300 research outputs found

    Packet erasure correcting codes for wireless sensor networks: implementation and field trial measurements

    Get PDF
    This thesis regards the Wireless Sensor Network (WSN), as one of the most important technologies for the twenty-first century and the implementation of different packet correcting erasure codes to cope with the ”bursty” nature of the transmission channel and the possibility of packet losses during the transmission. The limited battery capacity of each sensor node makes the minimization of the power consumption one of the primary concerns in WSN. Considering also the fact that in each sensor node the communication is considerably more expensive than computation, this motivates the core idea to invest computation within the network whenever possible to safe on communication costs. The goal of the research was to evaluate a parameter, for example the Packet Erasure Ratio (PER), that permit to verify the functionality and the behavior of the created network, validate the theoretical expectations and evaluate the convenience of introducing the recovery packet techniques using different types of packet erasure codes in different types of networks. Thus, considering all the constrains of energy consumption in WSN, the topic of this thesis is to try to minimize it by introducing encoding/decoding algorithms in the transmission chain in order to prevent the retransmission of the erased packets through the Packet Erasure Channel and save the energy used for each retransmitted packet. In this way it is possible extend the lifetime of entire network

    Resource-Constrained Low-Complexity Video Coding for Wireless Transmission

    Get PDF

    Radar-Based Multi-Target Classification Using Deep Learning

    Get PDF
    Real-time, radar-based human activity and target recognition has several applications in various fields. Examples include hand gesture recognition, border and home surveillance, pedestrian recognition for automotive safety and fall detection for assisted living. This dissertation sought to improve the speed and accuracy of a previously developed model classifying human activity and targets using radar data for outdoor surveillance purposes. An improvement in accuracy and speed of classification helps surveillance systems to provide reliable results on time. For example, the results can be used to intercept trespassers, poachers or smugglers. To achieve these objectives, radar data was collected using a C-band pulse-Doppler radar and converted to spectrograms using the Short-time Fourier transform (STFT) algorithm. Spectrograms of the following classes were utilised in classification: one human walking, two humans walking, one human running, moving vehicles, a swinging sphere and clutter/noise. A seven-layer residual network was proposed, which utilised batch normalisation (BN), global average pooling (GAP), and residual connections to achieve a classification accuracy of 92.90% and 87.72% on the validation and test data, respectively. Compared to the previously proposed model, this represented a 10% improvement in accuracy on the validation data and a 3% improvement on the test data. Applying model quantisation provided up to 3.8 times speedup in inference, with a less than 0.4% accuracy drop on both the validation and test data. The quantised model could support a range of up to 89.91 kilometres in real-time, allowing it to be used in radars that operate within this range

    Proceedings of the 2021 Symposium on Information Theory and Signal Processing in the Benelux, May 20-21, TU Eindhoven

    Get PDF

    Identification through Finger Bone Structure Biometrics

    Get PDF

    Finger Vein Verification with a Convolutional Auto-encoder

    Get PDF

    Domain specific high performance reconfigurable architecture for a communication platform

    Get PDF

    Overcoming CubeSat downlink limits with VITAMIN: a new variable coded modulation protocol

    Get PDF
    Thesis (M.S.) University of Alaska Fairbanks, 2013Many space missions, including low earth orbit CubeSats, communicate in a highly dynamic environment because of variations in geometry, weather, and interference. At the same time, most missions communicate using fixed channel codes, modulations, and symbol rates, resulting in a constant data rate that does not adapt to the dynamic conditions. When conditions are good, the fixed date rate can be far below the theoretical maximum, called the Shannon limit; when conditions are bad, the fixed data rate may not work at all. To move beyond these fixed communications and achieve higher total data volume from emerging high-tech instruments, this thesis investigates the use of error correcting codes and different modulations. Variable coded modulation (VCM) takes advantage of the dynamic link by transmitting more information when the signal-to-noise ratio (SNR) is high. Likewise, VCM can throttle down the information rate when SNR is low without having to stop all communications. VCM outperforms fixed communications which can only operate at a fixed information rate as long as a certain signal threshold is met. This thesis presents a new VCM protocol and tests its performance in both software and hardware simulations. The protocol is geared towards CubeSat downlinks as complexity is focused in the receiver, while the transmission operations are kept simple. This thesis explores bin-packing as a way to optimize the selection of VCM modes based on expected SNR levels over time. Working end-to-end simulations were created using MATLAB and LabVIEW, while the hardware simulations were done with software defined radios. Results show that a CubeSat using VCM communications will deliver twice the data throughput of a fixed communications system
    corecore