
OVERCOMING CUBESAT DOWNLINK LIMITS WITH VITAMIN: A NEW

VARIABLE CODED MODULATION PROTOCOL

By

Thomas A. Sielicki

RECOMMENDED:
Dr. Jon Hamkins

Dr. Joseph Hawkins

Dr. Charles Mayer

Dr. Denise Thorsen
Advisory Committee Chair

Dr. Charles Mayer
Chair, Department of Electrical and Computer Engineering

APPROVED:
Dr. Douglas Goering
Dean, College of Engineering and Mines

Dr. John Eichelberger
Dean of the Graduate School

Date

CORE Metadata, citation and similar papers at core.ac.uk

Provided by ScholarWorks@UA

https://core.ac.uk/display/162576571?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

OVERCOMING CUBESAT DOWNLINK LIMITS WITH VITAMIN: A NEW VARIABLE

CODED MODULATION PROTOCOL

A

THESIS

Presented to the Faculty

of the University of Alaska Fairbanks

in Partial Fulfillment of the Requirements

for the Degree of

MASTER OF SCIENCE

By

Thomas A. Sielicki, B.S.

Fairbanks, Alaska

December 2013

v

Abstract

Many space missions, including low earth orbit CubeSats, communicate in a highly dy-

namic environment because of variations in geometry, weather, and interference. At the

same time, most missions communicate using fixed channel codes, modulations, and sym-

bol rates, resulting in a constant data rate that does not adapt to the dynamic conditions.

When conditions are good, the fixed date rate can be far below the theoretical maximum,

called the Shannon limit; when conditions are bad, the fixed data rate may not work at

all. To move beyond these fixed communications and achieve higher total data volume

from emerging high-tech instruments, this thesis investigates the use of error correcting

codes and different modulations. Variable coded modulation (VCM) takes advantage of

the dynamic link by transmitting more information when the signal-to-noise ratio (SNR)

is high.

Likewise, VCM can throttle down the information rate when SNR is low without

having to stop all communications. VCM outperforms fixed communications which can

only operate at a fixed information rate as long as a certain signal threshold is met.

This thesis presents a new VCM protocol and tests its performance in both software and

hardware simulations. The protocol is geared towards CubeSat downlinks as complexity

is focused in the receiver, while the transmission operations are kept simple. This thesis

explores bin-packing as a way to optimize the selection of VCM modes based on expected

SNR levels over time. Working end-to-end simulations were created using MATLAB and

LabVIEW, while the hardware simulations were done with software defined radios. Results

show that a CubeSat using VCM communications will deliver twice the data throughput

of a fixed communications system.

vii

Table of Contents

Page
Signature Page . i

Title Page . iii

Abstract . v

Table of Contents . vii

List of Figures . xi

List of Tables . xiii

List of Appendices . xv

Acknowledgments . xvi

Chapter 1 Thesis Introduction . 1

1.1 Significance of CubeSats . 1

1.2 The Communications Link Budget . 1

1.3 Forward Error Correcting Codes . 3

1.4 Thesis Overview . 7

Chapter 2 Developing and Simulating the VCM Protocol 9

2.1 Introduction . 9

2.2 The VITAMIN System Design . 9

2.2.1 CCSDS Turbo and LDPC codes . 10

2.2.2 CCSDS Modulations . 13

2.2.3 The VCM modes . 13

2.3 CubeSat Implementation Feasibility . 14

2.4 Simulation . 15

2.5 System Performance . 16

2.5.1 Frame Marker Identification Error Rate 16

2.5.2 Frame Descriptor Error . 17

2.6 Design for Receiver Frame Marker Synchronization 19

2.7 Overall Data Throughput Performance . 21

2.8 Low Symbol Rate Performance . 24

Chapter 3 Bin-Packing: Maximizing Throughput 25

3.1 Introduction . 25

3.2 Applying Bin-Packing in the VITAMIN Protocol 27

3.3 Program Overview . 28

viii

Page

3.4 Determining the Shannon Hartley Limit . 28

3.5 Simulation Data Set . 29

3.6 VITAMIN Analysis from the TMS Program 30

3.6.1 Monthly Simulation . 30

3.6.2 Varying the Consecutive Number of Frames 31

3.6.3 Identifying the Workhorses of VITAMIN 33

3.7 Conclusions . 34

Chapter 4 VITAMIN Radio Implementation . 35

4.1 Introduction . 35

4.2 The Hardware and Software . 35

4.3 Data Flow Overview . 37

4.4 Transmitter Development . 38

4.4.1 Transmitter Initialization . 39

4.4.2 Data Transmission Flow . 40

4.5 Communications Channel . 40

4.6 Receiver Development . 42

4.6.1 USRP Initialization . 43

4.6.2 IQ Data Fetch . 44

4.6.3 Resample . 44

4.6.4 Matched Filter, Time Align, Frequency Offset, Phase Offset, and Dec-

imation . 44

4.6.5 Frame Marker Detection . 46

4.6.6 Aligning Phase . 48

4.6.7 Queuing of PLF . 49

4.6.8 Determining the Mode of PLF . 49

4.6.9 Soft Demodulation . 49

4.6.10 LLR Scaling . 49

4.6.11 Decoding . 50

4.6.12 Derandomization . 51

4.6.13 Sink . 51

4.7 Pulse Shaping and Matched Filtering . 51

ix

Page

4.8 Constellation Workaround . 52

Chapter 5 VITAMIN Performance . 55

5.1 Codeword Error Rate Analysis of Modes in LabVIEW 55

5.2 Codeword Error Rate Analysis for USRP via RF 57

5.3 Simulation of CubeSat Pass . 58

5.3.1 Process and Observations . 60

5.4 Simulation of Random VCM Mode . 61

5.5 LabVIEW Performance Under Noise . 62

Chapter 6 Final Recommended VITAMIN Protocol 63

6.1 Purpose . 63

6.2 Scope . 63

6.3 Data Handling . 63

6.3.1 Signal Constellations . 64

6.3.2 Pseudo Randomization . 64

6.3.3 Frame Marker . 65

6.3.4 Physical Layer Frame . 65

6.3.5 Data Recovery Properties . 65

6.3.6 Mode Ordering . 66

6.4 Future Work . 67

6.4.1 Bin-Packing . 67

6.4.2 Fully Functional Software Defined Radio Ground Station 67

6.4.3 Develop a CubeSat Sized Transmitter 68

Acronym Index . 71

Bibliography . 73

Appendices . 77

xi

List of Figures

Page

1.1 Hamming (7,4) Venn Diagram . 5

1.2 Example of Hamming (7,4) . 5

1.3 The VCM Modes vs Shannon Limit . 6

2.1 Physical Layer Frame . 10

2.2 Turbo Encoder Processing Chain . 11

2.3 LDPC Example . 12

2.4 LDPC Example with Data . 13

2.5 MATLAB Simulation Flow Chart . 16

2.6 Frame Marker Identification Error Rate under AWGN 17

2.7 Frame Descriptor Identification Error Rate under AWGN 19

2.8 VCM versus Fixed Mode Communications for CubeSat Pass of 35 Degrees . 23

2.9 VCM versus Fixed Mode Communications for CubeSat Pass of 80 Degrees . 23

3.1 1D, 2D, 3D Bin-Packing Examples . 26

3.2 Varying the Consecutive Number of Frames in VITAMIN 32

4.1 Lab Setup - 2 NI USRP 2920 . 36

4.2 Software Radio and Computer Connections 37

4.3 Transmitter, AWGN Channel, Receiver . 37

4.4 Transmitter Flow Diagram . 38

4.5 LabVIEW Transmitter User GUI . 39

4.6 Inside of USRP 2920 with WBX TX/RX Board 41

4.7 Spectrum of USRP Output for Mode 11 at 50 kS/s 42

4.8 Receiver Flow Diagram . 43

4.9 LabVIEW Receiver User GUI . 45

4.10 Detectable FM Correlation Spikes with Es/N0 -8 dB 48

4.11 Two Complex Symbols . 50

4.12 VITAMIN Signal Constellations . 52

4.13 Signal Constellations Used for VITAMIN in LabVIEW 53

5.1 LabVIEW Software Only CWER Simulation Flow 55

xii

Page

5.2 CWER Graph for Select Modes . 56

5.3 CWER curve for Mode 11 . 59

5.4 Spectrum of USRP TX Output with Noise . 61

6.1 Stream Format at Different Stages of Processing 64

A.1 Encoding Process - Interface with C DLL Function 78

A.2 Randomization Process Using Shift Registers 78

A.3 Frame Marker Detection . 79

A.4 PLF Processing: Complex Symbols to Hard Bits 80

xiii

List of Tables

Page

2.1 Original 28 VCM Modes Investigated . 14

2.3 VCM Modes Used in 80 Degree Pass . 22

2.2 Throughput of Different Coding Sets for Fixed and VCM 22

3.1 Monthly Throughput (GBits) for Fairbanks, AK 30

3.2 Monthly Throughput (GBits) for Miami, FL 30

3.3 Identifying Workhorse Codes . 33

5.1 LabVIEW Software Only CWER . 57

5.2 Performance under AWGN Observed with USRP Receiver for CWER 10−4 . 58

5.3 VITAMIN Pass Simulation on USRP . 60

6.1 24 VITAMIN Modes . 66

6.2 Forward Error Correcting Coding Types in VITAMIN 67

xv

List of Appendices

Page

Appendix A Thesis Source Code . 77

A.1 Archive Files . 77

A.1.1 MATLAB Simulation . 77

A.1.2 TMS Program . 77

A.1.3 LabVIEW URSP Implementation . 77

A.2 Code Highlights . 77

Appendix B Programs Specifications and User Guide 81

B.1 TMS Dependencies . 81

B.2 TMS Outputs . 81

B.3 TMS Bin-Packing Approaches . 82

B.3.1 First Choice Selection . 82

B.3.2 Top Down Selection . 82

B.3.3 Random Solution . 82

B.3.4 One Mode Solution . 83

B.3.5 Fixed Mode Solution . 83

B.4 LabVIEW Transmitter/Receiver User Guide 83

B.4.1 User Variables . 83

xvii

Acknowledgments

A portion of this research was carried out at the Jet Propulsion Laboratory, California

Institute of Technology, under a contract with the National Aeronautics and Space Admin-

istration (NASA) and funded by the Alaska Space Grant Program (ASGP).

1

Chapter 1

Thesis Introduction

1.1 Significance of CubeSats

The current development of CubeSats has introduced the idea that small and simple satel-

lites can be used for important scientific research with a relatively low cost for construction.

A 1U CubeSat measures 10 cm x 10 cm x 10 cm in size. Other common sizes are 2U and 3U

which are respectively double and triple in length. CubeSats are standardized by specifica-

tions developed by California Polytechnic State University in the late 1990’s [1]. Using this

standard multiple CubeSat units are able to be packaged into a Poly-Picosatellite Orbital

Deployer (P-POD). The P-POD launches as an auxiliary payload in normally unused space

on larger and more expensive space missions, reducing the cost to fly to about $40,000 per

U [2].

With the cheap cost of CubeSat construction and deployment, there are obviously

going to be limitations to overcome. CubeSats are size limited, providing less space

for solar panels and large antenna systems, which creates significant limitations for the

communications system as it operates at the low power levels, about 2 W for the 1U.

1.2 The Communications Link Budget

The signal power received at a ground station from a transmitting satellite is described by

the basic link budget shown,

PRX = PTX + GTX − LTX − LFS + GRX − LRX − LM (dB). (1.1)

The amount of power received (PRX) depends on the transmitted power (PTX), gain of

the transmitter (GTX), sum of the losses at the transmitter (LTX), free space loss in a wireless

communication channel due to distance (LFS), the gain at the receiver (GRX), the sum of the

losses at the receiver (LRX), and any other miscellaneous losses (LM). Ultimately the goal in

any communication system is to maximize the received power, PRX, as this directly relates

to achieving a higher information rate.

Looking closer at the received power, it is convenient to express PRX in terms of

signal-to-noise ratio (SNR), as described by

SNR = (Es/N0) · (Rs/B), (1.2)

2

where Es is the energy per symbol, N0 is the one-sided noise spectral density, Rs is the

symbol rate, and B is the noise bandwidth. The channel is assumed to be well modeled

by Additive White Gaussian Noise (AWGN). So in a communication environment with a

constant noise spectral density, bandwidth, and symbol rate, only a higher signal to noise

ratio can result in more channel capacity, C, as seen by Shannon’s channel coding theorem

[3]

C = B log2(1 + SNR) bits/s. (1.3)

Channel capacity is in high demand as scientific mission requirements are demanding

more downlink throughput than ever before; for example high-tech space instruments

like 50 megapixel resolution imagers [4]. Compounding the data downlink bottleneck, low

Earth orbiting CubeSats can only communicate with a single ground station for a 15 minute

duration every 90 minutes, at best. This in turn requires the communications engineer to

focus on every aspect of the link budget to increase SNR and thus downlink throughput.

Current CubeSat missions have taken many different approaches to increase the daily

downlink throughput. One, not so cheap, but non-satellite-impacting approach is increas-

ing the receiver gain, GRX, which in simplest terms is using a bigger receive antenna or

satellite dish. The investment difference between a 3 meter ground antenna ($4,000) and a

9 meter antenna ($116,000) is $112,000, which is not practical considering a typical CubeSat

budget [5]. Even the cheapest cost of renting downlink time can quickly exceed the Cube-

Sat’s overall pricetag. Likewise, GTX, the gain of the transmitting antenna on the CubeSat

is size limited on the tiny 10 cubic centimeter satellite.

