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Abstract

Real-time, radar-based human activity and target recognition has several applications in

various fields. Examples include hand gesture recognition, border and home surveillance,

pedestrian recognition for automotive safety and fall detection for assisted living. This

dissertation sought to improve the speed and accuracy of a previously developed model

classifying human activity and targets using radar data for outdoor surveillance purposes.

An improvement in accuracy and speed of classification helps surveillance systems to provide

reliable results on time. For example, the results can be used to intercept trespassers, poachers

or smugglers.

To achieve these objectives, radar data was collected using a C-band pulse-Doppler radar

and converted to spectrograms using the Short-time Fourier transform (STFT) algorithm.

Spectrograms of the following classes were utilised in classification: one human walking, two

humans walking, one human running, moving vehicles, a swinging sphere and clutter/noise.

A seven-layer residual network was proposed, which utilised batch normalisation (BN), global

average pooling (GAP), and residual connections to achieve a classification accuracy of 92.90%

and 87.72% on the validation and test data, respectively. Compared to the previously

proposed model, this represented a 10% improvement in accuracy on the validation data

and a 3% improvement on the test data.

Applying model quantisation provided up to 3.8 times speedup in inference, with a less than

0.4% accuracy drop on both the validation and test data. The quantised model could support

a range of up to 89.91 kilometres in real-time, allowing it to be used in radars that operate

within this range.



Nomenclature

Adam Adaptive Moment Estimation

BN Batch Normalisation

CAE Convolutional Auto-Encoder

CNN Convolutional Neural Network

CP Coherent Processing

DL Deep Learning

GAP Global Average Pooling

Lidar Light Detection and Ranging

ML Machine Learning

Nadam Nesterov-accelerated Adaptive Moment Estimation

PSNR Peak Signal-to-Noise Ratio

PTQ Post-Training Quantisation

Radar Radio Detection and Ranging

ReLU Rectified Linear Unit

ResNet Residual Networks

SNR Signal-to-Noise Ratio

STFT Short-time Fourier Transform
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1 Introduction

1.1 Background

Human activity and target classification has been gaining interest in recent years due to its

applications in pedestrian recognition for automotive safety [1], fall detection for assisted living

[2] and surveillance systems for border control and security [3, 4]. Surveillance applications

are relevant to South Africa and other nations worldwide experiencing increasing poaching

activities. For example, in December 2021, 24 rhinos were killed in just two weeks due to

poaching [5]. To prevent the extinction of endangered species such as elephants and rhinos,

it is crucial to have reliable area surveillance systems that can recognise human activity or

vehicles used for poaching. These systems can also be used for home security, border control

and protection of farmlands.

Different sensor systems have been used for human activity and target classification, including

cameras [6], Lidar [7] and radar [8]. Unlike cameras or Lidar, the performance of a radar sensor

is less sensitive to varying weather conditions and different levels of light [9]. Furthermore,

radar offers a more extended detection range than optical sensors [8] and can detect targets

behind opaque objects [10]. These advantages make radar more attractive for outdoor

surveillance systems.

Various commercial radar systems have been developed for outdoor surveillance. These

include Hensoldt’s Spexer radars [11] which were designed for border security systems and

the protection of critical infrastructure, and InnoSent radars [12] for home security and

perimeter surveillance. The demand for radar surveillance systems is expected to surge due

to the increasing demand for border security and military applications. Consequently, the

Surveillance radar market is projected to grow from US$ 8.0 billion to US$ 11.5 billion by

2025 [13].

1.2 Problem Statement

Radar can collect the range or Doppler information of moving targets. In addressing the

challenge of classifying human activities and targets using radar data, researchers have

utilised spectrograms [14,15], time-range maps [16,17] and time-range-Doppler maps [18,19].

However, spectrograms are commonly used because they contain sufficient information for

classifying different activities or targets [20].

Fig. 1.1 shows spectrograms of a walking human, a dog and a horse. Note that spectrograms

show how the Doppler frequency of targets changes with time and are sometimes called

time-Doppler maps. The spectrograms in Fig. 1.1 show Doppler returns from the torso, hands

and legs. A torso has a lower Doppler frequency since it moves slower than hands or legs.

Hands and legs show repetitive Doppler patterns as they move back and forth periodically.
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Figure 1.1: Spectrograms of (a) human, (b) a dog and (c) a horse [21].

The classification of spectrograms typically begins with extracting a pre-defined set of features

from the spectrograms. Examples of such pre-defined features include those related to physical

characteristics of the target [22], discrete cosine transform coefficients [23] and linear predictive

coding coefficients [24]. A subset of the extracted features may then be chosen using feature

selection [25] or dimension reduction [26]. The subset of features is then fed to a classifier of

choice, such as support vector machines (SVMs) [27] or random forests (RFs) [28].

This approach requires human expertise and significant domain knowledge to define the

features that should be extracted. Deep learning (DL) offers an alternative approach, where

features are learned from spectrograms automatically without human supervision. In one of

the first works on DL for micro-Doppler classification, [21] used a convolutional neural network

(CNN) to classify six classes (running, walking, walking while holding a stick, crawling,

boxing while moving forward, boxing while standing in place, and sitting still) at a correct

classification rate of 90.9%, similar to that previously achieved with SVMs [29]. Later, [30]

used a 2-layer Auto-Encoder structure with a total of 120 data samples to classify four classes

of activities (falling, sitting, bending, and walking) and achieved an accuracy of 87%.

In classifying human activity and targets, the inference speed of CNNs must be considered.

Inference refers to classifying new data after model training. High inference speeds allow

real-time support in radar systems, assisting border authorities, nature reserve or security

personnel to react promptly. Researchers are currently exploring methods of improving the

inference speed of DL algorithms. Different methods of speeding up inference have been

proposed, for example, quantisation [31] and pruning [32]. However, while these methods may

improve a model’s inference throughput or speed, they may degrade the model’s performance

[33].

This work focuses on the accurate and timely classification of human activity or targets

that may be encountered in outdoor environments. Six classes were considered: one human

2



walking, one human running, two humans walking, moving vehicle/s, clutter or noise (which

represents the absence of a human or vehicle) and a swinging sphere (which was added to

diversify the data). The results of this study can be used to improve the accuracy and speed

of detection in outdoor surveillance systems so that unwanted presence or activity can be

detected correctly in a timely manner.

1.3 Objectives of this Study

The work in this study sought to achieve the following objectives:

1. Build a CNN model that would improve the accuracy results from previously done

research [34] without over-fitting the model on the data. A higher accuracy gives

confidence that the model will provide reliable results for surveillance purposes.

2. Improve the inference throughput speed of the proposed model while maintaining

accuracy so that the model can be deployed in real-time surveillance systems.

1.4 Project Scope

Firstly, to achieve the objectives mentioned above, this study used data supplied by the

Council for Scientific and Industrial Research (CSIR), collected using a C-band pulse-Doppler

radar. The CSIR data comprised only six classes, namely: one human walking, one human

running, two humans walking, moving vehicle/s, clutter and a swinging sphere.

Secondly, only spectrograms were considered for classification. Previous research on

human activity and target classification has shown that micro-Doppler signatures found

in spectrograms contain sufficiently unique and diverse information that can be used to

distinguish different human activities or targets [35].

Thirdly, only CNNs were investigated for classifying spectrograms. Amongst other DL

algorithms such as long short-term memory (LSTM) and recurrent neural networks (RNNs),

CNNs have been the most effective in visual recognition tasks such as image classification [36].

Although spectrograms are not natural images, results from previous research on human

activity and target classification have shown that CNNs have adapted well to the problem [37].

Lastly, only post training quantisation (PTQ) [38] was investigated for inference throughput

improvement. Due to limited time, other methods proposed in research, such as quantisation

aware training (QAT) [38] and Pruning, were not explored.

1.5 Research Contribution

There are generally two approaches to building machine learning models: from the ground

up or using a transfer learning process [14]. This work develops a residual network model

from the ground up for human activity and target classification applications. At the time of

3



writing this thesis, only one paper [39] had investigated the application of residual networks

to address the problem, albeit in a transfer learning fashion.

Although there is much research on improving model throughput in the DL community,

its application to radar classification has not been addressed in the literature. This research

investigates PTQ to improve the proposed model’s throughput without degrading the model’s

performance.

1.6 Report Outline

Chapter 2 reviews the basic operational principles of a pulse-Doppler radar. A description

of the radar data processing to create spectrograms using collected data follows this. After

that, CNNs are discussed, focusing on the basic principles, followed by a critical review of the

literature on classifying human activity and targets using CNNs. Lastly, principles of PTQ

are presented, followed by a review of the literature which applies the method.

Chapter 3 provides an overview of the research methods to achieve the objectives listed in

Section 1.3. Data collection and pre-processing methods are also discussed. This is followed

by a summary of the processes applied in building CNN models and performing PTQ. Finally,

the details regarding the hardware and software used to perform experiments are presented.

Chapter 4 provides more details on the design decisions used to generate spectrograms from

radar data. The data splitting into training, validation and test set is also discussed.

Chapter 5 focuses on implementing CNN models and their accuracy results on the validation

and test datasets.

