that 2mt < n. The following table demonstrates some t values for given values of
|d| − |�| − 1 and � when � = 10, 1, 0.05.

|d| − |�| − 1/� 10−4 10−8 10−16

0.001 153356 236455 402252
0.01 13291 21586 38176
0.1 1128 1963 3632
0.5 201 373 715
2 48 94 188
4 24 50 102
6 17 35 73

0.001 654 945 1528
0.01 172 264 449
0.1 44 73 132
0.5 17 30 56
2 7 14 28
4 5 10 21
6 4 9 18

0.001 16119 24874 42384
0.01 1400 2280 4040
0.1 124 216 401
0.5 26 48 92
2 8 17 33
4 5 11 23
6 4 9 19

Here, we note that the same observations as made in Section 3 about t can be made here. �

J.M. McNally et al. / Journal of Computational and Applied Mathematics 212 (2008) 260–271 269

5. Implementation

The above algorithms have been coded and executed on a variety of systems such as a 16 processor IBMSP2, an
8 processor BEOWOLF cluster, and a Sun Solaris cluster grid of 34 Sun servers. The results to be shown below are
for the Sun cluster grid, however, the algorithms described in this paper are machine independent and can be easily
executed on any parallel machine, regardless of memory structure or communication architecture.

The two parallel algorithms utilized here are the Split & Correct method [4 n
p

+ 4t + O(1) + communication] and
the stacked method [4 n

p
+ 6t + O(1)]. The following table (for various p values) shows the average run times for each

of the algorithm\processor combinations. The results were obtained for the case of d = 14, � = −10 and a tolerance
level of 10−8. The executions presented herein used a system size of N = 4, 324, 320. Sequentially, we compare our
algorithm to the method of Yan and Chung [10] [4n + 2t + O(1)] which is currently the fastest known sequential
algorithm for approximating the solution to our given system. Table 1 presents the execution times for the algorithms
considered here.

5.1. Speed-up and efficiency

Often, when validating parallel results we consider the metrics of speed-up (Sp) and efficiency (Ep) given by the
standard formulas

Sp = T (N, 1)

T (N, p)
and Ep = Sp

p
,

where T (N, p) is the time to solve a problem of N equations on p processors. For the Split & Correct algorithm the
theoretical speed-up equates to

Sp = 4n + 2t + O(1)

4 n
p

+ 4t + O(1) + communication

and assuming N?t we can approximate this by

Sp ≈ 4n

4 n
p

+ communication
.

Table 1
Execution times: Stacked Algorithm and Split & Correct

P N = 4, 324, 320

Stacking Split & Correct Increase

1* 1.60406

2 0.699201 0.709434 0.010233
3 0.544647 0.567661 0.023014
4 0.407737 0.410452 0.002715
5 0.326613 0.331708 0.05095
6 0.269354 0.270606 0.01252
7 0.231125 0.250168 0.01903
8 0.202472 0.213142 0.01067

12 0.135721 0.175783 0.01088
16 0.106286 0.117166 0.040062
20 0.081853 0.103298 0.01088
24 0.067882 0.093136 0.021445
28 0.058006 0.090508 0.025254
32 0.050695 0.080505 0.032502

270 J.M. McNally et al. / Journal of Computational and Applied Mathematics 212 (2008) 260–271

Table 2
Speedups: Stacked Algorithm and Split & Correct

P N = 4, 324, 320

Stacking Split & Correct

1* 1.60406

2 2.294132875 2.261041901
3 2.945136942 2.825735782
4 3.934055531 3.908033095
5 4.911194594 4.835759162
6 5.955211358 5.927658662
7 6.94022715 6.411931182
8 7.922379391 7.525780935

12 11.81880475 9.125228264
16 15.0919218 13.69049042
20 19.59683823 15.52847103
24 23.63012286 17.222771
28 27.65334621 17.72285323
32 31.64138 19.92497

Dependent upon the architectures’ communication costs, this speed-up is less than p. For the Stacking algorithm we
get

Sp = 4n + 2t + O(1)

4 n
p

+ 6t + O(1)

which if N?t is approximately p. Table 2 shows the results for speed-up from implementing these algorithms on our
Sun cluster grid.

It is clear from the results that the new Stacking algorithm is out-performing the previously derived Split & Correct
algorithm. It can also be observed that the Stacking algorithm maintains a speedup much closer to linear speed up
(Sp = p) than does the Split & Correct algorithm which requires more communication as the number of processors
increases. These results, naturally, are very much system dependent, relying on the communication protocols and
architectures in place within the parallel machine.