Data throughput can also be increased without manipulating the link budget, but

instead increasing the communication time. A globally distributed ground station network

increases the communication window and can provide more constant communications,

which increases downlink throughput but can also be very expensive [6].

Some designers have used adaptive data rates. Adaptive data rates are commonly

used as an alternative to or in conjunction with variable coding and modulation. The idea

is to simply send the bits faster when SNR is strong and slower when SNR is low. This

technique typically requires a greater bandwidth (B) due to occasional high symbol rates

which might not be available or affordable [7].

Looking at the link budget equation there are several loss terms. These are the losses

which are mainly uncontrollable. LTX and LRX are the losses in the wiring and hardware of

3

the transmitter and receivers and are kept to a minimum in the satellite design. LM accounts

for the miscellaneous losses like polarization mismatch, implementation loss, fading, and

atmospheric conditions. Polarity mismatch can be solved through circular patterns and

controlled pointing of the spacecraft and on the ground.

This thesis looks at solving the communications data throughput issue by adapting

to the expected variations in the free space loss, LFS, or path loss margin from low orbit

geometries with time-varying codes and modulations. This is a technique that can double

throughput versus a traditional system with the low cost of increasing the system complex-

ity and avoiding the high monetary cost. Path loss is defined as LFS = 20 log10
4πd
λ , where

λ is the wavelength of the radio frequency. The path loss term in Equation 1.1 shows an

inverse squared relationship with distance (d). Since the orbiting satellite is not at a con-

stant distance from the ground station the free space loss, LFS, in the link budget equation,

is not a constant value but variable with a minimum and maximum. This margin results

in a received power that changes over time, and a communication system that accounts for

this will have the ability to obtain a higher channel throughput.

1.3 Forward Error Correcting Codes

Today’s CubeSat missions typically communicate using fixed channel codes, modulations,

and symbol rates, resulting in a constant information rate that does not adapt to the dynamic

conditions. The information rate is the rate at which the scientific data is transmitted. When

conditions are good, the fixed information rate can be far below the theoretical maximum;

when conditions are bad, the fixed information rate may not work at all. CubeSat space

missions communicate in a highly dynamic environment because of variations in geometry,

weather, and interference. To move beyond these fixed communications modes and achieve

higher total data volume this thesis investigates time-varying codes and modulations.

Variable Coded Modulation (VCM) takes advantage of the dynamic link by increas-

ing the information rate when SNR is high, whereas fixed communications transmits the

same information rate as long as a certain signal threshold is met. Likewise, VCM can

throttle down the information rate when SNR is low without having to stop all commu-

nications. This allows a higher total throughput than can be achieved with fixed-mode

communications. Additionally implementation of time-varying codes and modulations

can be processed in the CubeSat size constraints through low power Field Programmable

Gate Array (FPGA) [8], while the computationally complex operation of decoding would

4

be handled by the ground station.

VCM is an important topic for all space communication applications, for example

probes sent into space experience time varying dynamic links as they orbit around other

planets. NASA currently moves massive amounts of scientific data and images from

the Mars Science Laboratory up to the low altitude Mars Reconnaissance Orbiter, where

the communication window is short and dynamic just like CubeSats. The resources are

extremely limited as there is literally nothing available on Mars in terms of communication

resources, so even with billions of dollars, antenna size, power levels, ground stations, and

satellite relays will remain hindrances.

The early advances of Forward Error Correction (FEC) brought forth the concept of

VCM. In 1982, Gotfiend Ungerboeck showed how FEC (specifically trellis codes) could be

applied to double the current speed of telephone modems using the same infrastructure

and bandwidths. In 1994 the Digital Video Broadcasting - Satellite (DVB-S) standard was

implemented for satellite video and data to be transmitted using different coding rates

and modulation types, and in 2003 second generation technology Digital Video Broadcast-

ing - Satellite Second Generation (DVB-S2) included Adaptive Coded Modulation (ACM)

technologies [9]. These are just two examples of how coding and modulation have helped

communications approach the Shannon limit.

Forward error correcting allows for the recovery of bit errors in noisy channels without

the retransmission of data. This is done by encoding the information bits with redundancy.

The simplest forward error correcting is simply repeating the bits, for example sending the

message 010 as 000111000 via the (3,1) redundancy code. The problem with this simplest

solution is noise occurs randomly in time and will not effect every bit equally, meaning a

burst could result in receiving 0??????00. In this case, the middle bit is unknown, while

the first bit has more uncertainty than then last. Efficient error correcting methods add

redundancy bits that are complex functions of the information bits and encode the data in

much longer lengths which results in averaging out the noise over time.

The Hamming (7,4) code which was developed by Richard Hamming in 1950 at Bell

Laboratories is the first practical Forward Error Correction (FEC), in the field of information

theory [10]. Although this thesis uses more advanced FECs, the principles are the same. The

Hamming code takes in 4 information bits (the bits of data needing to be sent somewhere)

and always sends 7 bits. The receiver is able to recover the message with 1 bit error, and it

can detect 2 bit errors. This is explained visually on a Venn diagram (Figure 1.1), d1−4 are

5

the information bits while p1−3 are the extra parity bits. The parity bits become either 0 or

1 based on whichever value makes the circle sum to an even number. For example, if the

three information bits, d1, d2, d4, are all 1s, the parity bit, p1, will be 1 for an even sum.

p1

p2 p3

d1 d2

d3

d4

Figure 1.1. Hamming (7,4) Venn Diagram

Figure 1.2 shows an example of the transmitted and received bits in a Venn diagram

form. The information bits of 1,0,0,1 are shown in blue and the parity bits 0,1,0 are in

red. In this case the decoder sees that the bottom two circles do not meet their parity

checks, and the only single bit flip that fixes this is changing d3 (gray) from a 1 to a 0.

The error correcting code successfully transmits the 4 information bits to the receiver in an

environment where 6 or 7 (of 7) bits are successfully recovered. Not using the coding in the

same conditions will result in corrupted data and require retransmission, which requires

feedback communication, and in the case of a CubeSats additional time and power.

0

0 1

1 0

0

Sent

1

0

0 1

1 0

1→ 0

Received

1

Figure 1.2. Example of Hamming (7,4)

6

Figure 1.3 shows the performances of the VCM modes investigated in this thesis and

how close they come to achieving the Shannon limit (Equation 1.3) by nearly matching the

curve [3]. Each marker represents a combination of one coding type set to a specific rate

and modulation. Similar modulations are linked together by the same colored line. All 28

modes are described in Table 2.1. A traditional fixed communications system would only

operate at one mode, which could be any of the 28 data points. The fixed mode system

would fail to operate below a threshold and is easily outperformed above the threshold as

it diverges from the Shannon Limit.

−10 −8 −6 −4 −2 0 2 4 6 8 10 12 14 16 18 20

1/6

1/4

1/3

1/2

2/3

7/8

1

2

3

4

5

6

E
s
/N

0
 (dB)

B
an

dw
id

th
 E

ffi
ci

en
cy

 (
bi

ts
 p

er
 c

ha
nn

el
 u

se
)

Shannon Limit→

Turbo Coding
LDPC Coding
BPSK
QPSK
8PSK
16APSK
32APSK
64APSK

Figure 1.3. The VCM Modes vs Shannon Limit

Adaptive Coded Modulation (ACM) is an extension VCM, as it incorporates a protocol

for determining the VCM mode to use. ACM requires a two way communication system

that provides feedback of received signal levels in real time to transition between operating

7

modes. ACM has been applied in two way systems like cellular data communications

since the late 1990’s [11] and consumer satellite internet services like HughesNet. The

major advantage of ACM is instantaneous adaption to the real time link budget, which can

account for factors like weather disturbances, unexpected antenna pointing, and cochannel

interference. VCM is a much simpler communication system which has some advantages

and disadvantages. Needing to know the link budget and a detailed path loss before hand

is not possible in most applications but it is with low earth orbiting CubeSats. Additionally,

nearly all CubeSats have the mission of collecting data and transmitting to Earth, not the

other way around, making a one way link practical.

1.4 Thesis Overview

The purpose of this thesis is to introduce a new VCM protocol, Variable Coded Modulation

to Maximize Information (VITAMIN). The performance of the VITAMIN design will be

tested and measured to quantify the data throughput improvement versus costs. The

VITAMIN design utilizes the industry’s best error correcting codes as recommended by

NASA and is shown to be an improvement to other industry VCM systems, like Serial

Concatened Convolutional Code (SCCC) from Consultative Committee for Space Data

Systems (CCSDS) [12].

Chapter 2 is a proof of concept for applying VCM to CubeSat applications. An entire

communications simulation was developed in software first to determine the feasibility of

a new VCM communication system, which evolved into VITAMIN. This step was essential

to identifying design obstacles and requirements before moving to a hardware product.

Additionally this process provided the benchmark suggesting that downlink throughput

can be nearly doubled with several VCM designs when applied to a CubeSat application.

Since VITAMIN is specifically proposed as a VCM system, not adaptive (ACM), a mode

calculation program is required for operation. Additionally the system is made flexible to

work in a range of symbol rates, link budgets (more specifically path loss ranges), and any

subset of the VITAMIN operating modes. Chapter 3 discusses the research and develop-

ment of a software program that predictably maximizes the information throughput for a

satellite application. Algorithms similar to bin-packing are discussed and applied when

looking at mode packing. Extensive statistical analysis is done to measure the improve-

ments VITAMIN has over traditional and alternative communications approaches, plus

information throughput is compared to the theoretical maximum.

8

Chapter 4 is an end-to-end hardware implementation of the VITAMIN protocol. Soft-

ware defined radios were coded to implement both a VITAMIN transmitter and receiver.

Chapter 4 goes through the information processing from the bits into the transmitter to the

bits out of the receiver. Unlike Chapter 2, the protocol is tested using radio frequencies as

the signal travels through the air or cable. Common communication issues like receiver

syncing and overcoming noise are encountered. The receiver developed not only proves

the proof of concept, but is also a functional ground station receiver.

Chapter 5 is the performance analysis of the transmitter and receiver developed in

Chapter 4. Simulations include codeword error rate analysis, VCM mode switching, and

real time satellite to ground communication.

Chapter 6 fully describes the developed VITAMIN protocol. As research and imple-

mentation created new ideas and resolved issues, the VITAMIN protocol changed. Chapter

6 describes the current state of the protocol and provides documentation on how to imple-

ment VITAMIN. The second part of Chapter 6 discusses future work that needs to be done

with the VITAMIN protocol and work required to turn the software defined radio receiver

into a reliable ground station receiver.

9

Chapter 2

Developing and Simulating the VCM Protocol

2.1 Introduction

Chapter 2 reports on the design and performance of a new VCM system. This VCM system

comprises eight of NASAs recommended codes from the CCSDS standards [13], includ-

ing four turbo and four Accumulate Repeat 4 Jagged Accumulate (AR4JA) low-density

parity-check codes, together with six modulations types [14]. The signaling protocol for

the transmission mode is based on another CCSDS recommendation [12]. The coded

modulation may be dynamically chosen to optimize throughput.

The purpose of this chapter is to introduce a modified VCM system tailored for large

data downlinks for low orbiting satellites, mainly CubeSats. This chapter investigates a

selection of specific VCM modes and a new protocol for mode detection based solely on

frame markers. This chapter is focused on a Matrix Laboratory (MATLAB) end-to-end

simulation that consists of random data generation, encoding the data, modulation of the

data, additive white Gaussian noise for channel simulation, frame marker identification,

coded modulation mode extraction, demodulation, and decoding. Achievable error rates

and total throughput are recorded. This simulation can be applied to any link budget that

describes the SNR over time and can selectively use all or some of the supported coded

modulation modes.

Lastly, a novel aspect of the VCM design is that each operating mode has a unique

number of symbols in its frame. This enables the receiver to identify the code and modula-

tion simply from the number of symbols occurring between the dedicated frame markers

which occur between frames, without having to explicitly transmit a signal to identify the

operating mode. This concept allows for a limitless selection of modes and low complexity

design.

2.2 The VITAMIN System Design

The proposed VCM for CubeSat application, VITAMIN, closely follows the VCM protocol

used in the CCSDS recommendation for Serial Concatened Convolutional Code (SCCC)

[12]. Namely, a Physical Layer Frame (PLF) consists of a Frame Marker (FM), a Frame

Descriptor (FD), and 16 frames of the same VCM type, shown in Figure 2.1. The PLF

symbol length varies based on the VCM mode being transmitted. Attached sync mark-

ers are inserted into the data and the input goes through a pseudo-random interleaver

10

prior to encoding. The FM is generated using a gold sequence described in the CCSDS

recommendation [12]. This FM is 256 bits long and is modulated with Binary Phase Shift

Keying (BPSK). The FM always follows the last or 16th codeword and precedes the FD,

which signals which code and modulation will be used in the remainder of the Physical

Layer Frame (PLF). The FD is generated as section 5.3.3.2.2 of the CCSDS recommended

standard [12] suggests. The FD has a total length of 64 bits, can describe up to 32 VCM

modes, and is also modulated with BPSK.

Figure 2.1. Physical Layer Frame [12]

This chapter shows that the VCM protocol of CCSDS can be used with two different

FEC code sets, turbo and Low-Density Parity-Check (LDPC) codes [13]. Both of which have

been selected for implementation in the VITAMIN system. It also shows that the existing

VCM protocol of CCSDS is general enough to support a variety of codes and modulations

[12].