Chapter 6 provides details on the implementation and results of PTQ on the best model.

Furthermore, the effect of PTQ on the model’s speed and accuracy was analysed in this

chapter. This was followed by investigating the maximum range that the model could support

in real-time.

Chapter 7 discusses the research conclusions and recommendations for future work.

The Appendix provides details on additional experiments that were carried out after

achieving the objectives.
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2 Literature Review

This section covers the review of the relevant literature to the project. Section 2.1 examines

the theory behind pulse-Doppler Phased Array radar used for data collection. This is followed

by a summary of the theory of computing a spectrogram in Section 2.2. Section 2.3 focuses on

the methods of extracting training, validation and testing data from spectrograms. Section

2.4 explores the theory behind CNNs and their applications in human activity and target

classification. This is followed by a review of techniques for improving a model’s inference

speed, focusing on PTQ in Section 2.5. Section 2.6 suggests an approach to achieving this

study’s objectives based on the literature.

2.1 Radar Data Measurement

Continuous-wave (CW) [40, 41], pulse-Doppler [42, 43] and frequency-modulated continuous

wave (FMCW) [44, 45] radars have been used to collect data for human activity and

target classification. Data obtained using these radars can be used to extract the Doppler

information of targets which is essential for distinguishing moving targets and corresponding

activities. In this study, a C-band pulse-Doppler Phased Array radar was used to take

measurements of different targets and human activities. Note that a C-band radar operates

within the 4 GHz to 8 GHz frequency range.

Pulse-Doppler radars transmit radio pulses and then receive pulses reflected by illuminated

objects. The pulses are generated by a radio frequency (RF) generator before passing through

a Power Divider module which feeds the signal to both the transmitting antenna and mixer,

as shown in Fig. 2.1.

Targets in the radar’s path reflect the transmitted signal. The receiving antenna then collects

the reflected signal. Note that the power of the received signal is given by the radar equation:

Pr =
PtGtGrλ

2σ

(4π)3(R)4L
(1)

where

• Pt = transmit power

• Gt = transmit antenna gain

• Gr = receive antenna gain

• λ = operating wavelength

• σ = target radar cross section

• R = target range
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Figure 2.1: Block diagram of a simple pulse-Doppler radar module [46].

• L = loss, which includes atmospheric losses during propagation of the electromagnetic

waves to and from the target, fluctuation losses during the reflection and internal

attenuation factors of the radar set on the transmitting and receiving paths.

Thus, there is an inverse relationship between the received power and the range of the targets.

Consequently, targets at longer ranges are more difficult to detect than targets closer to the

radar.

As shown in Fig. 2.1, the received signal is amplified and fed to a mixer. The mixing

process provides a way of extracting the frequency difference between the carrier frequency

of the transmitted signal and the received signals. The output of the mixer passes through a

low-pass filter which filters out unwanted signals. The resulting baseband signal is amplified

and then digitised afterwards using an analog to digital converter (ADC).

In a pulse-Doppler Phased Array system, the antenna elements are fed a phase-shifted signal

to create a beam pattern that is electronically steered to allow transmission in different

directions. The electronic steering is more flexible and requires less maintenance than

the mechanical steering to measure targets in different directions. The received signals

are processed as previously described to obtain digitised baseband samples. Additional

processing includes pulse-compression [47] to improve the signal-to-noise ratio (SNR) and

beamforming [48] to attenuate signals that did not come from the direction in which there is

a target of interest.

The processed baseband samples of the received echoes are ordered by their arrival time. Since

time is proportional to the target’s distance away from the radar, each sample is typically
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referred to as a range bin. Samples belonging to the same range bin from different pulses are

separated by the pulse repetition interval (PRI), the duration between consecutive pulses.

Figure 2.2: Waveform of a pulse radar [49].

Fig. 2.2 shows transmitted pulses separated by the PRI. The pulse width (τ) is the duration

of the pulse. The range resolution ρ of an unmodulated pulse is given by:

ρ ≥ cτ

2
≈ c

2B
(2)

where τ is the duration of the pulse and B = 1
τ is the bandwidth of the signal.

Spectrograms are then generated by performing a Short-time Fourier transform (STFT) of

the processed baseband samples.

2.2 Radar Data Pre-processing

2.2.1 Short-time Fourier Transform

The STFT is a valuable tool for analysing the frequency content of a non-stationary signal [50]

as it gives a time-frequency domain representation of the signal. To compute the STFT, a

signal is broken down into windows, which usually overlap. The discrete Fourier transform

(DFT) is then applied to each window. Thus, the STFT of a signal x[k] is defined as:

XSTFT [m,n] =
N−1∑
k=0

x[k]g[k −m]e−j2πnk/N (3)

where g[k] denotes an N-point window function, m is the time index, and n is the frequency

index. A spectrogram is created by applying the modulus of the STFT result:

S[m,n] = |XSTFT [m,n]|2. (4)

A spectrogram is thus a two-dimensional representation of the energy spectral density of the

signal as it changes over time. In this study, spectrograms were used as input to CNNs, which

extract relevant features in the data for classification purposes.
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2.2.2 Short-time Fourier Transform Parameters

There are three main parameters to consider when computing the STFT: window type,

window length, and window overlap. The window type affects the quality of Doppler

information conveyed by the spectrogram. Rectangular windows are less commonly used

because they give rise to high side-lobe levels in the frequency domain, as shown in Fig. 2.3.

This results in the masking of weak frequency components close to strong components in the

spectrum. Tapering is applied to windows in the time domain to reduce the side-lobe levels in

the frequency domain. However, tapering the windows results in an increase in the width of

the main lobe, which degrades the frequency resolution. Tapered windows such as Hamming

and Hanning are commonly used because they offer a balance between side-lobe levels and

an increase in main-lobe width [51].

Figure 2.3: Rectangular and Hamming windows in the time domain (left) and frequency

domain (right).

The tapered windows are applied in an overlapping fashion, as shown in Fig. 2.4, to retain

the data in the window’s tapered regions, which is potentially lost. An overlap factor of 50%

is recommended for both the Hanning and Hamming windows as it allows all data samples

to be weighted equally with minimal computational effort [52].

The window length (N) used to compute the STFT for each window is equivalent to the

coherent processing (CP) length. The CP length determines the SNR of a signal in the

frequency domain, hence the ease of resolving frequency components in the data. The SNR

value is computed as the ratio of the signal’s power to the noise’s power [49]. If x[n] is a

distorted signal, formulated by:

x[n] = s[n] + v[n], 0 ≤ n ≤ N − 1 (5)
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Figure 2.4: Segmented data stream with non-overlapping (top) and overlapping (bottom)

windows [52].
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where s[n] is the pure signal and v[n] is additive white noise with mean zero and variance σ2

and N is the number of samples taken from the signal, then the SNR is defined as:

SNR =

∑N−1
n=0 [x[n]]2

σ2
. (6)

If the samples within the CP length are in phase, increasing the CP length increases the

signal’s power by N2, which increases the SNR. Once the CP length includes samples that

are out phase, the SNR gain is reduced [53]. Moreover, the CP length will determine the

number of rows in the spectrogram. For example, when researchers use a CP length in the

order of thousands for calculating the STFT, the spectrogram will also have thousands of

rows.

Spectrograms with a very high number of rows are computationally expensive to process

in CNNs. Therefore, researchers have to down-sample or resize the output [14]. This

approach adds processing overhead, which increases the computational cost of classifying

spectrograms. An optimal window length offers a reasonable compromise between the

associated computational cost and the achieved SNR.

Using appropriately selected parameter values, the STFT can be computed to generate

spectrograms for human activity and target classification.

2.3 Data Preparation

CNN require data of fixed dimensions (width, height, or depth). Thus, the number of rows

and columns in the spectrogram data used for training, validation, and testing should be

pre-defined. The CP length determines the number of rows, and the number of columns is

determined by the specified time duration of observing an activity. Researchers have used

durations that typically range from 2 to 4 seconds [14, 39, 54] for human activity and target

classification. While the specific reasons for choosing these durations are not clear, these

durations are sufficient to capture one period of repetitive motions such as walking. Additional

research was carried out in this study to determine the spectrogram duration that would

improve classification accuracy in Appendix A.

After selecting the spectrogram duration, segments of the spectrograms are then extracted

using a sliding window [55] or via random sampling [56] along the time axis. The literature

does not discuss which approach provides better results among these two methods. Therefore,

additional research was also carried out to investigate the method that would yield better

classification accuracy in Appendix A.
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2.4 Convolutional Neural Networks for Spectrogram Classification

CNNs are a popular class of networks used in image classification. They can also be used

to classify spectrograms [14, 15]. CNNs also form the backbone of most networks that have

dominated the ImageNet [36] competition, for example, ResNets [57], EfficientNets [58] and

most recently, CoAtNets [59].

2.4.1 Convolutional Neural Networks Background

CNNs can consist of a combination of the following layers:

• A convolution layer that is made up of kernels (matrices of weights) used to learn feature

representations of the inputs. The feature representations are stored as feature maps.

