894 research outputs found

    Named Data Networking in Vehicular Ad hoc Networks: State-of-the-Art and Challenges

    Get PDF
    International audienceInformation-Centric Networking (ICN) has been proposed as one of the future Internet architectures. It is poised to address the challenges faced by today's Internet that include, but not limited to, scalability, addressing, security, and privacy. Furthermore, it also aims at meeting the requirements for new emerging Internet applications. To realize ICN, Named Data Networking (NDN) is one of the recent implementations of ICN that provides a suitable communication approach due to its clean slate design and simple communication model. There are a plethora of applications realized through ICN in different domains where data is the focal point of communication. One such domain is Intelligent Transportation System (ITS) realized through Vehicular Ad hoc NETwork (VANET) where vehicles exchange information and content with each other and with the infrastructure. To date, excellent research results have been yielded in the VANET domain aiming at safe, reliable, and infotainment-rich driving experience. However, due to the dynamic topologies, host-centric model, and ephemeral nature of vehicular communication, various challenges are faced by VANET that hinder the realization of successful vehicular networks and adversely affect the data dissemination, content delivery, and user experiences. To fill these gaps, NDN has been extensively used as underlying communication paradigm for VANET. Inspired by the extensive research results in NDN-based VANET, in this paper, we provide a detailed and systematic review of NDN-driven VANET. More precisely, we investigate the role of NDN in VANET and discuss the feasibility of NDN architecture in VANET environment. Subsequently, we cover in detail, NDN-based naming, routing and forwarding, caching, mobility, and security mechanism for VANET. Furthermore, we discuss the existing standards, solutions, and simulation tools used in NDN-based VANET. Finally, we also identify open challenges and issues faced by NDN-driven VANET and highlight future research directions that should be addressed by the research community

    Resolution strategies for serverless computing in information centric networking

    Get PDF
    Named Function Networking (NFN) offers to compute and deliver results of computations in the context of Information Centric Networking (ICN). While ICN offers data delivery without specifying the location where these data are stored, NFN offers the production of results without specifying where the actual computation is executed. In NFN, computation workflows are encoded in (ICN style) Interest Messages using the lambda calculus and based on these workflows, the network will distribute computations and find execution locations. Depending on the use case of the actual network, the decision where to execute a compuation can be different: A resolution strategy running on each node decides if a computation should be forwarded, split into subcomputations or executed locally. This work focuses on the design of resolution strategies for selected scenarios and the online derivation of "execution plans" based on network status and history. Starting with a simple resolution strategy suitable for data centers, we focus on improving load distribution within the data center or even between multiple data centers. We have designed resolution strategies that consider the size of input data and the load on nodes, leading to priced execution plans from which one can select the ones with the least costs. Moreover, we use these plans to create execution templates: Templates can be used to create a resolution strategy by simulating the execution using the planning system, tailored to the specific use case at hand. Finally we designed a resolution strategy for edge computing which is able to handle mobile scenarios typical for vehicular networking. This “mobile edge computing resolution strategy” handles the problem of frequent handovers to a sequence of road-side units without creating additional overhead for the non-mobile use case. All these resolution strategies were evaluated using a simulation system and were compared to the state of the art behavior of data center execution environments and/or cloud configurations. In the case of the vehicular networking strategy, we enhanced existing road-side units and implemented our NFN-based system and plan derivation such that we were able to run and validate our solution in real world tests for mobile edge computing

    Online algorithms for content caching: an economic perspective

    Get PDF
    Content Caching at intermediate nodes, such that future requests can be served without going back to the origin of the content, is an effective way to optimize the operations of computer networks. Therefore, content caching reduces the delivery delay and improves the users’ Quality of Experience (QoE). The current literature either proposes offline algorithms that have complete knowledge of the request profile a priori, or proposes heuristics without provable performance. In this dissertation, online algorithms are presented for content caching in three different network settings: the current Internet Network, collaborative multi-cell coordinated network, and future Content Centric Networks (CCN). Due to the difficulty of obtaining a prior knowledge of contents’ popularities in real scenarios, an algorithm has to make a decision whether to cache a content or not when a request for the content is made, and without the knowledge of any future requests. The performance of the online algorithms is measured through a competitive ratio analysis, comparing the performance of the online algorithm to that of an omniscient optimal offline algorithm. Through theoretical analyses, it is shown that the proposed online algorithms achieve either the optimal or close to the optimal competitive ratio. Moreover, the algorithms have low complexity and can be implemented in a distributed way. The theoretical analyses are complemented with simulation-based experiments, and it is shown that the online algorithms have better performance compared to the state of the art caching schemes

    Illinois Precipitation Enhancement Program, Phase 1: Interim Report for 1 July 1972 - 31 July 1973

    Get PDF
    Division of Atmospheric Water Resources Management, Bureau of Reclamation, U.S. Department of Interior, Contract 14-06-D7197published or submitted for publicationis peer reviewedOpe