2.2.1 CCSDS Turbo and LDPC codes

CCSDS has recommended a set of 16 turbo codes [13]. There is a code for each of rates

1/6, 1/4, 1/3, and 1/2, and input lengths 1784, 3568, 7136, and 8920. These codes have

been a workhorse for deep space missions, for example, having been used on the Mars

Reconnaissance Orbiter and the Curiosity Mars Rover. From this set of 16 codes, this thesis

will use the turbo codes of length 8920 and rates 1/6, 1/4, 1/3, and 1/2.

CCSDS has also recommended a set of nine Accumulate Repeat 4 Jagged Accumulate

(AR4JA) LDPC codes, along with one other higher rate LDPC code [13]. The nine AR4JA

codes represent each combination of code rates 1/2, 2/3, and 4/5 and input lengths 1024,

4096, and 16384. The 10th LDPC code, called C2, has input length 7136 and rate 223/255,

or approximately 7/8. From this set of ten codes, this thesis will use the AR4JA codes of

length 16384 and rates 1/2, 2/3, and 4/5, along with the C2 LDPC code [14] [13].

11

Figure 2.2. Turbo Encoder Processing Chain [15]

Both turbo and LDPC codes implement Forward Error Correction (FEC) algorithms.

Figure 2.2 shows the general encoding process used in Turbo codes, where M represents a

memory register and D represents a time delay. The turbo codes rely on parallel encoders

that use a concatenation scheme to propagate the k input bits into n output bits. Every FEC

has a code rate which is defined as k/n and typically expressed as a fraction. The decoder

takes soft demodulation outputs and uses feedback registers to make bit decisions as the

data is decoded. Soft demodulation is discussed in subsection 4.6.9. Only turbo codes of

rates ranging 1/6 to 1/2 are used in this thesis.

The principle behind LDPC codes is parity nodes that are the modulo two sum of bit

nodes. These bit and parity nodes are all interconnected by modulo two equations, thus the

need to iterate to converge on a solution for the whole frame. For the AR4JA LDPC codes

used in this thesis the frame length is 16384 bits, Figure 2.3 is a visual example showing

12

only a 6 bit chunk and the corresponding parity check nodes.

A B C D E F ← Variable Nodes

Y ZX ← Check Nodes

Figure 2.3. LDPC Example

Ignoring the inputs from other bits and just looking at the 3 check nodes X, Y, and Z the

equations are:

X = A ⊕ B ⊕ C ⊕D = 0

Y = C ⊕D ⊕ F = 0

Z = A ⊕D ⊕ E = 0.

(2.1)

Figure 2.4 replaces A-F with bit values of 1,0,0,1,0,1. Let’s assume 3 bits are perfectly

recovered and 3 bits are unknown (erased). In reality the LDPC decoder uses soft decision

bits called log likelihood ratios, to represent the accuracy of each bit estimate. Looking

at Figure 2.4, both Z and X can not accurately be computed because their inputs have

unknowns. Fortunately Y can be calculated as D and F are both 1, meaning we are

confident C must be 0 because Y must equal 0. This iteration is shown in blue. Now the

green iteration process has more likely input for C which will result in a decision for A.

Lastly red shows the propagation of confident values into E.

When the received values are noisy, multiple iterations happen until a successful solu-

tion is found, for example a more realistic input to the receive would be soft inputs A-F

of 0.6,0.1,0.4,0.9,0.1, and 0.8 respectively. Variable and check nodes will recalculate their

new values on each iteration based on combination of all previous estimates. Eventually

a result will converge, as in the case of the first example where the received bits had high

SNR, sometimes a solution will not converge resulting in an invalid solution that will have

bit errors. More detailed introduction to LDPC coding is available in [16] [17].

13

1Send: 0 0 1 0 1

Y ZX

?Receive: 0 ? 1 ? 1

Y ZX

Figure 2.4. LDPC Example with Data

2.2.2 CCSDS Modulations

The CCSDS recommendation on SCCC [12] makes use of a number of modulations. Binary

Phase Shift Keying (BPSK), Quadrature Phase Shift Keying (QPSK), and 8 Phase Shift

Keying (8PSK) which are text book modulations. The union of two Phase Shift Keying (PSK)

constellations is used to form 16 Amplitude and Phase Shift Keying (16APSK). Two

other modulations, 32 Amplitude and Phase Shift Keying (32APSK) and 64 Amplitude

and Phase Shift Keying (64APSK), are also formed from the union of PSK constellations.

CCSDS has described particular symbol mappings and relative amplitude scalings for these

modulations [12], and the optimal demodulation of the modulations are described in [18].

2.2.3 The VCM modes

The VCM system described in this chapter uses 8 turbo code modes and 20 LDPC code

modes. Additionally, all six modulation types discussed above are used. The 28 modes

are listed in Table 2.1, with the shaded modes ultimately omitted from VITAMIN design

as described below. The table gives the code rate, the number of information bits per

modulation symbol (equal to the code rate times the base-2 logarithm of the number of

constellation points of the modulation), the number of modulation symbols per physical

layer frame, and the minimum Es/N0, in dB. To generate PLFs to meet the dynamic condi-

14

Table 2.1. Original 28 VCM Modes Investigated

Modulation Code
Code
Rate

Info Bits
per Symbol PLF Length

Es/N0 for
CWER 10−4

0 BPSK Turbo 1/6 0.17 857024 -7.87
1 BPSK Turbo 1/4 0.25 571456 -5.84
2 BPSK Turbo 1/3 0.33 428672 -4.33
3 BPSK Turbo 1/2 0.50 285888 -1.94
4 QPSK Turbo 1/6 0.33 428672 -4.86
5 QPSK Turbo 1/4 0.50 285888 -2.83
6 QPSK Turbo 1/3 0.67 214496 -1.32
7 QPSK Turbo 1/2 1.00 143104 1.07
8 QPSK AR4JA LDPC 1/2 1.00 262464 0.93
9 QPSK AR4JA LDPC 2/3 1.33 196928 3.00
10 QPSK AR4JA LDPC 4/5 1.60 164160 4.75
11 QPSK C2 LDPC 7/8 1.75 65600 6.27
12 8PSK AR4JA LDPC 1/2 1.50 175083 4.04
13 8PSK AR4JA LDPC 2/3 2.00 131392 6.71
14 8PSK AR4JA LDPC 4/5 2.40 109547 8.94
15 8PSK C2 LDPC 7/8 2.62 43840 10.79
16 16APSK AR4JA LDPC 1/2 2.00 131392 6.33
17 16APSK AR4JA LDPC 2/3 2.67 98624 8.98
18 16APSK AR4JA LDPC 4/5 3.20 82240 11.19
19 16APSK C2 LDPC 7/8 3.50 32960 12.94
20 32APSK AR4JA LDPC 1/2 2.50 105178 8.98
21 32APSK AR4JA LDPC 2/3 3.33 78964 11.63
22 32APSK AR4JA LDPC 4/5 4.00 65856 13.90
23 32APSK C2 LDPC 7/8 4.37 26432 15.73
24 64APSK AR4JA LDPC 1/2 3.00 87702 10.97
25 64APSK AR4JA LDPC 2/3 4.00 65856 14.12
26 64APSK AR4JA LDPC 4/5 4.80 54934 16.61
27 64APSK C2 LDPC 7/8 5.25 22080 18.60

tions of the link, the minimum Es/N0 for each mode type must be known. Table 2.1 shows

each mode’s minimum Es/N0 needed for a Codeword Error Rate (CWER) of 10−4. The

VCM mode performances were analyzed in a previous paper [18].

2.3 CubeSat Implementation Feasibility

Only the downlink for CubeSat communications is power limited, resulting in the VCM

system being applied for only outbound communications, which is a major key to the

implementation of a VCM system in these small satellites. The computational complexity

of the error correcting codes is found in the receiver which will be at the ground station.

15

The encoders are relatively low-complexity and can easily fit on a Field Programmable

Gate Array (FPGA) like the Altera Cyclone or Xilinx Spartan3A which are already being

included in other CubeSat designs [8].

2.4 Simulation

An end-to-end software simulation of the VITAMIN system was created. The software

controlling the overall simulation was done in MATLAB, and the encoders and decoders

for both LDPC and Turbo were implemented in C, for more efficient processing. MATLAB

Executable (MEX) files were used to interface with the C encoders and decoders.

Several simulations of the communication systems were performed in MATLAB. The

first analysis looked at the performances of the Frame Marker (FM) and Frame Descriptor

(FD) under Additive White Gaussian Noise (AWGN). This was done to determine their

reliability before implementation of the whole protocol. The simulation was performed

millions of times, recording incorrect Frame Marker locations. Likewise incorrect FDs were

recorded.

Next, each operating mode was tested. The entire process is visualized in Figure 2.5.

One PLF was created by generating 16 frames of random data that were put through an

interleaver and then encoded by a mode type. Next the bits were modulated to IQ pairs.

The channel transmission is simulated with AWGN as described by a hypothetical CubeSat

profile which describes SNR over time, this data is included in supplemental files discussed

in Appendix A. Then the receiver part of the simulation occurred, the receiver first searched

for the frame marker, decoded the frame descriptor that follows, and determined the VCM

mode. Then the IQ pairs are demodulated and decoded. At last the simulation does a

bit by bit comparison of the information sent and received recording any bit errors. This

process was repeated until enough bits were processed to obtain measurable bit error rates.

The last MATLAB analysis consisted of a complete end-to-end simulation of a satellite

pass. It was necessary to examine a hypothetical CubeSat profile with one ground station to

determine the path loss over time. Knowing this information allowed for the determination

of mode ordering and timing. The very first iteration of this was done by hand, and was

time consuming. The next two satellite profile analyses were done slightly quicker with

Microsoft Excel, but it became apparent a computer program for mode determination

was needed. Hence the Throughput Mode Selection (TMS) program was created. This is

discussed in Chapter 3. The end-to-end simulation processing was identical to the bit error

16

Figure 2.5. MATLAB Simulation Flow Chart

simulation, but with the modes determined.

2.5 System Performance

2.5.1 Frame Marker Identification Error Rate

A MATLAB simulation was performed to discover the error rate for detecting frame mark-

ers under Additive White Gaussian Noise (AWGN). This process consisted of a cross

correlation between the noisy received signal and the expected 256 bit frame marker. The

estimated offset index is given by:

x̂ = argmax
x:0≤x≤l−1

255∑
k=0

s∗[k + x] ·m[k], (2.2)

where s is the noisy signal, m is the known 256 bit frame marker, and l is length of the cross

correlation or the length of the search. The search length l can be selected based on the

length of the longest physical layer frame, among all VCM modes. Under the VCM design

the longest physical layer frame possible is 857,024 symbols or bits since the modulation

is BPSK. Doubling this length and subtracting 256 (the length of a frame marker) results

in the length of the longest possible bit stream containing only one frame marker, which is

1,713,792 bits. This simulation generated two physical layer frames, chopped off the first

frame marker, applied AWGN, and then computed the cross correlation to find the index

with the highest correlation. If this index didn’t match the known value, an error was

recorded. This simulation was repeated one million times for each Es/N0 level of -20 to -8

17

dB. Fifty million simulations were needed for Es/N0 of -7.87 dB. The simulation results can

be seen on Figure 2.6.

−20 −18 −16 −14 −12 −10 −8 −6
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
s
/N

0

E
rr

or
 R

at
e

Figure 2.6. Frame Marker Identification Error Rate under AWGN

At an Es/N0 of -8 dB the Frame Marker is misidentified 1 in 10,000 trials, which is an

acceptable level for even the lowest rate turbo code operating at Es/N0 of -7.87 dB with its

own codeword error rate of 10−4. This simulation shows that the CCSDS designed Frame

Marker is acceptable for all codes considered in this VCM design.

2.5.2 Frame Descriptor Error

The next simulation was to test the Frame Descriptor performance under the same noisy

conditions to ensure that the receiver will demodulate and decode using the right mode.

This simulation assumed that the Frame Marker was correctly detected. The simulation

18

randomly selected one of the 32 frame descriptors, simulated a noisy channel with AWGN,

decoded the noisy received frame descriptor, and checked if it was correctly detected. This

simulation was then repeated 1 million times for six Es/N0 levels, -9 to -4 dB, which are the

noisiest conditions expected under operation of this VCM system.

The receiver demodulation and decoding process of the frame descriptor utilized a

lookup table of all 32 available frame descriptors. The FD of [12] uses a (32,6) code which

is designed for a maximum of 32 modes where 5 bits are the identifier and 1 bit is reserved

for a distributed pilot feature. This identifier is encoded to 32 bits and doubled to 64 bits

for transmission. All 32 possibilities were tested even though the VCM system would use

less. The FDs are stored in a 32 by 64 matrix in BPSK format of ±1, with d j[i] denoting the

ith bit in the Frame Descriptor for the jth VCM mode. Finding the largest inner-product

between the noisy input signal and all 32 frame descriptors yields the frame descriptor

with the minimum distance to the received frame descriptor,

ˆmode = argmax
j:0≤ j≤31

64∑
i=1

s[i] · d j[i]. (2.3)

Figure 2.7 shows unacceptable error rates for frame descriptor identification for the

same low signal levels that the turbo codes are designed to work. This means that the

frame descriptor code will not work with the current VCM design. The simulation shows

that when operating at Es/N0 of -7 dB the frame descriptor would be misidentified 25% of

the time, and this would prevent reliable decoding of Turbo 1/6 QPSK codes that are able

to operate down to -7.87 dB.