Feature maps are obtained by convolving the layer’s input with a learned kernel and then

applying an element-wise nonlinear activation function on the convolved results. The

activation function introduces nonlinearities to CNN, which are desirable for multi-layer

networks to detect nonlinear features [60]. Typical activation functions are Sigmoid,

Tanh [61] and ReLU [62]. However, ReLU is commonly used because it helps to avoid

the vanishing gradient problem and is computationally cheaper than Sigmoid and Tanh

functions [63].

• A max-pooling layer that typically follows a convolutional layer. It is used to achieve

shift or spatial invariance by reducing the resolution of the feature map [64]. Shift

invariance allows CNNs to locate features/objects despite their location in the input

data.

• A fully connected layer that follows the convolution and max-pooling layers (also known

as feature extractors). It consists of fully connected neurons with weights used to learn

the mapping between the feature maps and input labels.

Concatenating convolutional and max-pooling layers, as shown in Fig. 2.5, can allow CNNs

to learn low to high-level features [65] that can be used for classification. For example, if the

input data is an image, the kernels in the first convolutional layers learn low-level features

such as edges, curves and shapes. Kernels in later layers learn more complex features such

as textures and patterns in the data. Kernels in the last convolutional layers learn high-level

features such as objects or parts of objects. Finally, the fully connected layers then learn to

classify the data based on the extracted high-level features [65].

The training process of CNNs involves making predictions based on the current weight values

and updating the weights based on the error of the predictions. The back-propagation

algorithm [66] uses the chain rule to update the network weights based on rules defined

by a given optimisation method.

There are various optimisation methods, including: Stochastic Gradient Descent [67], Adam
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[68], AdaDelta [69], Adamax [68] and Nadam [70]. Adam is a popular optimiser because it

achieves fast convergence [71] and is computationally efficient [68].

Figure 2.5: Three-layer CNN with two fully connected layers [40].

2.4.2 Convolutional Neural Networks in Radar-Based Classification

Various types of CNNs have been used in classifying human activity and targets, which include

vanilla [21,41,55], convolutional auto-encoder (CAE) [37,40], residual networks (ResNets) [39]

and hybrids of CNNs and LSTMs [72].

A vanilla CNN architecture comprises a combination of convolutional and max-pooling

layers, using a fully connected network as a classifier. CAE (example shown in Fig. 2.6)

utilise unsupervised pre-training to initialise the weights in the subsequent convolutional

layers through a decoder-encoder structure. After unsupervised pre-training, the decoder

is removed, and fully connected layers are added as classifiers at the end of the encoder. A

hybrid network can include a combination of CNN and LSTM for spatial and temporal feature

extraction [72], before applying a fully connected network for classification.

Figure 2.6: CAE with a decoder-encoder structure [40].

ResNets, introduced by Microsoft in 2015, utilise residual connections between convolutional

layers. Adding residual connections improves model accuracy [57]. As discussed in [73],

residual connections, shown in Fig. 2.7, help ameliorate the vanishing gradient problem

which causes accuracy degradation as more layers are added to a network. ResNets can

utilise GAP, as shown in Fig. 2.7. GAP allows better generalisation by downsampling the
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feature extractor’s output. This also minimises dependency on the fully connected layer that

is prone to over-fitting [74].

Figure 2.7: Resnet18 architecture with residual connections and GAP after the final

convolutional layer [75].

Despite achieving state-of-the-art results in image recognition competitions such as ImageNet

[76], ResNets application to human activity and target recognition has been limited. Only

[39] applied ResNet18 in a transfer learning fashion to classify human activity and other

targets. ResNet18 was trained on datasets such as the ImageNet, which have 1 000 classes.

This justifies ResNet18’s 11 million trainable parameters as it has to learn more features to

distinguish classes. However, human activity and target classification comprise less than 15

classes, as shown in Table I. By applying ResNet18 to such problems, there is an increased risk

of over-parameterisation, which leads to over-fitting [77]. Moreover, an over-parameterised

network increases the computational cost of processing data, which negatively affects the

inference speed.

The test accuracies (Table I) obtained from the experiments of classifying human activities

and targets using CNNs cannot be directly compared because different datasets were used.

However, they provide insight into the achievements made in human activities and target

classification using CNNs. Accuracies range from 86.90% to 98.34% using vanilla, CAEs,

CNN-LSTM and ResNet CNN models.

2.5 Improving Inference Speed

Various methods have been proposed to speed-up inference, for example, Pruning and

Quantisation. Pruning [32] removes redundant weights from the network, resulting in a

smaller and faster network. Quantisation [31] reduces the precision of the weights and

activations in a network to achieve fast computing. There are two common types of

Quantisation: PTQ and QAT. PTQ involves determining quantisation parameters after model

training. In QAT, quantisation parameters are determined during model training. QAT
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Model Type Literature Classes in Data Test

Accuracy

(%)

Vanilla CNN [41] Walking human absent, one-person

walking, two people walking, three

people walking, four people walking

and five people walking

86.90

Vanilla CNN [55] Boxing, crawling, creeping,

jumping, running, standing, and

walking

98.34

Vanilla CNN [21] Human, dog, horse, car 97.60

Vanilla CNN [21] Human running, walking, walking

while holding a stick, crawling,

boxing while moving forward,

boxing while standing in place, and

sitting still

90.90

CAE [40] Walking, jogging, limping, walking

with cane, walking with walker,

walking with crutches, crawling,

creeping, wheelchair, falling, sitting.

and falling from chair

94.20

CNN-LSTM [72] Running, walking, walking while

holding a stick, crawling, boxing

while moving forward, boxing while

standing in place, and sitting still

98.28

ResNet [39] Running, walking, boxing, crawling,

jumping, and standing casually

97.92

Table I: Results from literature.
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is only recommended when PTQ has significantly degraded classification performance [38]

because it is more complex to implement. Therefore, this study investigated the effect of PTQ

on the proposed model. The following subsection focuses on the theory behind quantisation

and the results achieved by other researchers in applying PTQ to CNNs.

2.5.1 Quantisation Theory

Network quantisation reduces the precision of weights and activations in neural networks by

lowering the number of bits to represent these quantities [31]. Models are trained in high

precisions such as 32-bit floating-point (FP32) to take advantage of the wide dynamic range

these precisions afford. However, inference in 32-bit precision is computationally expensive,

making deployment onto edge devices with strict power and compute requirements challenging

[31]. Hence, a network’s precision is reduced to lower precisions such as 16-bit floating-point

(FP16) or 8-bit integer (INT8) for efficient use of computational resources and consequent

increase in the speed of inference.

Reduction in precision speeds up inference because the available processors provide higher

throughput math pipelines for the low-bit formats, speeding up math-intensive operations,

such as convolutions and matrix multiplications [78]. Examples of processors include central

processing units (CPUs) and graphics processing units (GPUs). However, the increase in

throughput may come at the cost of the model’s accuracy because of the loss of information

that comes with quantisation.

PTQ is applied to a pre-trained network. The following equation is used to map model

parameter values to a lower bit representation during quantisation:

xq = clip
(⌊xf

∆

⌉)
(7)

where xf is a floating-point value, ∆ is the step size, b·e is a function that applies a

rounding-policy to round rational numbers to representable values in each precision, for

example, rounding to integers in INT8 quantisation, clip is a function that clips outliers

that fall outside of the dynamic range of a given precision and xq is the quantised value.

The following equation can find the step size (∆):

∆ =
qrange
N

(8)

where qrange is the size of the quantisation range and is determined from the distribution

of values to be mapped to lower precision. N is the number of representable values in each

precision. For example, for INT8 precision N is 256. Values outside of the quantisation range

are clipped to the thresholds.
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Quantization range setting [38] refers to the method of determining the clipping thresholds.

This is a crucial step in determining the step size used for quantisation. Any parameter values

outside the quantisation range are clipped to the threshold, thereby incurring a clipping error.

To reduce the clipping error, the quantization range can be increased. However, increasing the

quantisation range leads to increased rounding error. These two errors should be minimised

as they lead to a loss of information carried by parameter values during quantisation, which

may degrade model accuracy. To determine the quantisation range, various methods can be

used, which include:

• Max: Uses the maximum absolute value of floating-point values observed [79].

• Cross-Entropy: Uses Kullback–Leibler (KL) divergence to minimize information loss

between the original floating-point values and values that could be represented by the

quantised format [80].

• Percentile: Sets the range to a percentile of the distribution of absolute values observed

on different inputs [81]. For example, 99% calibration would clip 1% of the largest

magnitude values.

The Max method leads to no clipping error. However, this approach is sensitive to outliers as

strong outliers will cause excessive rounding errors. Cross-Entropy and Percentile methods

clip outlier values to increase the resolution of inlier values [81] reducing the rounding error.

The two methods aim to minimise both the clipping and rounding error and hence the loss

of information in the model parameters.

Finding the optimal range for the weights of a model is easier because the distribution of

weight values is constant. However, determining the optimal range for activation values is

more challenging since activation values vary depending on the input data. Thus, setting the

range pre-maturely may result in excessive clipping and rounding errors. Hence, a calibration

dataset is fed to the network to find the optimal range for activation values. The distribution

of the activation values is recorded as the network processes the data. The calibration dataset

should represent the input data so that the recorded activation values resemble values that

will be observed when new data is introduced to the model. The recorded distribution is then

used to set the range.