    Caching Techniques in Next Generation Cellular Networks

    Get PDF
    Content caching will be an essential feature in the next generations of cellular networks. Indeed, a network equipped with caching capabilities allows users to retrieve content with reduced access delays and consequently reduces the traffic passing through the network backhaul. However, the deployment of the caching nodes in the network is hindered by the following two challenges. First, the storage space of a cache is limited as well as expensive. So, it is not possible to store in the cache every content that can be possibly requested by the user. This calls for efficient techniques to determine the contents that must be stored in the cache. Second, efficient ways are needed to implement and control the caching node. In this thesis, we investigate caching techniques focussing to address the above-mentioned challenges, so that the overall system performance is increased. In order to tackle the challenge of the limited storage capacity, smart proactive caching strategies are needed. In the context of vehicular users served by edge nodes, we believe a caching strategy should be adapted to the mobility characteristics of the cars. In this regard, we propose a scheme called RICH (RoadsIde CacHe), which optimally caches content at the edge nodes where connected vehicles require it most. In particular, our scheme is designed to ensure in-order delivery of content chunks to end users. Unlike blind popularity decisions, the probabilistic caching used by RICH considers vehicular trajectory predictions as well as content service time by edge nodes. We evaluate our approach on realistic mobility datasets against a popularity-based edge approach called POP, and a mobility-aware caching strategy known as netPredict. In terms of content availability, our RICH edge caching scheme provides an enhancement of up to 33% and 190% when compared with netPredict and POP respectively. At the same time, the backhaul penalty bandwidth is reduced by a factor ranging between 57% and 70%. Caching node is an also a key component in Named Data Networking (NDN) that is an innovative paradigm to provide content based services in future networks. As compared to legacy networks, naming of network packets and in-network caching of content make NDN more feasible for content dissemination. However, the implementation of NDN requires drastic changes to the existing network infrastructure. One feasible approach is to use Software Defined Networking (SDN), according to which the control of the network is delegated to a centralized controller, which configures the forwarding data plane. This approach leads to large signaling overhead as well as large end-to-end (e2e) delays. In order to overcome these issues, in this work, we provide an efficient way to implement and control the NDN node. We propose to enable NDN using a stateful data plane in the SDN network. In particular, we realize the functionality of an NDN node using a stateful SDN switch attached with a local cache for content storage, and use OpenState to implement such an approach. In our solution, no involvement of the controller is required once the OpenState switch has been configured. We benchmark the performance of our solution against the traditional SDN approach considering several relevant metrics. Experimental results highlight the benefits of a stateful approach and of our implementation, which avoids signaling overhead and significantly reduces e2e delays

    Incrementando as redes centradas à informaçãopara uma internet das coisas baseada em nomes

    Get PDF
    The way we use the Internet has been evolving since its origins. Nowadays, users are more interested in accessing contents and services with high demands in terms of bandwidth, security and mobility. This evolution has triggered the emergence of novel networking architectures targeting current, as well as future, utilisation demands. Information-Centric Networking (ICN) is a prominent example of these novel architectures that moves away from the current host-centric communications and centres its networking functions around content. Parallel to this, new utilisation scenarios in which smart devices interact with one another, as well as with other networked elements, have emerged to constitute what we know as the Internet of Things (IoT). IoT is expected to have a significant impact on both the economy and society. However, fostering the widespread adoption of IoT requires many challenges to be overcome. Despite recent developments, several issues concerning the deployment of IPbased IoT solutions on a large scale are still open. The fact that IoT is focused on data and information rather than on point-topoint communications suggests the adoption of solutions relying on ICN architectures. In this context, this work explores the ground concepts of ICN to develop a comprehensive vision of the principal requirements that should be met by an IoT-oriented ICN architecture. This vision is complemented with solutions to fundamental issues for the adoption of an ICN-based IoT. First, to ensure the freshness of the information while retaining the advantages of ICN’s in-network caching mechanisms. Second, to enable discovery functionalities in both local and large-scale domains. The proposed mechanisms are evaluated through both simulation and prototyping approaches, with results showcasing the feasibility of their adoption. Moreover, the outcomes of this work contribute to the development of new compelling concepts towards a full-fledged Named Network of Things.A forma como usamos a Internet tem vindo a evoluir desde a sua criação. Atualmente, os utilizadores estão mais interessados em aceder a conteúdos e serviços, com elevados requisitos em termos de largura de banda, segurança e mobilidade. Esta evolução desencadeou o desenvolvimento de novas arquiteturas de rede, visando os atuais, bem como os futuros, requisitos de utilização. As Redes Centradas à Informação (Information-Centric Networking - ICN) são um exemplo proeminente destas novas arquiteturas que, em vez de seguirem um modelo de comunicação centrado nos dispositivos terminais, centram as suas funções de rede em torno do próprio conteúdo. Paralelamente, novos cenários de utilização onde dispositivos inteligentes interagem entre si, e com outros elementos de rede, têm vindo a aparecer e constituem o que hoje conhecemos como a Internet das Coisas (Internet of Things - IoT ). É esperado que a IoT tenha um impacto significativo na economia e na sociedade. No entanto, promover a adoção em massa da IoT ainda requer que muitos desafios sejam superados. Apesar dos desenvolvimentos recentes, vários problemas relacionados com a adoção em larga escala de soluções de IoT baseadas no protocolo IP estão em aberto. O facto da IoT estar focada em dados e informação, em vez de comunicações ponto-a-ponto, sugere a adoção de soluções baseadas em arquiteturas ICN. Neste sentido, este trabalho explora os conceitos base destas soluções para desenvolver uma visão completa dos principais requisitos que devem ser satisfeitos por uma solução IoT baseada na arquitetura de rede ICN. Esta visão é complementada com soluções para problemas cruciais para a adoção de uma IoT baseada em ICN. Em primeiro lugar, assegurar que a informação seja atualizada e, ao mesmo tempo, manter as vantagens do armazenamento intrínseco em elementos de rede das arquiteturas ICN. Em segundo lugar, permitir as funcionalidades de descoberta não só em domínios locais, mas também em domínios de larga-escala. Os mecanismos propostos são avaliados através de simulações e prototipagem, com os resultados a demonstrarem a viabilidade da sua adoção. Para além disso, os resultados deste trabalho contribuem para o desenvolvimento de conceitos sólidos em direção a uma verdadeira Internet das Coisas baseada em Nomes.Programa Doutoral em Telecomunicaçõe
    corecore