19

−9 −8 −7 −6 −5 −4
10

−3

10
−2

10
−1

10
0

E
s
/N

0

E
rr

or
 R

at
e

Figure 2.7. Frame Descriptor Identification Error Rate under AWGN

There are several solutions to this problem, the obvious choice is to design a new

frame descriptor that has better error correcting capabilities. In theory, a (64,6) length code

might accomplish this. Alternatively, the problem could be solved with a more complex

receiver. When the receiver demodulates and decodes the received signal with the wrong

demodulator and/or decoder, it can be discovered quickly by the failure of the decoder to

converge to a valid codeword, or by the simple fact that the next frame marker does not

appear in the expected location.

2.6 Design for Receiver Frame Marker Synchronization

Instead of reprocessing data with another mode type or decoding in parallel, this software

simulation receiver was designed to find two frame markers, identify the number of sym-

20

bols between the markers, and deduce the mode from the length. This is a low-complexity,

high-performing solution, and one novel result of the thesis.

This approach relies on the unique symbol length property. Of the 28 modes selected to

be explored, only 24 were implemented, as the original 28 modes had all but four unique

symbol lengths. Removing four codes would give 24 unique lengths, and as it turned

out the four modes removed do not sacrifice VCM performance. An additional constraint

to preserving unique lengths requires a constant symbol rate. This method completely

eliminates the need for the receiver to process the poorly performing frame descriptor,

suggesting that the VCM design could eliminate it all together. The final VITAMIN protocol

adopts the design of using unique lengths and eliminating the Frame descriptor.

There are four pairs of modes that shared identical symbol lengths, they are listed

below:

• mode 2 and 4 (BPSK 1/3 Turbo, QPSK 1/6 Turbo)

• mode 3 and 5 (BPSK 1/2 Turbo, QPSK 1/4 Turbo)

• mode 13 and 16 (8PSK 2/3 LDPC, 16APSK 1/2 LDPC)

• mode 25 and 22 (64APSK 2/3 LDPC, 32APSK 4/5 LDPC)

Looking at the eight modes, the solution of eliminating the usage of four modes can

conveniently be justified. All BPSK modes serve little purpose since QPSK can deliver

twice the information at no extra cost, so BPSK 1/2 and BPSK 1/3 can be removed (labeled

Modes 2 & 3). Mode 13 can be eliminated because it is dominated by mode 16: mode 13

achieves a throughput of 2 bits per symbol and requires Es/N0 = 6.71 dB, while mode 16

achieves 2 bits per symbol and only requires Es/N0 = 6.33 dB. Similarly LDPC 32APSK 4/5

& LDPC 64APSK 2/3 both deliver 4 information bits per symbol but 64APSK 2/3 requires

a higher signal to noise ratio to operate, so 64APSK 2/3 can be removed from the list of

VCM modes. Although we have made these particular choices here, the available support

for higher order modulations, and their relative implementation losses, will dictate which

modes are dominated and can be eliminated in a particular system. For the purpose of this

thesis, we assume support of all six modulations and equal implementation losses for all

modulation types.

After reducing the VCM operating mode list to 24 unique modes, the frame descriptor

could optionally be eliminated resulting in only frame markers separating the modes.

21

Additionally this new design allows for a limitless number of VCM modes which is an

improvement over the 32 modes the frame descriptor method provided. Of course, any

additional mode added will be required to have a unique symbol length, or some other

means to identify it.

2.7 Overall Data Throughput Performance

Low Earth orbiting satellites are great candidates for VCM communications with primary

ground stations, due to a varying link geometry and a fixed power budget. This section

looks at the performance of using two alternative sets of VCM codes for a CubeSat mission,

in addition to the Turbo and LDPC codes used in VITAMIN. The simulation input requires

a link budget that describes the Es/N0 versus time for the duration of the pass. For this

research Satellite Tool Kit software by Analytical Graphics Inc. was used to describe

the link budget of a polar orbiting CubeSat at 600 km with a primary ground station in

Fairbanks, AK. Two passes were generated with constant parameters for antenna gain and

transmit power levels, with the only difference being the pass’s maximum elevation. Two

pass types were analyzed, a near overhead pass at 80 degrees maximum elevation and a

slightly shorter pass with only 35 degrees maximum elevation. The 80 degree pass exhibits

a minimum Es/N0 of -2.76 dB at the horizon and a maximum of 11.93 dB, with a total time

of 635 seconds. The 35 degree pass exhibits a minimum Es/N0 of -2.79 dB at the horizon

and a maximum of 7.89 dB, with a slightly shorter time of 591 seconds.

The two sets of pass data was then simulated with three sets of VCM codes: The 24

VCM modes from Table 2.1 labeled VITAMIN, Digital Video Broadcasting Satellite Second

Generation for single carrier per transponder labeled DVB-S2 [19], and the SCCC encoder

codes, labeled CCSDS SCCC [12]. VCM mode switching thresholds were calculated using

each mode’s respective minimum Es/N0 for a codeword error rate of 10−4 [18].

Additionally the simulation calculates the maximum fixed throughput using only one

of the VCM modes. VCM improvement is calculated by dividing the VCM throughput

by the fixed mode throughput. Table 2.2 shows the advantage of using VCM for these

CubeSat passes and the comparison between all three VCM coding sets. This simulation

uses a fixed symbol rate of 9600 kilo symbols per second.

22

Table 2.3. VCM Modes Used in 80 Degree Pass

Mode Modulation Code
Code
Rate

Time Mode
Used (s)

Percentage
of Pass

Throughput
(Kbits)

4 QPSK Turbo 1/6 9 1.4 493
5 QPSK Turbo 1/4 103 16.2 819
6 QPSK Turbo 1/3 128 20.2 882
8 QPSK AR4JA LDPC 1/2 92 14.5 512
9 QPSK AR4JA LDPC 2/3 40 6.3 345
10 QPSK AR4JA LDPC 4/5 50 7.9 768
12 8PSK AR4JA LDPC 1/2 24 3.8 1420
16 16APSK AR4JA LDPC 1/2 74 11.7 1689
17 16APSK AR4JA LDPC 2/3 66 10.4 553
18 16APSK AR4JA LDPC 4/5 18 2.8 992
21 32APSK AR4JA LDPC 2/3 31 4.9 28

Table 2.2. Throughput of Different Coding Sets for Fixed and VCM
Pass

Elevation
Pass

Time (s) Code Set
Fixed

(Mbits)
VCM

(Mbits) VCM/Fixed
35 591 VITAMIN 3,437 6,564 1.91
35 591 DVB-S2 2,909 5,482 1.88
35 591 CCSDS SCCC 3,315 5,732 1.73
80 635 VITAMIN 3,878 8,502 2.19
80 635 DVB-S2 3,657 7,068 1.93
80 635 CCSDS SCCC 3,704 7,722 2.08

The simulations showed that all three sets of codes double or nearly double the overall

throughput. The VCM design is able to take advantage of the 80 degree pass’s higher

variation in Es/N0 and exhibit more improvement. Additionally the VITAMIN set of codes

slightly outperform CCSDS SCCC and DVB-S2 in total throughput. This can be attributed

to the turbo codes which are able to operate when the link is the poorest, whereas both

CCSDS SCCC and DVB-S2 are unable to utilize the link at all during the times the satellite

is on the horizon.

Doubling the data throughput is a significant accomplishment for VCM and presents

evidence that this system will be a valued asset in space communications. Figure 2.8 and

Figure 2.9 are visual comparisons of fixed mode communications versus VCM showing the

35 and 80 degree passes, respectively. The solid curved line shows the actual link budget.

The stepped blue line shows the Es/N0 thresholds needed for VCM communication. The

dashed black line shows the best choice fixed mode Es/N0 threshold.

23

Figure 2.8. VCM versus Fixed Mode Communications for CubeSat Pass of 35 Degrees

Figure 2.9. VCM versus Fixed Mode Communications for CubeSat Pass of 80 Degrees

24

For the case of the 80 degree maximum pass the best fixed mode communications

system would be mode 9, AR4JA LDPC QPSK 2/3. Table 2.3 highlights that Mode 9 would

provide the most throughput for that pass.

2.8 Low Symbol Rate Performance

There is a potential penalty associated with selecting certain VCM modes, if their associated

physical layer frames are so long that conditions can become more favorable well before

one full frame can be transmitted. This is evident in the case of CubeSats using error

correcting codes at low symbol rates like 9600 symbols per second. This rate only yields

5,760,000 symbols per 10 minute pass. If the first VCM mode is QPSK Turbo 1/6 the first

physical layer frame would be 428,672 symbols or 45 seconds.

The simplest VCM switching algorithm is selecting the mode with the highest informa-

tion bit rate that can operate at both the current Es/N0 level and throughout the duration

of its physical layer frame. If the link is varying quicker than the time it takes to transmit

a physical layer frame, smarter decisions can be made when selecting VCM modes. Since

there are 24 VCM modes with different lengths, information rates, and Es/N0 thresholds,

all factors need to be considered when optimizing the highest throughput. Intelligently

determining the VCM mode will be investigated in Chapter 3. This will help communica-

tions systems using VCM at low symbol rates and ensure proper mode transitioning for

all noise levels.

Elements of Chapter 2 are published in IEEE Aerospace 2013, [20].

25

Chapter 3

Bin-Packing: Maximizing Throughput

3.1 Introduction

To successfully and efficiently implement the VITAMIN protocol for a satellite system,

planning of the mode selection for each communication window needs to be done. All

satellites have unique communication hardware and orbits and different ground stations,

which means very different link budgets, path loss margins, and length of passes. Certain

applications of the VITAMIN protocol could have very long pass times, others might have

a short window for communication but a highly dynamic change in path loss. Additionally

non-power-limited satellites can transmit at high symbol rates, while CubeSats transmit

at very low symbol rates. Whatever the case might be, knowing all the communications

parameters coupled with successful planning the VITMAIN implementation will yield a

maximum information throughput. This chapter looks at the throughput maximization

problem from the bin-packing approach and provides a flexible computer program that

automatically preforms the VITAMIN mode selection.

Bin-packing has been an interesting and difficult problem for mathematicians and

computer scientists for the last few decades. Bin-packing can be seen in 1, 2, or 3 dimensions.

Bin-packing is simply minimizing wasted space by efficiently packing the collection of

objects into a fixed number of bins or containers. 1D bin-packing would have just variable

lengths or widths; an example is a game of Tetris with just rectangles, except rotation

is not allowed. 2D bin-packing would be the case of variable widths and lengths, a

common example is minimizing material waste as seen in the clothing and manufacturing

industries when dealing with fabric and sheet metal stock. Lastly 3D bin-packing deals

with lengths, widths, and heights with fixed orientation and container constraints; this is a

heavily researched problem in the shipping industry to ensure every truck or cargo plane

is efficiently packed to maximize profit margins. Real world applications are rarely this

simple, for example the shipping industry has to consider the weights of the boxes and

yield priority to certain boxes that have time constraints and must be placed in a specific

container. Figure 3.1 visually shows bin-packing applications.

Adapting the algorithms from 1D and 2D Bin-packing are often the best solutions to

more complex bin-packing scenarios. The three best known algorithms in bin-packing

are Next Fit, First Fit, and Ordered First Fit which were developed by Corcoran and

Wainwright [21]. First Fit takes the items in the order that they come and places the items

26

Figure 3.1. 1D, 2D, 3D Bin-Packing Examples

in the containers trying to minimize wasted space, very similar to the game Tetris. Next Fit

is used in cases where there are multiple bins, or the original bin is split into slices. Items

are places in the order they come in, but when an item cannot be placed in a bin it goes to

the next bin. This helps pack large items that would not fit into nearly full bins. Ordered

First Fit arranges the items from largest to smallest before placement and places the largest

items first. This approach is seen in efficient suit case packing, as pants are packed before

socks.

Although an optimal algorithm might not exist for a given bin-packing problem, math-

ematicians have proven the effectiveness of the common bin-packing algorithms. In 1973,

Jeffrey Ullman at Princeton University proved that First Fit can be sub-optimal by as much

as 70% [22]. In the early 1970’s Ronald Graham and David Johnson of Bell Labs proved

that the Ordered First Fit algorithm is never off by more than 22% [22].

Multidimensional bin-packing problems are rarely solved with an optimal algorithm as

they are grouped into a branch of mathematics known as complexity theory [22]. A famous

computational mathematical problem that has yet to be solved is the traveling salesman.

This problem deals with finding the shortest route along a network of cities and roads, so

that the salesman visits each city. It is easy to iterate through all possibilities in the simple

case of 3 or 4 cities, but scaling the problem introduces endless possibilities that require

exhaustive search.

27

Bin-packing in just 2 dimensions is subject to the same issues, as seen in the floor tiling

problem that Erdos and Graham presented in 1975 [22]. The problem starts with tiling one

million square inches of floor with 1 square inch tiles covering the maximum amount of

floor. In this case, the optimal solution is simply a grid pattern with 1 trillion tiles and

100% coverage. Now consider the floor is 1, 000, 000.1 in x 1, 000, 000.1 in, the same solution

would yield the same answer with 0.1 in strips of untiled floor on two edges. Erdos and

Graham discovered a counterintuitive solution that was able to add 100,000 more tiles by

skewing the tiles and introducing small gaps between them. To date their solution has not

been improved upon nor has it been proven optimal [22].

3.2 Applying Bin-Packing in the VITAMIN Protocol

VCM in a dynamic link environment that requires predetermined mode selection must be

done wisely to ensure working communications. All operating modes have different fixed

symbol lengths. In the case of the VITAMIN system the 24 modes range from 22,080 to

571,456 symbols (assuming 16 frames per physical layer frame); at the common CubeSat

symbol rate of 9600 S/s (symbols per second) that equates to 2.3 to 59.5 seconds which

shouldn’t be overlooked as the whole window of communications is 700 seconds or less.