2.5.2 The Effect of Quantisation on Inference Speed

Quantisation has different effects on a model inference speed depending on the network

architecture, dataset and hardware used for inference. Paupamah, James and Klein [82]

investigated the effect of INT8 quantisation on MobileNet, ShuffleNet and AlexNet using

a combination of Nvidia GTX 1060 Ti and 1080 Ti GPUs. It was found that MobileNet

achieved a 7.3× and 5.7× speed-up on the CIFAR10 [83] and FashionMNIST [84] datasets,
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respectively. However, ShuffleNet’s inference speed on the CIFAR10 dataset was halved due

to quantisation. This was attributed to the complex architecture and small size of ShuffleNet.

Krishnamoorthi [31] investigated how INT8 quantisation affected the inference speed of

MobileNet, NasNet, Inception and ResNet models. It was found that INT8 inference could

provide 2×-3× speed-up on a CPU and close to 10× speed-up on specialized processors

optimised for low precision wide vector arithmetic, such as the Qualcomm Digital Signal

Processor (DSP) with Hexagon Vector Extensions (HVX).

2.5.3 The Effect of Quantisation on Accuracy

In [82], INT8 quantisation on MobileNet resulted in less than 1% loss in accuracy on both

datasets. However, ShuffleNet’s accuracy drop was more significant (12%) on the CIFAR10

dataset. The significant decline was attributed to the network’s small size. Krishnamoorthi

[31] also found that networks with fewer parameters suffered a more substantial loss in

accuracy after quantising MobileNet, NasNet, Inception and ResNet models.

2.6 Suggested Approach

Although ResNets have performed better than vanilla CNNs [57], only one paper [39] has

investigated their application in human activity and target classification. This study adopted

a ResNet model that improved the performance of the model proposed in [34]. Parker [34]

proposed a five-layer, vanilla CNN model with two fully connected layers which was used as

a baseline. The model is discussed in more detail in Section 5.1.1.

The literature does not discuss how CNNs can be integrated into a radar system to support

real-time classification. For real-time support, the inference speed of the model must be

sufficiently high such that the radar system is not overwhelmed by incoming data. Therefore,

this study also focused on improving inference speed using PTQ to support real-time

applications without significantly degrading the model’s accuracy. In addition, experiments

were carried out to find the maximum range that the proposed CNN could support in

real-time.

17



3 Methodology

This chapter provides an overview of the methods applied in collecting and pre-processing

radar data for CNN model training, validation and testing. This is followed by a summary

of the implementation of CNNs in classifying spectrograms. Afterwards, the implementation

of PTQ in investigating the effect of quantisation on model accuracy and inference speed is

discussed. Finally, the software and hardware used for data processing and experiments are

presented.

3.1 Data Collection and Labelling

The CSIR was responsible for data collection and labelling. As discussed in Section 2.1, a

C-band pulse-Doppler radar was used for data collection. The radar operated at a centre

frequency of 5.45 GHz, pulse repetition frequency (PRF) of 10 kHz and pulse bandwidth of

25 MHz.

In collecting data, reflected signals received at the radar’s antenna were mixed down to

an intermediate frequency, digitised using an A/D converter and then mixed down to

complex baseband samples. As illustrated in Fig. 3.1, the baseband samples were initially

pulse-compressed to improve the SNR of the received signal. Beamforming was then applied to

attenuate signals that did not come from the direction in which there was a target of interest.

The beamformed signals were then decimated to an effective PRF of 714 Hz. Decimation

was performed because the Doppler bandwidth provided by 10 kHz was much wider than

needed. The decimation allowed for a much lower data rate while maintaining the region of

the Doppler bandwidth that contained relevant micro-Doppler information for classification.

Therefore, using Equation 2, the range resolution of the radar was found to be 5.994 m.

Data samples were collected from the range bins in which there was a target of interest

according to the time the target was present. The samples were then labelled according to

the target that was present in the range bin.

Figure 3.1: Pre-processing steps on complex baseband data.

3.2 Additional Data Pre-processing

This subsection provides an overview of the pre-processing of labelled samples to produce

spectrograms. More details on this topic are presented in Section 4.2.
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The initial work in this study focused on pre-processing the data that the CSIR prepared.

The pre-processing stage involved filtering out the clutter [85] in the complex data, followed

by computing the STFT to generate spectrograms. Clutter comes from stationary (e.g., the

ground and buildings) and slow-moving objects (e.g., wind affected grass and trees). Filtering

was done to remove the clutter since it does not contain information relevant to distinguishing

targets or activities of interest, such as moving vehicles or running humans.

Training, validation and testing data was extracted from the generated spectrograms in a

sliding window fashion as described in Section 2.3.

3.3 Model Implementation

In implementing CNNs, the model proposed by [34] was used as the baseline to identify

parameters that would improve this study’s proposed model’s performance. The proposed

model applied concepts covered in literature such as residual connections and GAP. Full

details regarding the design decisions and the experiment results are presented in Section 5.

3.4 Inference

FP32, FP16 and INT8 precisions were considered in investigating the effect of quantisation

on the proposed model’s accuracy and inference speed. Additional experiments were carried

out to measure the inference speed of the whole data processing pipeline, from computing the

STFT to classifying the obtained spectrograms. This was done to determine the maximum

range that the inference pipeline could support in real-time. A detailed discussion of the

experimental setup and results are presented in Chapter 6.

3.5 Software and Hardware

Machine learning model development was carried out in Python 3.6 using the PyTorch library.

Python was selected because it has established support for machine learning libraries such as

TensorFlow and PyTorch. PyTorch was selected for model building because it has a Pythonic

programming style that makes debugging easy, and it also supports hardware accelerators

such as GPUs [86].

Data pre-processing was carried out in MATLAB R2020b. However, the full inference pipeline

was implemented in Python, from computing the STFT to model inference.

All development, testing and analysis was carried out on an ASUS TUF Gaming laptop with

the following specifications:

• Operating System: Ubuntu 18.04.6.

• Processor: Intel Core i5-9300H (2.40 GHz).
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• Graphics Processor: Nvidia GeForce GTX 1650.

• Memory: 8GB DDR4-2666 SO-DIMM.

Nvidia TensorRT [80] was used for model optimisation and quantisation. In TensorRT, model

optimisation was achieved through layer and tensor fusion, kernel auto-tuning and parallel

stream execution [80]. In addition to model optimisation, TensorRT provided libraries that

supported FP16 and INT8 quantisation.
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4 Data Collection and Pre-processing

Data collection and pre-processing affect the quality of input data to machine learning models

and hence their performance. This chapter provides more detail on radar data collection and

pre-processing.

4.1 Data Collection

The C-band pulse-Doppler radar used to record different activities and targets, was mounted

on top of a building at the Pretoria CSIR campus, as shown in Fig. 4.1. The radar’s line

of sight was in the direction shown in Fig. 4.2, facing trees, roads, and buildings. All

measurements of the six classes were taken at different times between 09h00 and 18h00 on

the 8th of September, 2021.

Figure 4.1: Radar on top of the roof of building 44 at CSIR’s main campus in Pretoria [34].

Note that the measured data was pulse compressed, beamformed and decimated as discussed

in Section 3.1. Afterwards, data samples belonging to range bins in which there was a target

of interest were collected. The size of the samples depended on the time in which the target

was present in the range bin. The samples were labelled according to the target present.

4.1.1 One Human Walking

A person was recorded walking on the field shown in Fig. 4.3, approximately 175 meters away

from the radar. The person walked in a straight line, in different directions, as illustrated
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Figure 4.2: The line of sight of the radar showing the field in which a human (marked by a

purple dot) was recorded walking [34].

in Fig. 4.3, at a speed of approximately 1.5 meters per second. Additional recordings were

taken later in the afternoon with a person walking in a road approximately 1 200 metres away

from the radar, seven times the initial distance. The person walked up and down the road

marked by a purple oval shape in Fig. 4.4.

4.1.2 Two Humans Walking

Two humans were recorded walking in the same field used to record one human walking, (Fig.

4.3). A distance of two to three metres between the two people was maintained throughout the

measurements. This was done to ensure that the distance between the micro-Doppler returns

of the two people was always less than the range resolution of the radar (5.994 meters). In

this way, the micro-Doppler returns would be captured within a single range bin such that

they would appear in the same spectrogram after computing the STFT.

4.1.3 One Human Running

A person was recorded running in the same field and road used for recording the walking

activities, shown in (Fig. 4.4). The directions of motion were like those in the walking

activities.
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Figure 4.3: Field (marked in purple) from which human and sphere swing activities were

measured [34].

4.1.4 Vehicles

Moving vehicles were recorded on multiple roads, between 600 meters and 1 400 meters away

from the radar, travelling in opposite directions at locations marked in Fig. 4.5.

4.1.5 Clutter or Noise

The clutter or noise class consisted of all data collected in which there was no target of

interest. This class will be referred to as the clutter class.

4.1.6 Sphere Swing

A person swinging a sphere that was attached to a rope was recorded in the middle of the

field in Fig. 4.3. This class was added to increase the diversity of the dataset. The sphere

was swung at different aspect and tilt angles and at varying velocities, in a circular motion,

figure-of-8 patterns and clockwise and anti-clockwise directions.