The efficiency of the Stacking algorithm, from the results in Table 2, show a stable efficiency of approximately
98–99% with the exception of low values of p.

5.2. Scalability results

The running times presented above can easily be examined for scalability. Perfect scalability is defined as

T (kp, kn)

T (p, n)
= k for any positive integer value of k.

Here we see that the presented stacking algorithm achieves near perfect scalability; a result better than that presented
by the previous Split & Correct algorithm.

5.3. Actual error

The algorithms in this paper all require a pre-determined acceptable level of error or tolerance (�). The examples
cases presented above all utilized a maximum allowable error of 10−8. The actual implementation, however, of these
algorithms often produces a much smaller actual measure of error that which is requested. For the three algorithms
considered here, the following table shows an example of the actual obtained largest error in the solution when � = 1.

These errors are significantly improved over the desired error of 10−8 due to the nature of rounding in our error
analysis\proof (Table 3).

J.M. McNally et al. / Journal of Computational and Applied Mathematics 212 (2008) 260–271 271

Table 3
Actual obtained error

Program Obtained error

Yan and Chung 4.02 × 10−11

Split & Correct 2.70 × 10−11

Stacking 3.68 × 10−10

6. Conclusion

The Stacked algorithm presented here provides an efficient scalable algorithm for solving a linear system of equations
whose coefficient matrix is both diagonally dominant and Toeplitz. It does so by eliminating the correction step inherent
within previous works of Rojo [8], Yan and Chung [10], McNally [4], McNally et al. [6] and Nemani [7], while also
removing all necessary inter-processor communication. Experimental results of this new algorithm show near optimal
levels of efficiency and significant improvement in speed-up over previous algorithms.

Another key effect of this algorithm is the ability to solve for any particular value (or range of values) within a
large system provided there are t equations above and below the desired element(s) (or less should the element be
near the first or final elements of the system). This ability to solve for a particular value to within a given level of
tolerance could greatly assist in solution solving when looking for maxima or minima within a known interval of
values.

Future work for this class of algorithms is to examine other Toeplitz systems whose band size is larger, and also to
examine other similar systems such as block Toeplitz and m-Toeplitz systems. In the case of solving a pentadiagonal
system, a non-linear system of equations arises which will introduce a sub-problem which needs to be solved to proceed.

References

[1] L.E. Garey, R.E. Shaw, A parallel algorithm for solving Toeplitz linear systems, J. Appl. Math. Comput. 100 (1999) 241–245.
[2] L.E. Garey, R.E. Shaw, A parallel method for linear equations with tri-diagonal Toeplitz coefficient matrices, Internat. J. Math. Comput. 42

(2001) 1–11.
[3] Li. Kuiyuan, A fully parallel method for tri-diagonal eigenvalue problem, Internat. J. Math. Math. Sci. 17 (1994) 741–752.
[4] J.M. McNally, Fast parallel algorithms for tri-diagonal symmetric Toeplitz systems, MCS Thesis, University of New Brunswick,

Saint John, 1999.
[5] J.M. McNally, A scalable communicationless parallel algorithm for tri-diagonal Toeplitz systems, Ph.D. Thesis, University of New Brunswick,

Saint John, December 2002.
[6] J.M. McNally, L.E. Garey, R.E. Shaw,A split-correct parallel algorithm for solving tri-diagonal symmetric Toeplitz systems, Internat. J. Comput.

Math. 75 (2000) 303–313.
[7] S.S. Nemani, Perturbation methods for circulant-banded systems and their parallel implementation, Ph.D. Thesis, University of New Brunswick,

Saint John, 2001.
[8] O. Rojo, A new method for solving symmetric circulant tri-diagonal system of linear equations, Comput. Math. Appl. 20 (1990) 61–67.
[9] X.-H. Sun, Application and accuracy of the parallel diagonal dominant algorithm, Parallel Comput. (1995), 1241–1267.

[10] W.M. Yan, K.L. Chung, A fast algorithm for solving special tri-diagonal systems, Computing 52 (1994) 203–211.

	A communication-less parallel algorithm for tridiagonalToeplitz systems
	Introduction
	Background
	The Stacked method---2 processors
	The Stacked method---m processors
	Implementation
	Speed-up and efficiency
	Scalability results
	Actual error

	Conclusion
	References