In 60 seconds the path loss can vary by 5 dB (depending on many factors), meaning the

VCM protocol must consider the expected Es/N0 at all times and transmit or pack the PLFs

in the right order and times to maximize the most information transmitted for the entire

pass. This is a bin-packing problem.

The VITAMIN protocol is multidimensional in terms of bin-packing, as each mode

operates above a certain Es/N0 threshold, pass time, and unique PLF length. Given the

multiple variables no specific formula can be applied to a satellite pass that will guaran-

tee the maximum data transfer. The approach to best solve this optimization problem

is through a heuristic approach, mainly a highly flexible object orientated computer pro-

gram. The program takes in all the various inputs needed to predetermine the coding and

modulation for all time periods where communication with a ground station is possible.

Unlike the previous examples, where objects were being packed into physical space,

VITAMIN is a little different. VITAMIN is packing information bits into packets that have

an unique size (measured in time) and valued weight (information bits / symbol). These

packets are created before transmission as needed to maximize throughput. The goal

isn’t to maximize packets placed, but to maximize the information bits transmitted. The

28

container is the pass, which has a width (time) and depth (SNR), only certain packets can

go in certain zones as each packet has a minimum required SNR. Additionally there are

infinite ordering possibilities for the packets, as time is continuous.

3.3 Program Overview

Several bin-packing algorithms are tested and measured for performance. An Ordered First

Fit approach called First Choice and a slightly different Ordered First Fit approached called

Top Down. Additionally Random Choice and Fixed Mode algorithms were investigated.

First Choice works from the start of the pass to the end. At the time to decide the

transmission mode, a list of modes that meet the SNR threshold are determined. The mode

that delivers the highest information per symbol will be used. Once the packet completes,

the next packet mode is determined using the same approach. Since SNR can decline

over time, packets that do not meet the minimum SNR available during the period of

transmission are not selected.

The Top Down algorithm is similar to the First Choice algorithm, but places the first

packet when SNR is maximum. Subsequent packets are then placed in time slots of

decreasing SNR on both sides of the first placed packet until the entire time duration is

filled. The motive for this algorithm came from the poor performance of First Choice in the

cases where packets that deliver little information and take long amount of time to finish.

Once the packet finishes the SNR climax could have come and gone, resulting in non-

utilized path loss gain. The algorithms investigated and programmed are fully described

in Appendix B. Additionally source code is available in Appendix A.

This thesis includes the development of the TMS (Throughput Mode Switching) pro-

gram. It provides a solution to the bin-packing problem for the VITAMIN protocol. Ad-

ditionally it is flexible enough to work with other VCM protocols or a subset of the 24

VITAMIN modes. TMS is also designed to interface with AGI’s Satellite Tool Kit to pro-

vide monthly files for satellite uplink for any satellite and groundstation pair using a VCM

communication system. The program runs on the Java Environment.

3.4 Determining the Shannon Hartley Limit

Determining the amount of throughput for each satellite pass using different transmission

modes is only useful if there is a benchmark for comparison. Thus the Shannon-Hartley

Theorem was applied to identify the theoretical maximum amount of data that can be

29

downlinked. This theoretical maximum is different than the theoretical VITAMIN maxi-

mum as the error correcting codes do not maximize capacity, this is seen in the separation

between curves in Figure 1.3.

Shannon limit as described as C = B log2(1 + SNR) (Equation 1.3) has two inputs,

bandwidth and signal-to-noise ratio. Since the low Earth orbit passes have a time-varying

link budget and are finite, the integral with respect to time is computed as

Throughputpass =

∫ t

t0

B log2(1 + SNR(t)) bits. (3.1)

Additionally the entire throughput for the entire data set is calculated,

Throughputtotal =
∑

Throughputpass bits. (3.2)

3.5 Simulation Data Set

The VITAMIN protocol is intended to be flexible for all satellite orbits and ground station

locations. For this reason the mode switching protocols need to be designed efficiently for

all types of low Earth orbits. The TMS program can’t simply look at one 15 minute satellite

pass for one specific orbit and one specific ground antenna to determine the best algorithm

for mode selection or to infer statistics of the VITAMIN protocol as a whole, because not

every satellite pass is alike.

Since the major application of interest is CubeSats, four different types of Low Earth

Polar orbits were analyzed. The four orbits considered are 600 km by 600 km at inclination

angles of 70◦ and 98◦, and 800 km by 800 km at inclination angles of 70◦ and 98◦. Addi-

tionally the four orbits were analyzed for a high latitude location of Fairbanks, AK and

low latitude location of Miami, FL. All eight communications scenarios were simulated via

AGI Satellite Tool Kit for the month of October 2013 with 1 second data intervals.

All other variables of the link budget were held constant, thus only geometries of orbits

and ground station locations play into the path loss calculation and length of communica-

tions.

30

3.6 VITAMIN Analysis from the TMS Program

3.6.1 Monthly Simulation

Table 3.1 and Table 3.2 show the monthly throughput for two ground stations located in

Fairbanks, AK and Miami, FL. The throughput is expressed in GBits per month, which

is assuming a 9600 S/s symbol rate and rather successful link budget. All 24 modes

were available to the First Choice and Top Down methods. The Fixed mode column

was set to only operate in mode 7 (Table 2.1), which might be typical of a basic CubeSat

communication system. The assumptions dealing with the link budget include having

a directional transmitted signal and a ground station with a large antenna gain (3 meter

parabolic receive antenna). When comparing the two locations the throughput ratios are

the more important statistic to analyze.

Table 3.1. Monthly Throughput (GBits) for Fairbanks, AK

Orbit (km) Inclination
Shannon
Hartley

First
Choice

Top
Down

Fixed
Mode

600x600 70 6.65 5.09 5.13 1.76
600x600 98 7.31 5.51 5.55 2.11
800x800 70 7.15 5.38 5.44 2.15
800x800 98 8.11 6.03 6.09 2.63

Table 3.2. Monthly Throughput (GBits) for Miami, FL

Orbit (km) Inclination
Shannon
Hartley

First
Choice

Top
Down

Fixed
Mode

600x600 70 3.11 2.36 2.38 0.881
600x600 98 2.88 2.18 2.20 0.819
800x800 70 3.56 2.66 2.68 1.15
800x800 98 3.30 2.46 2.48 1.07

All situations deliver approximately 75-78% of the theoretical maximum for the same

link budget. Running the simulations at a symbol rate of 9600 kS/s (1000 times faster)

minimizes the length effect of PLFs. These simulations improved by no more than 2%. A

fully optimized VITAMIN protocol is estimated to do no better than 85% of the theoretical

maximum (Shannon Limit). Any additional improvements would require different FECs.

In all eight cases Top Down outperforms the First Choice solution. The Top Down

algorithm is used in all mode selection for the VITAMIN protocol. One other very slight

advantage of the Top Down method over the First Choice method is that the transmission

31

timing is exactly centered along the pass. For example, assume a fixed mode case where

a 6 minute packet must be transmitted in a 10 minute pass. Centered timing would result

in the communication happening during minutes 2-8. The First Choice method starts

immediately when communication is possible, meaning the communication would take

place at minutes 1-7. This results in the Top Down solution operating above threshold

levels slightly more than the First Choice solution, increasing the probability of success.

Two observations are made by repeating the experiment with the exact same ground

station now located in Miami, FL. The VITAMIN protocol yields a similar 75% of the theo-

retical maximum throughput, meaning VITAMIN works to the same effect in all locations.

The other interesting finding is the location of a ground station; having locations that can

see the satellite as often as possible is important, especially if there is only one downlink. A

design for traditional fixed mode system in Miami could be improved to double through-

put by either relocating to Fairbanks or switching to VITAMIN, but why not do both to

quadruple throughput?

3.6.2 Varying the Consecutive Number of Frames

Additional VITAMIN variables can be analyzed through the TMS program besides the

timing of the mode switching. For instance each physical layer frame was designed to

consists of 16 encoded frames and a 256 bit header [12]. Having fewer frames allows for

overall shorter PLFs. Having shorter PLFs allows for quicker adaption to the link budget

and the ability to switch modes quicker and thus increase throughput. Consequently,

the more often a PLF ends the more frame markers are needed, thus increasing overhead.

Figure 3.2 shows the performance differences. The same data set (section 3.5) was processed

17 different times using a modified VITAMIN protocol that consisted of a different Physical

Layer Frame lengths. Additionally the three link budget scenarios were simulated to look

at performance in different conditions.

32

0 2 4 6 8 10 12 14 16 18 20
0.67

0.68

0.69

0.7

0.71

0.72

0.73

0.74

0.75

0.76

0.77

Number of Codewords per PLF

T
hr

ou
gh

pu
t /

 S
ha

nn
on

 L
im

it
T

hr
ou

gh
pu

t

Higher SNR

Reference

Lower SNR

Figure 3.2. Varying the Consecutive Number of Frames in VITAMIN

Figure 3.2 showed three mainly flat curves, but all reaching a maximum in the 1-16

range. The lowest performing curve is a poor link budget, operating with modes in the

lowest modulation orders. The highest performing curve is a good link, operating with

modes in the highest modulation orders. The middle curve shows operation in an average

link, in between poor and good. The maximum performances (red points) were at frame

lengths of 3, 4, and 10 (poor to high). All simulations in all cases were within 4% difference

for performance.

This analysis shows that throughput is only marginally affected by PLF length. Chapter

4 talks about implementation issues and makes a final decision on the number of frames

to be used.

33

3.6.3 Identifying the Workhorses of VITAMIN

A commonly asked question of a VCM communications system is what operating modes

are utilized most? This can be useful in the hardware design stage to simplify the commu-

nications system by excluding modes or modulations rarely needed to simplify circuitry

and complexity. It is also interesting to the information theory engineer, as the dominant

workhorse modes across the industry are further researched for their unique properties

that make them more desirable. The TMS program calculates statistics and can list the

modes transmitted and the percent usage. Table 3.3 shows the percentage used for the

same complete data set discussed in section 3.5.

Table 3.3. Identifying Workhorse Codes
Mode Name Percentage Used Comment
LDPC 16APSK 1/2 14.6 Workhorse
Turbo QPSK 1/3 11.9 Workhorse
LDPC 16APSK 2/3 10.2 Workhorse
LDPC QPSK 1/2 8.54 Workhorse
LDPC QPSK 4/5 7.89
LDPC 16APSK 7/8 6.08
Turbo QPSK 1/4 5.70
LDPC QPSK 2/3 5.42
LDPC 32APSK 2/3 4.47
Turbo QPSK 1/6 4.27
LDPC 8PSK 1/2 3.92
LDPC 32APSK 4/5 3.64
LDPC 32APSK 7/8 3.00
LDPC 64APSK 7/8 2.30
LDPC 64APSK 4/5 1.89
LDPC 16APSK 4/5 1.83
LDPC QPSK 7/8 1.37
Turbo BPSK 1/4 1.04
LDPC 64APSK 1/2 0.940
Turbo BPSK 1/6 0.511 Rarely Used
Turbo QPSK 1/2 0.415 Rarely Used
LDPC 8PSK 4/5 0.0613 Rarely Used
LDPC 8PSK 7/8 0 *Dominated by Higher Modulation
LDPC 32APSK 1/2 0 *Dominated by Higher Modulation

Since the 24 VCM modes cover a larger margin of Es/N0 thresholds than one ground

station - satellite pair would experience over time, the workhorse simulation is an average

of 16 individual workhorse simulations covering all ranges of the link budget to ensure the

34

lower threshold and higher threshold modes get the same opportunities.

Of the 24 modes, 2 modes LDPC 8PSK 7/8 and LDPC 32APSK 1/2 never get a chance as

other modes can deliver more information at or below their minimum thresholds. Equal

distribution would equate to 1/22 or 4.5% percentage usage. 4 Modes fall into the 75th

percentile which puts them in the workhorse category, LDPC 16APSK 1/2, Turbo QPSK

1/3, LDPC 16APSK 2/3, LDPC QPSK 1/2. Three modes fall are in the 25th percentile and

are rarely used, TurboBPSK 1/6, Turbo QPSK 1/2, LDPC 8PSK 4/5.

3.7 Conclusions

The Top-Down algorithm was ultimately decided on as an empirically good solution, but

not until it was apparent that it outperformed the other algorithms on a large data set.

Having the best method for implementing a VCM protocol is just as important as having

a VCM protocol in the first place. While certain algorithms might only outperform others

by a sight margin for every satellite pass, over the course of time the difference adds up.

The additional calculations in software improve the overall system and are worth the extra

time in design.

There is evidence to redefine a Physical Layer Frame as a Frame Marker and 1 codeword,

instead of 16 codewords. This is supported by Figure 3.2. Additionally, the hardware

implementation of Chapter 4 becomes simpler as FMs are inserted more often. At the

same time VITAMIN realizes that the number of codewords per PLF might be optimal

at different values depending on the application itself, and conveniently in VITAMIN the

modification of this parameter will not have ripple effects.

35

Chapter 4

VITAMIN Radio Implementation

4.1 Introduction

The most valuable way to investigate, measure, and analyze a communication protocol

is to build it and try it. This chapter does exactly that with the VITAMIN protocol, as

the objective of Chapter 4 is building a transmitter and receiver that use VCM. Instead

of designing hardware specifically for CubeSats, flexible existing hardware was chosen to

keep the focus on the VITAMIN protocol. The radio implementation in this chapter was

done solely with two software defined radios, each paired with standard computers. This

chapter goes over the development process, displays the final end-to-end communications

system, addresses new findings, and grades the performance of the VITAMIN protocol.