4.2 Data Pre-processing

The pre-processing stage involved computing the STFT from collected and labelled baseband

samples to generate spectrograms. This was followed by the process of extracting segments

of the spectrograms to be used as input data for the CNN model training, validation and

testing.
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Figure 4.4: Field and road (marked in red) from which human activity measurements were

taken.
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Figure 4.5: Roads (marked in purple) from which moving vehicles were measured [34].
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4.2.1 Short-Time Fourier Transform

The baseband samples were contaminated with clutter due to returns from stationary and

slow-moving objects. A sixth-order notch filter removed the clutter before computing the

STFT. The notch filter had a 3 dB bandwidth of 20 Hz, centre frequency of 0 Hz and maximum

pass-band ripple of 0.2 to suppress the clutter. A 3dB bandwidth of 20 Hz was used because

the clutter was observed to fall under a radial velocity of 0.5 m/s (20 Hz Doppler frequency)

in spectrograms that were generated from clutter class data. The filter’s magnitude response

in Fig. 4.6 shows that frequencies at 20 Hz were attenuated by 2.97 dB, while frequencies at

15 Hz were attenuated by 27 dB.

Figure 4.6: Magnitude response of the notch filter used to remove clutter.

After filtering, the STFT was applied to obtain a time-frequency domain representation of

the signals in the form of spectrograms. In computing the STFT, a Hamming window with

an overlap of 50% was applied. The Hamming window was chosen because it provides a

balance between side-lobe levels and an increase in main-lobe width. An overlap of 50% was

chosen since it allowed all data samples to be weighted equally, with minimal computational

effort [52]. Both of these reasons were discussed in Section 2.2.2.

To find the optimal CP length, the concept of peak SNR (PSNR) was applied. Note that

the SNR in the time-frequency domain varied with time due to the targets’ movements and
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their changing distance from the radar. Consequently, the PSNR was used as a measure of

the quality of information conveyed by a spectrogram. The PSNR was defined as the ratio of

peak power of the measured signal to the power of the noise.

The peak signal power was estimated using the peak value in the time-frequency domain, after

clutter removal. The power of the noise was estimated using filtered complex data samples

from the clutter class (Section 4.1.5). It was observed that the complex noise samples followed

a Gaussian distribution with zero mean, as shown in Fig 4.7. Hence, the noise power was

estimated using the variance of the samples [87].

Figure 4.7: Distributions of complex noise samples taken from filtered clutter class data.

Five data samples were randomly selected in each class to investigate the relationship between

PSNR and CP length. The data samples were filtered to remove clutter, and the STFT was

applied to convert the data into the time-frequency domain. The PSNR was then calculated

from the time-frequency domain data and the average PSNRs of each class were determined.

The CP length was varied between 32, 64, 128 and 256 (0.045, 0.09, 0.18 and 0.36 seconds in

time) in computing the STFT.

The results in Fig. 4.8 show that the average PSNRs of human activities were higher than

those of moving vehicles. One plausible reason for this is the target’s distance away from

the radar. Most human activities were measured in a field closer to the radar (175 meters).

Moving vehicles were measured at larger distances (600 meters - 1400 meters). From equation

1, the power of the received signal is more sensitive to a target’s range than the target’s

radar cross-section (RCS). The difference in range was potentially more significant than the

difference in RCS between the two targets. As a result, lower power was received for vehicles,

which resulted in lower SNR.

Human activities also had a higher PSNR than a swinging sphere, although the activities

were recorded at similar distances from the radar. One plausible reason for this was that the
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power received from the swinging sphere was lower (compared to human activities) due to

the sphere’s smaller cross-sectional area. The smaller cross-sectional area reduced the RCS,

which is directly proportional to the received power. Thus, a lower power resulted in a lower

SNR compared to human activities.

Figure 4.8: Curves of average PSNR of each class for various window lengths.

Fig. 4.8 also shows that the average PSNR of all classes plateaued after a window length of

128. As a result, doubling the window length beyond 128 would not significantly improve the

average PSNR but would create spectrograms with a higher computational cost for processing

in CNNs. Therefore, a window length of 128 was chosen to generate spectrograms using the

STFT.

The following STFT parameter values were chosen:

• Window type - Hamming.

• Window length - 128.

• Window overlap length - 64 (50%).
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4.2.2 Spectrogram Segmentation

The data that was used as input to the CNN models were extracted from spectrograms in a

sliding window fashion following the practice in [55]. Given that there was little information

on how researchers selected the time duration of examples, a spectrogram duration of 4

seconds was initially chosen as done in [14]. A duration of 4 seconds was sufficient to capture

the full gait of the slowest class (walking human), which is approximately 1 second for men

[88]. However, after model building, additional research was carried out to determine the

relationship between spectrogram duration and model accuracy in Appendix A.

The sliding windows had an overlap of 25%, which is equivalent to 1 second for a duration of 4

seconds. An overlap of 25% was chosen to ensure that there was a significant variance between

spectrograms in consecutive windows. Note that this was an overlap used for extracting input

data for CNNs while the previously mentioned overlap of 50% was used to compute the STFT.

Fig. 4.9 shows how four spectrograms of 4 seconds duration were extracted from a spectrogram

of one person walking away from the radar. There is a constant overlap of 1 second between

consecutive windows. The number of rows in the spectrograms was 128, while the number of

columns was 45. Therefore, the CNN models were fed input data of size 128× 45.

Fig. 4.10 shows extracted spectrograms of the six classes in the data. The vehicle spectrogram

shows the radial velocity of the vehicle decreasing over time because of slowing down. The

human activity spectrograms show periodic patterns resulting from the motion of the torso,

hands, and legs. The sphere swing example shows the radial velocity of the sphere changing

rapidly as the sphere follows a circular path spatially. There were no significant micro-Doppler

returns in the clutter spectrogram due to the absence of a moving target.

Fig. 4.10 also shows that the spectrograms of different targets each have a visually unique

signature. Thus, they contain a rich source of information for target classification using DL

techniques, especially CNNs that have excelled in image recognition tasks.

4.3 Splitting the data

A total of 17 939 spectrogram segments were extracted from the generated spectrograms.

Fig. 4.11 shows the distribution of the extracted spectrograms across various classes. The

vehicle class had the most spectrograms (4 443) while the sphere swing class was the least

represented, with only 2 049 examples.

The distribution of spectrograms across the various classes was uneven. Therefore, the concept

of class imbalance was explored. Class imbalance is present when there are significantly fewer

training examples in one or more classes compared to other classes [89]. The imbalance is

such that a model can achieve high accuracy by simply biasing itself to the majority class.

Therefore, choosing accuracy as the performing criterion in class imbalance problems may
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Figure 4.9: Four spectrograms extracted from a spectrogram of one person walking away from

the radar.
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Figure 4.10: Spectrogram segments of six classes extracted from spectrograms.
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Figure 4.11: Distribution of extracted spectrograms across classes.

give inaccurate and misleading information about a classifier performance [90–93]. Although

the classes in the data in this study were not evenly distributed, it was not considered as a

severely imbalanced dataset for the following reasons:

• The majority class did not vastly outnumber the other classes, e.g., by 10 times or 100

times [93,94].

• The vehicles class made up 24 % of the data, and if the classification is biased towards

this class, the model’s performance would be poor as it would get only 24 % (4 443/17

939) of the predictions correct.

Given that severe class imbalance did not apply to this data, accuracy was used as a

performance metric for the model and confusion matrices were used to evaluate the model’s

performance in each class. The accuracy was calculated using the following formula:

Accuracy(%) =
T

T + F
· 100% (9)

where T is the number of correctly classified spectrograms, and F is the number of incorrectly

classified spectrograms.

The spectrograms were split 70%/15%/15% into the train, validation and test datasets on a

per-class basis using their recording time. As shown in Fig 4.12, spectrogram segments from

earlier recordings were assigned to the training set, and spectrogram segments from the latest

recordings were assigned to the test set.

32



Spectrogram segments were divided on the time of recording because some spectrograms

recorded the same activity from the perspective of different range bins. These spectrograms

were highly correlated. Therefore, dividing the data on the time of recording instead of

randomly, ensured that correlated spectrograms used for training did not leak into the

validation and testing datasets. Furthermore, splitting data based on recording time allowed

a better assessment of how the model would perform in the future, having been trained on

data captured earlier [95].

Among the 3 169 spectrograms of one human walking, 238 spectrograms belonged to

measurements taken from the road, 1 200 metres away. The rest of the spectrograms

belonged to measurements taken from the field 175 metres away. Similarly, amongst the

2 354 spectrograms of one human running, 73 spectrograms belonged to measurements taken

from the road while the rest were taken from the field. The 238 and 73 spectrograms were

divided 70%/15%/15% between the training, validation and testing datasets on a per-class

basis. This ensured that the models were also trained on data from further distances before

validation and testing.

Figure 4.12: Splitting data from different classes into training, validation and test datasets.

The following chapter focuses on the implementation, training and testing of CNN models

using the data generated from the pre-processing steps.
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5 Model Implementation, Training and Results

This chapter gives an overview of the experimental process and the results that were achieved

in the model building stage. The first objective of this study was to improve the accuracy of

the model proposed by [34]. Therefore, four CNN models were considered. The first model

was the proposed model from [34], which provided a performance baseline. The second model

was a three-layer vanilla CNN, with BN [96]. The third model was a three-layer vanilla

CNN, with BN and GAP. The final model was a CNN that adopted BN, GAP, and residual

connections in its architecture following the practice in [57].

5.1 Model Implementation and Training

5.1.1 Baseline Convolutional Neural Network (Model 1)

Model 1, shown in Fig. 5.1, was used as the baseline model for performance comparison.

Model 1 had five convolutional and two fully connected layers resulting in 442 886 trainable

parameters. The first layer had 128 units with 5×5 filters, followed by two layers of 128 units

with 3×3 filters and then two layers of 64 units with 3×3 filters. BN and dropout [97] were

not used in this model because [34] observed that the two techniques did not improve the

model’s performance.

Figure 5.1: Architecture of the baseline model with five convolutional layers and two fully

connected layers.

Parker [34] found that the optimal training parameters for model 1 were a batch size of 100

and a learning rate of 0.0005 using Adam as the optimiser. Therefore, the same parameters

were used for training Model 1 in this study.

5.1.2 Convolutional Neural Network without Global Average Pooling (Model 2)

Model 2, shown in Fig. 5.2, was inspired by VGG16 CNN created by the members of the

Visual Geometry Group at the University of Oxford [98]. VGG16 showed that deep networks

utilising 3×3 filters performed better than shallow networks with larger filters. Model 2

had three convolutional layers of 32 units with 3×3 filters, and three fully connected layers.

There were 199 814 trainable parameters in this model. Model 2 also used BN between each

convolutional and activation unit layer as recommended in [96], since it standardises the data

passing through a model to allow faster training.
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Figure 5.2: Architecture of Model 2 with three convolutional layers and three fully connected

layers.

5.1.3 Convolutional Neural Network with Global Average Pooling (Model 3)

Lin et al. [74] showed that GAP acts as a regulariser to improve the classification performance

of a CNN. Model 3, shown in Fig. 5.3, introduced GAP after the feature extractor. Due to

GAP, Model 3 only needed one fully connected layer, which reduced the number of trainable

parameters by a factor of 10, from 199 814 to 19 206. Reducing the number of parameters

helps to prevent over-fitting and to achieve fast inference. Model 3 also used BN between

each convolutional and activation unit.

Figure 5.3: Architecture of Model 3 with three convolutional layers using GAP.

5.1.4 Convolutional Network with Residual Connections and Global Average

Pooling (Model 4)

Model 4, shown in Fig. 5.4, was inspired by Microsoft’s ResNet18 architecture [57], which

used residual connection after every two convolutional layers with GAP after the feature

extractor. He et al. [57] showed that networks utilising residual connections achieved better

classification results than their vanilla counterparts. This is because residual connections allow

networks to avoid the vanishing gradient problem, which degrades performance as network

depth increases. The model consisted of seven convolutional layers with 32 units with 3 × 3

filters in each layer and a single fully connected layer, resulting in 56 454 parameters. Model

4 also used BN between each convolutional and activation unit.

5.2 Results

This subsection covers the results from training models discussed in Section 5.1. The training

and validation results of the four models are presented. The results were used to determine

the best model.
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Figure 5.4: Architecture of Model 4 with three residual blocks using GAP.

ReLU was used as an activation function for reasons discussed in Section 2.4.1. Also, BN

with momentum 0.1 and epsilon of 10−5 was applied on Models 2 to 4 to achieve fast training.

In training Models 2 to 4, SGD and Adam were considered as optimisers using different

learning rates from 10−1 to 10−5 in orders of 10. Adam led to better accuracy results using a

learning rate of 10−4 for the proposed models. Furthermore, decreasing Adam’s learning rate

by 50% after every ten epochs improved the accuracy. Decreasing the learning rate in this

manner helped the models converge and not overshoot the minimum.

Early stopping [99] was also applied to stop the models from over-fitting after observing no

improvement in validation loss for 20 epochs. This was done to prevent the models from

over-fitting. Various batch sizes were also considered in training Models 2 to 4, including 16,

32, 64, 128 and 256. It was found that a batch size of 32 resulted in better accuracy. One

plausible reason for this is that smaller batch sizes add noise to the training process, and this

has a regularisation effect on the network [100].

5.2.1 Model 1 Results

The learning curves of Model 1 are shown in Fig. 5.5. The model reached a minimum

validation loss after 27 epochs. Training stopped after 47 epochs because of early stopping.

The baseline model was evaluated at the minimum validation loss, and it achieved a training

accuracy of 94.16% and a validation accuracy of 82.99%. This was comparable to [34]’s

validation accuracy of 83.18% using the same model. The small difference was potentially

due to the randomness in DL algorithms introduced by weight initialisation and regularisation

processes. This randomness makes it difficult to achieve the same results. Furthermore, [34]

used different STFT parameters to generate spectrograms. Thus, the model was not trained

on the same data. This was also a potential source of the difference in accuracy.

Fig. 5.6 shows the confusion matrix from evaluating Model 1 on the validation data. The

diagonal elements represent the accuracy of each class. The model had difficulty distinguishing

human activities (walking, two people walking and running) and achieved a minimum accuracy
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Figure 5.5: Training and validation curves of Model 1.
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of 51% for two people walking. Despite achieving an accuracy above 96% in classifying clutter,

sphere swing and moving vehicles, the overall accuracy was significantly limited by the model’s

inability to distinguish human activities correctly.

Figure 5.6: The confusion matrix of Model 1 fitted to validation data.

5.2.2 Model 2 Results

In optimising Model 2, it was found that a depth beyond three convolutional layers and

applying dropout did not improve the model.

The learning curves of this model are shown in Fig. 5.7. Model 2 reached a minimum

validation loss after nine epochs. Beyond nine epochs, the model started over-fitting, which

can be seen by the decreasing training loss and increasing validation loss. Training stopped

after 29 epochs because of early stopping. The model was evaluated at the minimum validation

loss, and it reached a training accuracy of 97.02% and a validation accuracy of 83.83%.

The confusion matrix on the validation data (Fig. 5.8) shows that Model 2 was also limited

in distinguishing the human activity classes. The minimum accuracy on the human activity

classes was 64.6% for two humans walking. The total validation accuracy was comparable

(less than 1% difference) to Model 1, but Model 2 had half the number of parameters. This
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Figure 5.7: Training and validation curves of Model 2.
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suggests that Model 1 had more trainable parameters than necessary.

Figure 5.8: The confusion matrix of Model 2 fitted to validation data.

5.2.3 Model 3 Results

The learning curves of the model are shown in Fig. 5.9. The model reached minimum

validation loss after 147 epochs. Training stopped after 167 epochs because of early stopping.

It might not be possible to know with certainty why Model 3 trained longer than models

1 and 2. However, one explanation is that GAP helps the neural network optimization by

smoothing, flattening, and stabilizing the loss landscape [101]. Consequently, the combination

of a smoother loss landscape and a decaying learning rate (50% every 10 epochs), resulted in

a model that took longer to reach the minimum.

The model was evaluated at the minimum validation loss, and it reached a training accuracy

of 96.14% and a validation accuracy of 86.84%, an improvement over both Models 1 and 2.

The confusion matrix of model 3 (Fig. 5.10) shows that it had higher accuracy in

distinguishing human activities than Model 2. The minimum accuracy in the human activity
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Figure 5.9: Training and validation curves of Model 3.
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classes was 73.7% for one person walking. The improvement in validation accuracy compared

to Model 2 is plausibly due to GAP, which improves model generalisation [74].

Figure 5.10: The confusion matrix of Model 3 fitted to validation data.

5.2.4 Model 4 Results

In optimising Model 4, it was found that beyond seven convolutional layers, the classification

accuracy improved by less than 0.05% for a significant increase in the number of trainable

parameters. Therefore, Model 4 used seven convolutional layers.

Model 4 learning curves are shown in Fig. 5.11. The model reached minimum validation loss

after 84 epochs. Training stopped after 104 epochs because of early stopping. The model was

evaluated at the minimum validation loss and achieved a training accuracy of 96.69% and a

validation accuracy of 92.90%, a significant improvement over Model 3.

The confusion matrix of Model 4 (Fig. 5.12) shows that the model improved in distinguishing

human activity. The minimum accuracy in the human activity classes was 83.8% in the one

human walking class. This was significantly higher than the 51%, 64.6% and 73.7% achieved

by Models 1, 2 and 3. The overall 6% improvement in validation accuracy, compared to model

3, was plausibly due to residual connections, which facilitated the addition of more layers to
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Figure 5.11: Training and validation curves of Model 4.
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the network to learn more abstract features without degrading its performance [57].

Figure 5.12: The confusion matrix of Model 4 fitted to validation data highlighting (in red)

three pairs of most confused classes.