Unlike the MATLAB simulation in Chapter 2, this radio implementation puts the data

into the air (or a coaxial cable) with an S-band carrier frequency (2.2 GHz) and then receives

the signal with independent hardware. This chapter goes through building and operation

of both the transmitter and receiver. Additionally, a fully functional software defined radio

receiver paired with a computer is a perfect and simple ground station receiver. In the case

of globally distributed ground stations, off the shelf hardware and software is the easiest

way to grow a reliable ground station network. For those reasons, the majority of this

chapter is about the receiver.

Only BPSK, QPSK, and 8PSK modulations were implementing in LabVIEW. For the first

attempt at a software defined receiver, not implementing Amplitude Phase Shift Keying

keeps everything simpler. Using only modes 0-15 in VITAMIN is reasonable because they

still cover many information rates and different operating thresholds. For this reason,

mode 13 is implemented in LabVIEW as mode 16 is not available.

4.2 The Hardware and Software

The radio implementation uses two National Instruments Universal Software Radio Pe-

ripherals (USRPs) model NI-2920, pictured in Figure 4.1. The core of these radios are the

analog-to-digital converters. To support a wide variety of radio frequencies, interchange-

able daughter boards are switched as needed. The WXB daughter board was the main

board used in development as it supports both transmit and receive in the from 50 MHz

to 2.2 GHz. For support of signals at an intermediate frequencies the Ettus LFRX and

LFTX daughter boards were used, capable of 0-30 MHz. The USRPs have SMA connectors

36

Figure 4.1. Lab Setup - 2 NI USRP 2920

for connecting to antennas or directly to each other through a coaxial cable and optional

antennuators.

From the USRPs the digital representation of the analog baseband waveform is streamed

to an interfacing computer via Gigabit Ethernet. The USRP is supported by many software

clients including MATLAB, GNURadio, Python executables, and LabVIEW. LabVIEW was

the software platform selected after initial investigation of all platforms. Reasons for this

selection included more detailed documentation and a larger selection of included library

functions. GNURadio appeared to be a viable alternative and should be able to accomplish

the same functionality.

Communication between the USRPs and the computers is handeled by LabVIEW

drivers. Initial user input includes the TX/RX frequency, IQ sample rate, IP address of

the USRP, and the TX/RX gain. Thereafter LabVIEW can continuously fetch or transmit

samples and then close the connection. The USRPs also have the ability to share informa-

tion and communicate with each other through a MIMO (multiple input multiple output)

cable. This was used solely for debugging parameters like internal vs actual frequency off-

set. Figure 4.2 shows the high level flow of data, from LabVIEW on a computer to a USRP,

into the air, received on another USRP, and recovered in LabVIEW on another computer.

All arrows are bidirectional, because the hardware supports duplex communications, but

37

Figure 4.2. Software Radio and Computer Connections

in this experiment data only flowed in one direction.

4.3 Data Flow Overview

Figure 4.3 shows how the information bits move through the software and hardware that

implements the VITAMIN protocol. More detailed figures of both the transmitter and

receiver are shown in Figure 4.4 and Figure 4.8, respectively.

pre-processing
randomization

encode

symbol mapping
add frame marker

↑ L
gTX[n]

pulse shaping D/A

USRP

bits s[n] x(t)

v(t)

x(t) z(t) = x(t) + v(t)

A/D

USRP

gRX[n]
match filter

↓M
inverse symbol maping

soft demodulate
decode

z(t) s̃[n] b̂its

Figure 4.3. Transmitter, AWGN Channel, Receiver

38

• s[n] represents the digital complex waveform that is exchanged between LabVIEW

and the USRP, s[n] is also labeled on Figure 4.2.

• x(t) is the analog signal on the carrier frequency.

• v(t) represents any noise introduced to the signal.

• z(t) is the signal with noise that enters the receiving USRP

• ↑ L and ↓ M represent the upsampling and downsampling, which is necessary to

accurately represent the analog waveform on the USRP by having multiple discrete

data points for every symbol.

4.4 Transmitter Development

Using a USRP and desktop computer, a VITAMIN transmitter was developed. Although

future work for VITAMIN in space will involve a CubeSat sized transmitter, having a

USRP transmitter allows for testing of both the receiver and the overall protocol. The flow

diagram in Figure 4.4 shows the transmitter processing stages. Initially one time processing

is done for the matched filter coefficients, generation of the complex frame marker array,

radio parameter setup, and the user variables listed in subsection B.4.1. After that point

the transmitter continuously transmits Physical Layer Frames based on the mode number

specified by the user.

USRP Initialization

5 data transmission thread, runs continuously 5

aquire bits randomize bits
encode bits

based on mode
map bits

to symbols

add BPSK
frame marker

upsample PLF pulse shape PLF
send PLF

to USRP for
transmission

s[n]

Figure 4.4. Transmitter Flow Diagram

39

4.4.1 Transmitter Initialization

Before the first symbol is transmitted, the transmitter has to gather the user input and

execute a few tasks. Figure 4.5 shows the graphical user interface of the transmitter. White

boxes are user inputs and gray boxes display operational values. All user inputs and

output are explained in detail in subsection B.4.1. The transmitter will repeatedly run a

mode if a valid mode number is specified or if mode 99 is selected it will read an input

file that consecutively lists what modes to run in order. Symbol rate is always determined

by IQ sampling rate divided by samples per symbol. Optional Additive White Gaussian

Noise is implemented before transmission, and can be switched on by a push button.

Figure 4.5. LabVIEW Transmitter User GUI

Behind the scenes, the transmitter needs to initialize arrays for encoders, the static frame

marker, and pseudo random information bits. Communication needs to be established

between the computer and USRP, and the parameters of carrier frequency, gain, antenna,

and IQ rate need to be initialized. After this point the main data transmission thread takes

over, continuously transmitting PLFs.

40

4.4.2 Data Transmission Flow

The first step to building a PLF is slicing the information bits. This is because the modes

selected in VITAMIN protocol only have three information frame lengths. These lengths

are 7136, 8920, and 16384. Since the program is designed to use a pseudo random sequence

the correct length of bits is generated. The next step is randomization of the information

bits to create an equal number of 0′s and 1′s and evenly distribute them. This pseudo

randomization is consistent with [12] and explained in subsection 6.3.2.

At this point the information bits are encoded to transmission bits that contain the

forward error correcting properties. Next, the bit stream is mapped to a complex waveform

of symbols determined by modulation type. Two modes have encoded lengths that are not

divisible by their modulation order M; modes 12 and 14 both have a remaining 2 bits to

map where the symbol consists of 3 bits, thus an extra zero is appended.

The BPSK modulated (symbol mapped) frame marker is attached to the encoded sym-

bols creating a complex waveform that is in Physical Layer Frame form. The PLF is

upsampled and put through a pulse shaping filter. The PLF in the complex waveform, s[n],

is sent to the USRP via Ethernet to be transmitted at the carrier frequency. At this point the

cycle continues with the next PLF. To prevent the underflow of data in the transmission

process LabVIEW shift registers are used between lengthy operations to ensure the next

frame is always ready and the USRP isn’t waiting on the encoder. For example, whenever

a frame is transmitted on a USRP the next frame is being pulse shaped and the frame after

that is being encoded.

4.5 Communications Channel

Using the USRP there are several options for transmission mediums, carrier frequencies,

and noise sources. Two UHF antennas were used for over the air transmission with the WBX

daughter-boards, rightmost PCB board in Figure 4.6. The other option is communication

via coaxial cable, which doesn’t require specific antennas and is the best method for low

noise communications.

Transmission over the air introduces multipath and signal degradation from non-

directional antennas. Signal attenuation can be used to reduce the signal strength of the

source to levels where the receiver sees the effects of thermal noise. Additionally AWGN

can be added digitally at the transmitter to produce a signal with a range of Es/N0 levels.

Figure 4.7 shows the what the transmitted signal looks like on a spectrum analyzer at 2.2

41

Figure 4.6. Inside of USRP 2920 with WBX TX/RX Board

42

Figure 4.7. Spectrum of USRP Output for Mode 11 at 50 kS/s

GHz.

4.6 Receiver Development

Figure 4.8 shows the basic flow of data in the receiver from the moment the radio signal

is captured till the point the information bits are recovered. The LabVIEW receiver, is

designed to be either on or off. Once it is told to run the first step is initializing memory,

then two core processes take over: data collection and data decoding.

43

USRP Initialization

5 data collection thread, runs continuously 5

IQ data fetch Resample match filter time align

remove fre-
quency offset

remove
phase offset decimate signal

store 256
final symbols

frame marker
detection

allign phase ±π add frame
to buffer

queue PLF
for decoding

FM Found? No Yes

s̃[n]

5 demodulation and decoding thread, runs continuously 5

wait for PLF
on queue determine mode soft demodulate LLR scaling

LDPC/Turbo
decode

derandomize Sink

Figure 4.8. Receiver Flow Diagram

4.6.1 USRP Initialization

The USRP needs several parameters to be set correctly to successfully operate as a receiver.

The IQ sampling rate is bounded by the minimum and maximum supported by the hard-

ware of 195.3125 to 2,000 kilo-samples per second. The oversampling factor (number of

samples per symbol) is used for determining the ideal sampling point of the incoming

waveform. Matched filter parameters are identical to pulse shaping parameters of the

transmitter. Acquisition duration, measured in seconds, tells the USRP how long to fetch

samples. When activated, a switch called expecting packet number, tells the receiver to ex-

tract the packet ID numbers. The reference frequency source, allows the receiver to use an

internal carrier reference frequency (default) or the transmitter’s frequency via the MIMO

cable. Other inputs include IP address, PN sequence seed, receiver gain, and antenna

44

selection. Figure 4.9 shows the LabVIEW receiver GUI.

After the receiver is initialized with the input parameters, memory is allocated for

the various arrays and buffers. The expected random data is pre-generated. Before the

fetching and processing state of the receiver becomes active, one initial Frame Marker must

be detected first to lock the re-sampler, demodulator, matched filter, and decimator to their

steady states.

4.6.2 IQ Data Fetch

The incoming waveform needs to be continuously collected and processed. In theory the

minimum number of symbols needed to be collected at one time is 256, which is the frame

marker length. Since the receiver is designed to detect at most one frame marker per

frame, the VITAMIN protocol’s shortest mode length determines the maximum fetch size.

Since the next frame of data is being buffered while the previous frame is being processed,

both underflow and overflow conditions must be avoided. For example a large fetch size

can result from high upsampling factors that unnecessarily increase memory allocation

and slow down subsequent functions in the data flow. Likewise too small of a fetch will

shorten the allotted time for data processing. The acquisition duration and in-phase and

quadrature data (IQ) sampling rate product directly determine the number of IQ pairs

fetched.

4.6.3 Resample

The IQ sampling rate divided by the upsampling factor yields the maximum symbol rate,

but since this might be higher than the actual symbol rate the receiver has a specific symbol

rate input. A resampler function will resample to the desired lower symbol rate. The signal

is then at the correct symbol rate, but is still oversampled (contains more data points than

used in decoding).

4.6.4 Matched Filter, Time Align, Frequency Offset, Phase Offset, and Decimation

Once the fetched frame of complex IQ pairs are acquired and resampled, a few operations

are required to be performed to the incoming signal before the frame marker is detected.

Matched Filtering, Frequency Offset Correction, and Phase Offset Correction are all han-

dled by one subsystem that takes in the complex waveform, expected symbol mappings,

45

Fi
gu

re
4.

9.
La

bV
IE

W
R

ec
ei

ve
r

U
se

r
G

U
I

46

and frame marker sequence. An existing LabVIEW resource called ”MT Demodulate PSK”

was used to perform all three of these operations. The output taken is only a modified

complex waveform. The signal is first put through a matched filter to remove any inter-

symbol interference. A max eye technique is used to determine the ideal sampling point,

meaning whichever sampling point that produces the least amount of inter-symbol inter-

ference is chosen. The ideal sample point is then shifted, which prepares the signal for

easy decimation. Next the frequency offset is accounted for and corrected. The last two

modifications are gain scaling and any phase offset correction. Decimation is immediately

performed through another subsystem. Since the output signal is aligned the decimator

simply takes every xth bit where x is the upsampling factor.

The MIMO cable was used to remove frequency and phase offset effects from the receiv-

ing system for testing purposes. This cable allows the transmitter to share its exact carrier

frequency and clock with the receiver as these are the best references available. Results

show that frequency offset when corrected internally provides the same performance in bit

errors as the MIMO reference. The USRP did show significant issues with recovering the

correct phase offset under very noisy conditions, even with the MIMO reference. This is

discussed further in section 5.5.

4.6.5 Frame Marker Detection

The frame marker’s short 256 bits are extremely important in the receiver’s operation. Not

only does it announce that a physical layer is beginning and data frames are following,

but the detection of two frame markers is the VITAMIN mode identification technique as

Chapter 2 proposed. The URSP is configured to fetch data in packets with sampled lengths

(f etchedlength = upsampling f actor · sample f etchsize) that must be smaller in length than that

of VITAMIN’s shortest mode PLF length. This means, in any given data fetch, the fetch may

or may not contain a frame marker, but it definitely will not have two FMs. Two FMs in one

fetch is uncommon since most of the up sampled symbol lengths are very long, but in the

case of mode 27 (64APSK) the frame is only 1360 symbols. To keep implementation simple,

and not adding the extra complexity of searching for two frame markers, the minimum

number of symbols to process in the LabVIEW receiver is no more than 1360. Additionally

there is the possibility that a data fetch can contain a partial FM, and that case is accounted

for by sharing information across iterations.