The results from all the models are summarised in Table II. Model 1 had 442 886 trainable

parameters. It achieved a significantly lower accuracy (82.99%) than models 3 (86.84%) and 4

(92.90%). Model 3 and 4 applied GAP after the feature extractor. GAP averaged the results

from output feature maps of the feature extractor. Consequently, fewer parameters were

needed in the fully connected layer, reducing the number of total parameters in the model,

which helps prevent over-fitting [74]. Plausibly, the reduction in the number of parameters

resulted in better model generalisation, which improved the classification results.

Model 4 outperformed all models by using residual connections. Residual connections allowed

the depth of the model to be increased without suffering a degradation in performance.

As networks grow deep, they learn increasingly powerful features that are essential for

discriminating between different classes [102]. This is a plausible reason for Model 4 achieving

higher accuracy than Models 1, 2 and 3.
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Model Number of Parameters Training Accuracy (%) Validation Accuracy (%)

Model 1 442 886 94.16 82.99

Model 2 199 814 97.02 83.83

Model 3 19 206 96.14 86.84

Model 4 56 454 96.69 92.90

Table II: Accuracy results of Model 1, 2, 3 and 4.

5.3 Cross-Validation

Ten-fold cross-validation [103] was used to assess the accuracy of the top two models (Models

3 and 4) on unseen data. The training and validation data were combined, and the test data

was excluded from the process. The combined data was divided into ten folds. Examples from

each class were divided equally across the folds based on time, as shown in Fig. 6.1. The

model was trained on nine folds in each training session, using the left-over fold for validation.

Ten training sessions were held to ensure that each fold was used for validation exactly once.

Figure 5.13: Data preparation for cross-validation.

Model 3 achieved an average cross-validation accuracy of 91.32%, with a minimum accuracy

of 90.42% on the last fold and a maximum of 96.54% on the second fold. Model 4 reached

an average cross-validation accuracy of 93.02%, with a minimum accuracy of 91.15% on the

first fold and a maximum of 96.21% on the second fold. The results indicated that the data

in the second fold was the easiest to classify for both models.

Models 3 and 4 achieved 91.32% and 93.02% average cross-validation accuracy, respectively.

Therefore, Model 4 was chosen as the best model as it showed better predictive performance

than Model 3.
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5.4 Analysis of Best Model

Model 4 reached a validation accuracy of 92.90% and a cross-validation accuracy of 93.02%.

An analysis was done on the top three classes of examples that the model found most difficult

to classify, highlighted in red in Fig. 5.12.

Most of misclassified spectrograms had weak micro-Doppler returns. These weak returns

result from measurements taken from longer distances. From Equation 1, the power of the

received signal is inversely proportional to the fourth power of the target’s range. Therefore,

longer target ranges result in weaker micro-Doppler returns. Such spectrograms are shown in

Fig. 5.14 (b, d, h, i and j), Fig. 5.15 (c, d, e, h and i), and Fig. 5.16 (c and g).

Other misclassified spectrograms did not have visible micro-Doppler returns. These

spectrograms include Fig. 5.14 (c and f) and Fig. 5.16 (a). One plausible reason for this was

that the baseband samples used to generate the spectrograms were taken from range bins

in which a target of interest had left. Given that the model classified these spectrograms

under human activity instead of the clutter class suggests that there might be very weak

micro-Doppler returns in the spectrograms that the CNN model can detect.

A small proportion of the misclassified spectrograms appeared to be mislabelled. Examples

of these include Fig. 5.14 (j), Fig. 5.15 (b) and Fig. 5.16 (e), which show micro-Doppler

returns of a swinging sphere that were classified as human activities. The spectrograms were

potentially misclassified as human activities because of the stronger micro-Doppler returns

between the -2.46 m/s and +2.46 m/s region of the spectrum, as highlighted in the figures.

Strong returns within this region usually come from torso micro-Doppler returns in human

activity data.

5.4.1 Test Data Performance

Model 4 was evaluated on the test data and achieved a test accuracy of 87.72%. Note that

[34]’s model achieved a test accuracy of 84.41%. Thus, the proposed model achieved an

accuracy that was 3% higher than the baseline model.

The highest accuracy was 100% on the clutter class, as shown in Fig. 5.17. The model’s

accuracy in each class was higher in the test set than the validation set except for the

one human walking class, which achieved an accuracy of 49.4%. This was significantly low

compared to the 83.8% accuracy achieved in the validation dataset on the same class.

An analysis of the misclassified spectrograms of the one human walking class revealed that

most of the misclassified spectrograms had weak micro-Doppler signatures, as shown in Fig

5.18. This was possibly due to a longer target range than other recorded measurements. The

weak micro-Doppler returns make it more difficult to distinguish features between the two

classes. To prevent this in the future, it may be necessary to have multiple radars deployed
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Figure 5.14: Examples of misclassified one-person walking spectrograms.
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Figure 5.15: Examples of misclassified two-people walking spectrograms.
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Figure 5.16: Examples of misclassified one-person running spectrograms.
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Figure 5.17: The confusion matrix of Model 4 on test data.
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in the surveillance area so that the distance between the radar and target is minimised, to

receive stronger micro-Doppler returns.

Figure 5.18: Misclassified spectrograms in the test dataset.
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6 Inference

Inference is the process of classifying data after model training. The inference speed

(throughput) of a model must be sufficiently high so that the model can support real-time

applications. As discussed in Section 2.5, one way of improving a model’s throughput is by

PTQ. PTQ reduces the precision of a pre-trained model’s parameters (weights and activations)

and input data to run computations in low-bit precision, which is faster. However, the speed

gain may come at the cost of accuracy.

This section investigated the effect of PTQ on the throughput and accuracy of model 4. The

results from the investigation were used to determine if the throughput of the model could

be improved without a significant degradation in performance. In addition, an inference

pipeline was simulated to determine the maximum range supported by Model 4 in real-time

applications.

6.1 Throughput and Accuracy

6.1.1 Implementation

PTQ was implemented in TensorRT [104] using the PyTorch FP32 (PFP32) Model 4 from

Section 5.1.4. The PFP32 model was optimised by TensorRT and quantised to FP16 and

INT8, resulting in the following models:

• TFP32 - The TensorRT optimised FP32 model.

• TFP16 - TensorRT optimised FP16 model.

• TINT8 - TensorRT optimised INT8 model.

Quantisation was performed using a calibration dataset of 84 randomly selected examples from

each of the six classes to make a total of 504 examples as recommended in [38]. Cross-entropy

was used for quantisation range setting as it was found to minimise accuracy loss compared

to the Percentile approach discussed in Section 2.5.1.

To measure throughput, there was no need to use real measured data because the focus was on

the speed at which data was processed, regardless of its class. Therefore, the throughput of the

four models was calculated using randomly generated spectrograms in 1 000 batches. Batch

sizes of 16, 32, 64, 128 and 256 were considered. The formula used to calculate throughput

was as follows:

Throughput =
N

T
(spectrograms/s) (10)

where N is the total number of classified spectrograms and T is the total time taken to

complete inference.
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After calculating throughput, the accuracy of the four models was compared to the validation

and test set to assess how quantisation affected the model’s performance.

6.1.2 Throughput Results

The throughput results are shown in Fig. 6.1. The model’s curves show an increase in

throughput as the batch size increases. This is because bigger batch sizes allow more

spectrograms to be processed in parallel, leading to higher throughput. However, the

throughput plateaus after a batch size of 128 due to limitations on the number of parallel

processes that can be run using the available computational resources.

Fig. 6.1 also shows that the PFP32 model had the lowest throughput among the four

models. The PFP32’s highest throughput was 5 000 spectrograms/s using a batch size of

256. TensorRT optimisation doubled the throughput of the model to 10 000 spectrograms/s.

Quantising the TensorRT optimised model to INT8 precision resulted in a 3.8 times speed

gain from 10 000 spectrograms/s to 38 000 spectrograms/s.

Figure 6.1: Curves of data throughput varying with batch size and quantisation precision.

6.1.3 Accuracy Results

The predictive performance of the four models was assessed on the same validation and test

data that was used to evaluate Model 4’s performance in the previous chapter. The accuracy

results are summarised in Table III.

Quantisation led to a slight decrease in accuracy in both the validation and test data. It

was observed that INT8 quantisation had a higher accuracy drop compared to FP16 in both
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datasets. The maximum percentage drop was 0.33% on the validation data and 0.38% on

the test data due to INT8 quantisation. The percentage drop in accuracy was higher for the

INT8 model than the FP16 model, potentially because of an increase in information loss when

moving from 32-bit to 8-bit precision compared to 16-bit precision. However, quantisation

may help regularise the model in some instances, which may improve accuracy.

These accuracy results cannot be directly compared to the results from literature because

results from other researchers show that the effect of quantisation depends on the model and

dataset type, as discussed in Section 2.5.3.

The accuracy and throughput experiments showed that the loss in accuracy due to

quantisation was less than 0.4%, and the gain in speed reached 3.8 times using TensorRT

optimised models. This showed that the proposed model could be quantised to increase

throughput while effectively maintaining high accuracy.

6.2 Inference Pipeline Experiments

6.2.1 Implementation

An inference pipeline was created to simulate the processes followed in classifying activities

or targets using radar data. The pipeline setup assumed that data was already available in

memory, and other processes such as pulse-compression, beamforming, and decimation had

already been performed.

Fig. 6.2 shows the pre-processing and inference stages of the pipeline. The pre-processing

stage involved filtering out clutter and computing the STFT using complex random samples

in range bins. The samples were stored as complex floats of size 64-bits, with each component

of the complex number being assigned 32-bits. The sampling frequency of the samples was

the effective PRF of 714 Hz, which is the same as that of the real data used in this study.

The pipeline would wait for 2 856 (PRF×4 seconds) samples to accumulate in a range bin

when processing data. Note that 2 856 samples are needed to generate a spectrogram of 4

seconds duration with size 128 × 45 using the STFT parameters from Section 4.2.1. The

spectrograms would then be collected and fed to the TINT8 model, which would process the

Model Validation Accuracy (%) Test Accuracy

PFP32 92.90 87.72

TFP32 92.90 87.72

TFP16 92.75 87.70

TINT8 92.57 87.34

Table III: Comparison results of Model 4 with different precisions.
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data in batches of size 256.

Figure 6.2: Inference pipeline combining the pre-processing and inference stages.

The total time taken for data to pass through the pipeline was measured for various range

bins, starting from 3 000 to 18 000 in steps of 3 000. The total processing time was measured

100 times for each number of range bins.

6.3 Results

The results from the experiments (Fig. 6.3) showed that the inference pipeline could support

a maximum of 15 000 range bins in real-time. In 15 000 range bins, all the processing times

are within four seconds, which is the time taken for 2 856 samples to accumulate in a range

bin. Beyond 15 000 range bins, the pipeline will not be able to process the data in under

four seconds. Consequently, there will be no real-time support since the rate at which data

will be entering the pipeline (PRF) would exceed the rate it can be processed. The pipeline

could support a range of 89.91 km (range resolution × 15 000) in real-time, assuming the

data was coming from a single receive beam. If there are two receive beams, then the data

will be coming in at twice the rate, and the pipeline will only be able to support half of the

range. Thus, the maximum range will scale linearly in this manner depending on the number

of receive beams available.

Note that in a radar system, various processes occur before computing the STFT, which were

not considered in this pipeline. These processes include pulse-compression, beamforming,

and additional steps like decimation. Therefore, the throughput bottleneck might come from

these preceding processes, which would reduce the maximum range that the entire system

can support.
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Figure 6.3: Box and whisker plots of the time taken to pre-process and infer data using the

inference pipeline in Figure 6.2.

56



7 Conclusion & Recommendations

7.1 Conclusion

This study’s first objective was to improve the results achieved by [34] in classifying human

activities and targets using radar data collected at the CSIR campus in Pretoria. Parker’s

[34] work was the first to use the CSIR dataset to perform classification using a CNN. For

this reason, [34]’s model was used as a baseline model, and work was done to improve the

performance. The second objective was to investigate if PTQ can be used to improve the

inference speed of the model while maintaining its performance.

7.1.1 Objective I

To achieve the first objective, complex baseband samples collected and labelled by the CSIR

were converted to spectrograms using the STFT algorithm. The parameter values of the

algorithm were selected using available literature and the PSNR of the data. Examples

of 4 seconds duration were extracted from the generated spectrograms in a sliding window

fashion and were fed to CNNs for training. It was found that residual connections, BN

and GAP, improved model performance. This resulted in a validation accuracy of 92.90%

and a test accuracy of 87.72%. The validation accuracy was 10% more than [34]’s model,

and the test accuracy was 3% more than [34]’s. Despite the proposed model having eight

times fewer parameters than [34]’s model, higher accuracy was achieved. One feasible reason

for this is that [34]’s model was over-parameterised, which led to its poor generalisation.

The proposed model had a cross-validation accuracy of 93.02%, which showed its ability to

maintain performance on encountering new data.

Despite improving the results from [34], the proposed model showed that it had difficulty

in distinguishing one person walking from two people walking, which limited its overall

performance on both the validation and test data. Weak micro-Doppler returns were present

in one person walking spectrograms that the model struggled to classify. One reason for weak

Doppler returns is a longer range between the target and the radar, as deduced from the radar

Equation 1. To solve this issue, radars can be placed in multiple places in the surveillance

area so that at any point in time, the distance between the target and the radar is minimised.

This will ensure that the signal received by the radar has a high SNR, which makes it easier

to identify micro-Doppler patterns in spectrograms.

7.1.2 Objective II

The second objective was achieved by utilising TensorRT to optimise and quantise the

proposed model. It was found that PTQ resulted in a 3.8 times speedup of the model with less

than 0.4% accuracy loss using 8-bit integer precision. The results from the inference pipeline

showed that it could support up to 89.91 km of range in real-time. This can enable the model
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to monitor vast amounts of land provided other preceding processes are not bottlenecks to

data throughput. It is important to note that model inference throughput is also dependent

on the hardware, as discussed in Section 2.5.2. If the model is a bottleneck, the throughput

can be improved by using more powerful GPUs such as Nvidia TITAN V or Tesla V100.

7.2 Recommendations for Further Research

The recommendations below are made from this study’s data collection, model development,

and inference processes.

Firstly, a more diverse dataset would facilitate the development of a model with better

generalisation capabilities. The diversity of the dataset can be improved by collecting data in

different weather conditions or using more subjects for human activity measurements as done

in [54]. This may help the model maintain its performance in varying weather conditions or

when there are humans with different walking patterns from those of the individuals used

to record the data. In addition, it is vital to know the range threshold at which a model

can distinguish activities or targets accurately. Future research should consider collecting

various datasets grouped by ranges. For example, one dataset may have activities and targets

recorded from 100 to 500 meters away from the radar, while the other may be from 2000 to

3000 meters away. Comparing model accuracy between the datasets will help determine the

maximum range that would still yield reliable results.

Secondly, at the time of writing, vision Transformers (ViTs) [105] and Convolution and

self-Attention Networks (CoAtNets) have been outperforming other models such as ResNets

in the ImageNet competition. Future research should consider applying these models to the

problem of human activity and target classification to improve the results achieved by the

best-performing model in this study.

Finally, INT8 quantisation boosted the throughput by 3.8 times in the inference stage.

However, this came at the cost of a 0.38% drop in accuracy. For further research, QAT [38]

can be investigated to retain the model’s accuracy after quantisation.
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Appendix

A Results from Additional Research

As discussed in Section 2.3, CNN input data can be extracted from spectrograms using a

sliding window or random sampling along the time axis. A sliding window was used to

extract the input data in this study. However, additional experiments were conducted to

determine if random sampling would improve accuracy. In addition, the relationship between

the selected spectrogram duration and accuracy was investigated.

A.1 Sliding Window or Random Sampling

Model 4 was trained on data created using the sliding window approach and achieved a

validation accuracy of 92.90% and a test accuracy of 87.72%. Note that a spectrogram

duration of 4 seconds was used to extract input data for Model 4. The exact duration was

applied in the random sampling approach. A total of 10 000 spectrograms were generated for

training, 2 138 for the validation and 2 142 for testing. Model 4 was then re-trained on the

new data using the same hyper-parameters that were used in Section 5.

It was found that using randomly sampled data resulted in a validation accuracy of 91.12% and

a test accuracy of 88.25%. Although the random sampling approach achieved a slightly higher

test accuracy (by 0.53%), it had a lower validation accuracy (by 1.78%) than that achieved

using data generated in a sliding window fashion. Since the random sampling approach

produced a model with a higher test accuracy, it was considered slightly better than using a

sliding window. However, more research needs to be carried out since the 0.53% difference

was considered too small to provide a sound conclusion.

A.2 Relationship between Spectrogram Duration and Accuracy

The second set of experiments investigated the relationship between spectrogram duration

and accuracy. Different datasets were created using spectrogram durations of 1, 2, 3 and 5

seconds in a sliding window fashion. The spectrogram overlap was 25%, as done in Section

4.2.2. Note that data of 4 seconds duration was already available from the pre-processing

done in Section 4. Five instances of Model 4 CNNs were trained on the five datasets using

the same hyper-parameters used in Section 5. The trained models were then evaluated on

their dataset’s validation and test set.

The results in Fig. A.1 show that model accuracy increases with an increased spectrogram

duration. The increase was expected since a longer spectrogram duration results in

micro-Doppler patterns being observed for a more extended time. Consequently, the model

is given more information for classification, which helps improve prediction capabilities. Kim
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Figure A.1: Comparison results of Model 4 using different spectrogram durations.

and Moon [54] also found that an increase in spectrogram duration increased accuracy.

A.3 Conclusion

The first experiment compared randomly sampling spectrograms to using a sliding window to

generate Model 4’s input data. The results from the first experiment were inconclusive since

both methods achieved test accuracies within 0.6% of each other.

The results from the second experiment showed that accuracy increases with an increase in

spectrogram duration. However, if the spectrogram duration is increased, the waiting time

also increases prior to inference. The waiting time increases to allow enough samples to

accumulate in the range bins to generate spectrograms of the specified duration. Thus, there

is a trade-off between accuracy and waiting time, which must be considered for inference

purposes.

B Link to Code

The code for implementing data processing, model training and the inference can be found

at https://github.com/nemashy/Masters-Nyasha
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