The frame marker correlator function takes in four arguments. The first is the newest

47

filtered and corrected fetched IQ data, the seconded is the previous 256 symbols of IQ data,

the third input is previous phase correction, and the last input is the correlation threshold.

The previous 256 symbols are need in case the first 255 bits of the fetched data contain the

256 bit frame marker. The frame marker is found by performing a cross correlation on the

concatenation of the 256 bit previous fetch with the current data fetch and the known BPSK

frame marker.

For receiver processing reasons, this implementation treats BPSK as a QPSK subset that

only consists of (0+1i) and (0-1i), see section 4.8 for more details on this. Knowing this the

demodulator can place the frame marker in two positions, on the I or Q axis. The sliding

cross product is processed across all 256+N symbols and is tested at each step to determine

if a threshold is met. A perfect cross correlation value for a 256 symbol frame marker has

a magnitude of 256, this is plotted in Figure 4.10. In Chapter 2 it was discovered that false

positives only occur at Es/N0 levels of -8 dB when the threshold is set at magnitude 200,

hence the detector uses this threshold as default. Every simulation and interaction with

the LabVIEW system confirmed this finding; frame marker identification was performed

perfectly for Es/N0 ratios above -8 dB.

Initially simple LabVIEW dot product functions and ”for loops” were used to compute

the cross correlation. Although this worked, it was a slow technique and created a pro-

cessing bottleneck. Knowing this, the CrossCorrelation.vi was used in conjunction with

the ThresholdDetector.vi to accomplish the same thing at a much faster speed.

The frame marker is used to apply the correct phase alignment of the incoming signal

for BPSK, QPSK, and 8PSK. As long as the frame marker is aligned in the Q or imaginary

axis the following complex symbols regardless of modulation will be aligned because the

transmitter is designed not to introduce any unnecessary phase shifts when switching

modulation types. Once the correlator finds the frame marker, it determines the phase

offset and corrects for it. If the frame marker is not found, the best the receiver can do is

assume the same phase offset that was previously received still holds true and apply that.

For most cases this works just fine, but in cases where there is antenna movement or noisy

conditions phase ambiguity will lead to errors.

Lastly the frame marker detector will return the index where the data frame starts. In

the case that the frame marker isn’t found, a −1 is returned. In the special case that the

frame marker is the last 256 bits of the received frame, the correlator will not report it, but let

the next iteration find it, as it will also exist in the 256 bit remainder. This simplifies things,

48

Figure 4.10. Detectable FM Correlation Spikes with Es/N0 -8 dB

so the correlator never has to report that first information symbol starts in the previous or

next packet of data.

4.6.6 Aligning Phase

Before the incoming IQ waveform is soft demodulated and decoded, the phase offset

needs to be applied. This happens right after the frame marker correlation process which

determines the offset value. In the case of the LabVIEW implementation the offset can be

any multiple ofπ/4. The previous phase offset value is kept in memory throughout the data

fetch operations. The majority of the fetches collect only information data and any offset

that was applied previously will have to be carried out until the frame marker detector can

update the offset again. The demodulator attempts to correctly track any phase jitters so

that abrupt phase flips should only occur when signal is interrupted.

49

4.6.7 Queuing of PLF

Once the second Frame Marker is found, a physical layer frame becomes complete. The

resulting frame of symbols is counted for its length. If it is an unexpected length the frame

is immediately discarded, otherwise the frame is put onto a FIFO queue system and the

data collection thread ends here. The demodulation and decoding threads start up once

the queue contains frames.

4.6.8 Determining the Mode of PLF

The LabVIEW receiver is designed to have 1 or 2 threads processing incoming frames. This

is mainly due the lengthy decoding time of the turbo demodulators. It is also possible to

allocate more threads on more powerful computers to in increase the maximum iteration

number. The threads wait until the queue contains a frame. Once the frame is gathered,

the first task of the decoding thread is determining the mode. This is easily done by using

the frame size and a lookup table.

4.6.9 Soft Demodulation

Once the frame is gathered, the array of the complex IQ pairs is sent to either a BPSK,

QPSK, or 8PSK soft demodulator. Unlike a hard demodulator where bit decisions are

made, soft demodulators provide the decoders with information about the uncertainty of

the received symbol. The BPSK soft demodulator simply takes the complex array and

selects the imaginary component and stores it into an floating point array. Similarly the

QPSK soft demodulator converts the N symbols into 2N soft bits, using a identical process

to BPSK, but in both the I and Q channels. The 8PSK demodulator does the same as

it converts N symbols into 3N soft bits, but the process is not as trivial. Each complex

symbol’s distance is calculated for each of the three possible bits for all 8 constellation

points, the shorter the distance the more likely the bit is a 1 or 0.

4.6.10 LLR Scaling

LLR stands for log likelihood ratio and allows the decoder to use the estimation of the

noise in the signal to converge on a solution faster when SNR is high. Ideally the signal

strength information would be provided by the radio for all time samples, but this is not

the case with the USRP. The solution was to have all three demodulators estimate the noise

50

of the incoming signal by the variance of the IQ pairs with the expected symbol mappings.

For example a noiseless demodulated BPSK signal would only consists of ±1, so finding

the variance of the actual signal with the expected provides a good estimation of the SNR.

Since all IQ pairs have an equal amplitude, the LLR scaling is 2y[i]/σ2.

Q

I

RS
000

101

110

011 001

100

111

010

Figure 4.11. Two Complex Symbols

Figure 4.11 shows two symbols R and S. In the programming code an 8-bit output is

used for all the soft decisions. The scale is -127 to 127, where positive numbers represent

0 and negative numbers represent 1. The larger the magnitude of the number the more

certain the decision, for example, -10 represents a 1 of low certainty while +120 represents

a zero of high certainty. Since R lands almost at the origin at (0.1 + 0.1i) the soft decision

is close to complete uncertainty resulting in soft bits of (38,38,0), being slightly northeast

results in a higher probability of 0 for the first two bits. Point S at location (−1 + 0i) results

in (0,-127,100). Even though S falls directly in between two constellation points the last two

bits are very likely to be 1 and 0, this is because of Gray coding. The first bit has compete

uncertainty since it has no quadrature component; in this 8PSK constellation all 0’s have

a positive quadrature component and the 1’s have negative quadrature. The interesting

observance is the that the soft demodulator shows how there is more certainty in the middle

bit. This is because the four closest constellation points all share the same middle bit, while

the right most bit does not. Soft demodulation algorithms are from equation 16 in [18].

4.6.11 Decoding

Once the signal is demodulated the frame is put through one of the three decoders: turbo,

AR4AJ LDPC, or C2 LDPC. The decoders expect the LLR input, which is discussed in the

previous section.

51

All error correcting decoders are implemented in C code instead of LabVIEW code.

These decoders were provided by the Jet Propulsion Laboratory. Code dealing with inter-

facing and memory management still need to be done before the C decoders can be run.

To access the decoders in LabVIEW, the C decoders and dependencies were compiled into

seperate DLL files that are callable from LabVIEW. The inputs are the information frame

array, code rate, maximum iterations, and a preallocated array for the output bits.

The rate of the code is also passed onto the decoder as each coding rate has a specific

puncture pattern which produces the right result for the right rate, as the functionally of

the decoder is identical for every rate.

All the decoding types were independently tested outside of the VITAMIN implemen-

tation in LabVIEW and are functional with the expected performances. The LDPC decoders

are much faster in processing time than the turbo codes.

4.6.12 Derandomization

Once the information bits are recovered they still need to be dereandomized. This pseudo

randomization process is consistent with [12] and explained in subsection 6.3.2.

4.6.13 Sink

The receiver finally checks the bits with the expected bit stream and determines if the packet

was successfully recovered. Additionally the receiver will recover the packet number that

is embedded into the data payload. Using sequential packet numbers and recording which

packets the receiver successfully decoded, is a simple and easy technique to determine the

codeword error rate.

4.7 Pulse Shaping and Matched Filtering

A finite impulse response (FIR) filter is used in pulse shaping and matched filtering. Digital

signal processing requires pulse shaping for maintaining a band limited signal. The pulse

shaping introduces a controllable amount of inter-symbol interference that can be removed

by the corresponding matched filter [23]. Equation 4.1 describes the digital signal filtering

process in LabVIEW,

y[n] = b0x[n] + b1x[n − 1] + ... + bpx[n − P], (4.1)

52

Q

I
0

1

A

Q

I

00

1011

01
A

Q

I

000

101

110

011 001

100

111

010 A

Figure 4.12. VITAMIN Signal Constellations

where P is the filter order, x[n] is the input signal, y[n] is the output signal, and bi are the

filter coefficients.

4.8 Constellation Workaround

LabVIEW support for mixing modulation types is limited. The Modulation Toolkit (MT)

Demodulate PSK File-extension: Variable Information (VI) was used for recovering the

complex waveform after matched filtering, symbol timing, and frequency/phase offset

corrections were applied to the raw input signal. The VI is called ”demodulate” and has

the ability to output hard decisions, but this feature was not used. All decoders require

soft demodulation. The MT Demodulate PSK VI uses a known symbol map input for its

calculations and symbol mapping. Knowing this the first attempt at VCM demodulation

was to split the signal and run BPSK, QPSK, and 8PSK demodulators in parallel with their

respective symbol mappings. Once two frame markers determined the mode, the two

unneeded waveforms were discarded from memory. The problem with this technique

was keeping all three demodulators locked. VITAMIN defines the signal constellations as

seen in Figure 4.12. The issue with this is the transitions from one modulation type can

create a phase change of π/8 which isn’t expected by any demodulator, plus lower level

demodulators will not lock when higher order modulations are being received as there

are unexpected phase shifts. Although the demodulators can quickly lock once the signal

appears, the first part of the PLF could be lost, since VITAMIN doesn’t provide any sync

or guard bits.

Modifying and rebuilding the digital LabVIEW demodulators from scratch would be

a time consuming task that requires detailed knowledge and experience in the DSP of the

USRP. Thus the method of altering the constellations became the most practical solution.

53

Q

I

0

1

A

Q

I

00

10

11

01
A

Q

I

000

101

110

011

001 100

111010

A

Figure 4.13. Signal Constellations Used for VITAMIN in LabVIEW

Figure 4.13 shows the implemented constellations.

Figure 4.13 is identical to Figure 4.12 , just rotated (QPSK byπ/4 and 8PSK by 3π/8). The

rotation means the QPSK and 8PSK demodulators are unaffected with regards to locking

and symbol syncing when a BPSK FM passes through them, as the FM will always land on

a valid constellation point, thus removing the π/8 transitions. The new mapping allows

for smoother transitions in the transmitter, as only phase shifts that are multiples of π/4

are produced when switching modulations.

One prevailing issue is keeping the lower order demodulators locked when a higher

order mode is being transmitted. For example, when the PLF is 8PSK modulated, the

QPSK demodulator will become unlocked as one half of the constellation points will fall in

between valid QPSK constellation points. This was solved by having the LabVIEW receiver

demodulate all PLFs with the 8PSK demodulator. This works because BPSK and QPSK can

act as subsets of 8PSK so the IQ points will be correctly mapped. However this solution

is not optimal, under noisy conditions as noisy symbols will be mapped to constellation

points that are not valid for lower order modulations. It is important to note that codeword

error rate simulations are done with the exact symbol mappings corresponding to the

modulation type expected to remove the possibility of demodulation (symbol mapping)

errors.

55

Chapter 5

VITAMIN Performance

5.1 Codeword Error Rate Analysis of Modes in LabVIEW

Early testing of the VITAMIN protocol on the USRPs showed that the VITAMIN protocol

was working and that all modes had unique operating thresholds, that seemed to follow

the theoretical order but at different Es/N0 values. In all 13 cases, early analysis suggested

that all thresholds required higher SNR levels than the theoretical values from [18]. In order

to identify why the performances levels are higher than the theoretical values it became

necessary investigate the systems individually. Although the encoders and decoders ac-

quired from the Jet Propulsion Laboratory were confirmed to meet the thresholds, the code

was modified and used differently; thus the need to test the performances as a LabVIEW

simulation without the USRPs.

To test the LabVIEW code, noise scaling operations, encoders, soft demodulates, and

decoders were created in a separate LabVIEW VI, shown in Figure 5.1. These simulations

are very similar to the simulations of Chapter 2. The CWER curves for modes 0, 7 ,8, 9, 11,

14, and 15 are plotted in Figure 5.2.

In all cases the observed threshold was less than the theoretical threshold. The difference

was anywhere from 0.17 to 1.70. The number of simulations varied for the modes, modes

11 and 15 are the shortest in length resulting in more confident threshold observations,

while the longer and more processing consuming BPSK modes have less confidence. In

all cases, when performing a CWER test of 10,000 simulations at the theoretical threshold

at least 2 errors were observed. From this observance shown in Table 5.1, it is concluded

that there is an implementation loss in the LabVIEW code. Further investigation of the

soft demodulators, noise estimation, and various decoder parameters will result in overall

improvement. Since the performances are relatively close to the theoretical, additional

improvements in the decoding will be deferred to suggestions for future work.

encode data
map bits

to symbols +

AWGN

LLR scaling
demodulate

decode
error check

Figure 5.1. LabVIEW Software Only CWER Simulation Flow

56

1
/1

0
0

0

1
/1

0
0

1
/1

0

1

Error Rate
0 7 8 9 1
1

1
4

1
5

1
/1

0
0

0
0

0

1
/1

0
0

0
0

-1
0

-8
-6

-4
-2

0
2

4
6

8
1

0
1

2
1

4

E
s
/N

0

Fi
gu

re
5.

2.
C

W
ER

G
ra

ph
fo

r
Se

le
ct

M
od

es

57

Table 5.1. LabVIEW Software Only CWER

Mode Name
Observed Es/N0

for CWER 10−4
Theoretical Es/N0

for CWER 10−4
Imp.
Loss

Simulated
Errors

0 BPSK Turbo 1/6 -7.4 -7.87 0.51 2
1 BPSK Turbo 1/4 -5.3 -5.84 0.55 2
4 QPSK Turbo 1/6 -3.8 -4.86 1.02 5
5 QPSK Turbo 1/4 -2.1 -2.83 0.80 5
6 QPSK Turbo 1/3 -0.7 -1.32 0.62 6
7 QPSK Turbo 1/2 1.5 1.07 0.44 4
8 QPSK AR4JA LDPC 1/2 1.1 0.93 0.17 10
9 QPSK AR4JA LDPC 2/3 4.4 3.00 1.40 3
10 QPSK AR4JA LDPC 4/5 6.3 4.75 1.54 3
11 QPSK C2 LDPC 7/8 8.0 6.27 1.70 16
12 8PSK AR4JA LDPC 1/2 4.4 4.04 0.27 4
13 8PSK AR4JA LDPC 2/3 7.7 6.71 1.03 7
14 8PSK AR4JA LDPC 4/5 9.8 8.94 0.86 4
15 8PSK C2 LDPC 7/8 11.6 10.79 0.81 12

5.2 Codeword Error Rate Analysis for USRP via RF

Codeword error rate simulations were performed to verify that the receiver was able to

operate efficiently under noisy conditions. This test was performed by having the trans-

mitter continuously transmit PLFs of mode type under constant Additive White Gaussian

Noise. A PLF consisted of one Frame Marker and one encoded frame, thus making it

one codeword per PLF. The receiver then continuously runs and records all PLFs that are

successfully decoded. Simulations were all done at the same symbol rate of 50 kS/s. This

symbol rate was found to be a the maximum speed that the desktop computer could sup-

port for the turbo codes, anything higher resulted too many packets building up in memory

waiting to be decoded. Filling the memory up too fast resulted in simulations that would

crash after only processing a couple hundred frames. Going to a slower symbol rate would

have taken too much time; in the case of LDPC modes this extra time would have been

unnecessary. Simulations would run anywhere from 1000-8000 codewords at a time. The

number of simulations processed depends on the confidence level of the measurement.

The confidence interval was calculated using the Monte Carlo simulation of ntrails with

nerrors, this is easily done with the MATLAB ”berconfint” function.

Additive White Gaussian Noise was inserted into the signal digitally at the transmitter

through the MT AWGN LabVIEW function. The produced SNR (Es/N0) was verified

through the spectrum analyzer, as seen in Figure 5.4. Since the USRP is an uncalibrated

58

device the actual bandwidth of the receiver and SNR received on the receiving end is

not guaranteed to be the same as measured on the spectrum analyzer. To get an idea of

the actual SNR, an SNR estimator was added to the Frame Marker detection subsystem

of the LabVIEW receiver. Whenever a frame marker is received, the receiver has 256

noisy symbols and knowledge of what those 256 noisy symbols should be. By taking the

difference between the received symbols and the known frame marker the noise power is

known. Equation 5.1 equation gives the SNR of the frame marker,

SNRdB = 20 log10
RMS(y[i])
RMS(n[i])

. (5.1)

Over the simulation of thousands of packets the measured average SNR is calculated.

This method always produced a SNR estimation that was lower than the spectrum mea-

sured SNR level. The results show spectrum and receiver SNR measurements and labeled

respectively SNR-S or SNR-R.

Table 5.2 shows the results of the CWER simulations in LabVIEW. Figure 5.3 shows the

CWER curve for mode 11, which is the best collection of simulation data due to required

high SNR which resulted in only having errors due to noisy symbols and not receiver

demodulation or phase issues.

Table 5.2. Performance under AWGN Observed with USRP Receiver for CWER 10−4

Mode Name minimum SNR-S (Es/N0) minimum SNR-R (Es/N0)
1 BPSK Turbo 1/4 8.0 7.7
10 QPSK LDPC 4/5 9.5 8.7
11 QPSK LDPC-C2 7/8 10.8 9.3
15 8PSK LDPC-C2 7/8 13.5 10.9

5.3 Simulation of CubeSat Pass

An intended application of the VITAMIN protocol is low orbit CubeSat communications,

the first performance test was a real time satellite pass. The mode ordering was deter-

mined from the TMS program. Using the same hypothetical 600 km by 600 km 98 degree

inclination CubeSat and and Fairbanks, AK groundstation in Chapter 3, a pass with max-

imum elevation of 64 degrees was selected. Table 5.3 describes all the parameters of the

experiment.

59

7.5 8 8.5 9 9.5 10 10.5 11 11.5
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

E
s
/N

0
 (dB)

E
rr

or
 R

at
e

Figure 5.3. CWER curve for Mode 11

60

Table 5.3. VITAMIN Pass Simulation on USRP
Orbit 600 km by 600 km
Ground Station Location Fairbanks, AK
Duration 0:12:49 or 769 seconds
Max Elevation 64 degrees
Frequency 2.2 GHz
TX Power -30 dBm 1 µW
RX Power -60 dBm or 1 nW
Modes Transmitted (order of 1st appearance) 4, 5, 7, 9, 12, 10, 11, 13, 14
3 dB Bandwidth 20 kHz
Symbol Rate 12.5 kS/s
Receiver IQ Data rate 250k
Filter Parameters Root Raised Cosine, α = 0.5, length 8
Physical Layer Frames 863
Frame Markers 864
AWGN constant Es/N0 of 10 dB
Information Downlinked 1.44 MB

5.3.1 Process and Observations

Each desktop computer - USRP pair were setup to the above parameters. The MIMO

cable was not connected. The signal was transmitted over coaxial cable with −30 dB of

attenuation to create a received power less than −60 dBm, which is typical of CubeSats

[24]. The receiver started with the run command, within 3 seconds the transmitter run

command was issued.

The pass lasted just over 12 minutes and all packets were received. Although this

simulation did not have changing noise, it proved the functionality of the receiver as it suc-

cessfully detected various modes and was able to process variable coding and modulation

types. Most importantly the receiver successfully recovered every information bit that was

transmitted.

An interesting observation was the effects of decoding time. LDPC modes decode faster

than the packets come in at 12.5 kS/s, turbo modes do not. Turbo codes are used when

SNR is low, this results in the turbo modes occurring in the beginning and end of the pass.

This was seen as the recovered packets were time delayed for the first 115 packets. Once

LDPC encoding began, the receiver caught up to real time decoding. Likewise there was

approximately 2 minutes of post processing to decode the trail end turbo codes. This delay

is acceptable for most applications including data payload downlink.

61

This experiment was repeated over the air with 1 mW of output power at 2.2 GHz, but

with the addition of the MIMO cable to correct for frequency and phase offset. There was

a 6% packet loss due to phase ambiguity issues, which is discussed in subsection 4.6.6.

Figure 5.4 shows the signal on a spectrum analyzer, the -30 dBm signal is 10 dB above the

500 kHz wide noise floor.

Figure 5.4. Spectrum of USRP TX Output with Noise

5.4 Simulation of Random VCM Mode

To further investigate the mode detection algorithms in the receiver, the transmitter was

modified to encode with the selection of a random mode. The receiver was tested with

500 PLFs of varying code and modulations (modes 0-15), every frame was recovered. This

shows that the receiver is able to switch from any mode or modulation, even transitions

across the link budget, that would rarely if ever be necessary in real link budgets.

62

5.5 LabVIEW Performance Under Noise

The biggest issue with the LabVIEW receiver is operation under noisy conditions, particu-

larly dealing with the demodulator. Ignoring the issues of mixing modulations in the ”MT

Demodulate VI”, there are also issues with locking in the presence of noise. Without a

stable lock, resolving phase, frequency, and symbol timing will produce codeword errors

and the receiver fails. Frequency and phase offset between the receiver and transmitter

were investigated by using the MIMO cable to share the transmitter reference frequency

and clock with the receiver. Unfortunately this did not solve the issues of locking the

demodulator under high noise.

LabVIEW documentation for the MT Demodulate function says the following for lock-

ing:

Successful locking depends on many factors, including signal quality, mod-

ulation type, filtering parameters, and acquisition size. Locking also requires

a fairly uniform distribution of symbols in the signal. The demodulator lock

rate increases (and failures decrease) as the number of symbols demodulated

increases. In general, you can expect to achieve a better than 95% lock when

demodulating 10 Mnumber of symbols, where M is 2 bits per symbol.

63

Chapter 6

Final Recommended VITAMIN Protocol

6.1 Purpose

Variable Coded Modulation to Maximize Information is a VCM protocol that is a variation

of CCSDS 131.2-B-1 [12]. VITAMIN’s goal is to introduce an efficient coding and modula-

tion solution able to support a wide range of information data rates at many SNR ranges.

The main application is increasing the downlink payload of high data rate telemetry ap-

plications, like CubeSats in low Earth orbit.

6.2 Scope

VITAMIN’s core modulation and coding modes are based off the combinations of 6 mod-

ulation types and three coding types. Turbo, AR4JA LDPC, and C2 LDPC codes were

selected from NASA recommendations [14]. Only 24 modes are recommended, although

the protocol encourages addition of other modes and in theory can support an unlimited

number of modes. The stipulation for introducing additional modes is ensuring unique

symbol lengths, see subsection 6.3.5. Table 6.1 lists the 24 recommended modes.

6.3 Data Handling

Figure 6.1 visually shows the flow of the data from the first stage of information bits to the

final stage of modulated IQ pairs in the PLF.

64

Figure 6.1. Stream Format at Different Stages of Processing

6.3.1 Signal Constellations

VITAMIN defines the signal constellations for the modulations identical to that of Figure 2

in [18]. Gray coding is required to achieve optimal results. The unsigned 8-bit 0,1 to signed

8-bit 1,-1 mapping is upheld throughout VITAMIN. Figure 4.12 visually shows the BPSK,

QPSK, and 8PSK modulations.

6.3.2 Pseudo Randomization

To ensure proper operation, the data stream must be sufficiently random. The follow-

ing polynomial describes the 255 pseudo-random sequence. The all 1 state is used in

initialization,

h(x) = x8 + x7 + x5 + x3 + 1. (6.1)

A bit by bit exclusive-OR is applied to the entire data stream, the 255 bit sequence is simply

repeated as necessary. The identical procedure is done on the receiving end to recover the

data stream.

65

6.3.3 Frame Marker

The Frame Marker (FM) is generated using the Gold sequence using the following polyno-

mials for the feedback loop:

g1(x) = x8 + x6 + x5 + x4 + 1 (6.2)

g2(x) = x8 + x6 + x5 + x4 + x3 + x + 1. (6.3)

The complete generation process is described in section 5.3.2.2.1 of [12].

6.3.4 Physical Layer Frame

The Physical Layer Frame consists of one Frame Marker followed by one encoded frame.

The process then repeats. An initial FM and final FM are required at the beginning and

end of transmission. VITAMIN has 24 recommended modes which are listed in Table 6.1.

Table 6.2 shows the 8 FEC that are used to make up the 24 modes. Additional modes can be

added as needed, with the one requirement of uniqueness. In addition to all modes having

unique encoded lengths, no mode can have a PLF length that is a multiple of another plus

256 symbols for every multiple. This property allows the receiver to differentiate between

2 PLFs of one mode and a single PLF of another mode.

6.3.5 Data Recovery Properties

Since the PLF only contains the FM and encoded data, VITAMIN highly recommends that

the receiver use two FMs to determine the operating mode. Other possible techniques do

exist, like parallel mode processing and trail and error processing. Having unique encoded

symbol lengths as mentioned above subsection 6.3.4 and a constant symbol rate allow

the receiver to deduce the PLF length by finding two consecutive FMs while buffering in

between IQ pairs for slightly time delayed processing. It is also important to note that

VITAMIN is flexible for adjusting the symbol rate in between transmission sessions, as

everything scales to higher or lower symbol rates.

The concept of having no FDs in the protocol is a change from [12] and a new idea

introduced in this thesis. The befits include better performance with low complexity. The

ability to handle more than 32 modes, which is a limit of [12].

66

6.3.6 Mode Ordering

In applications where mode Es/N0 is described as a function of time, VITAMIN recom-

mends a top down approach to determining mode ordering with regards to time, see

subsection B.3.2. This thesis fully investigates mode ordering in Chapter 3.

Table 6.1. 24 VITAMIN Modes

Modulation Code Rate
Info Bits

per Symbol
Encoded

Symbol Length
Es/N0 for

CWER 10−4

0 BPSK Turbo 1/6 0.17 53520 -7.87
1 BPSK Turbo 1/4 0.25 35680 -5.84
4 QPSK Turbo 1/6 0.33 26760 -4.86
5 QPSK Turbo 1/4 0.50 17840 -2.83
6 QPSK Turbo 1/3 0.67 13380 -1.32
7 QPSK Turbo 1/2 1.00 8920 1.07
8 QPSK AR4JA LDPC 1/2 1.00 16384 0.93
9 QPSK AR4JA LDPC 2/3 1.33 12288 3.00
10 QPSK AR4JA LDPC 4/5 1.60 10240 4.75
11 QPSK C2 LDPC 7/8 1.75 4080 6.27
12 8PSK AR4JA LDPC 1/2 1.50 10923 4.04
14 8PSK AR4JA LDPC 4/5 2.40 6827 8.94
15 8PSK C2 LDPC 7/8 2.62 2720 10.79
16 16APSK AR4JA LDPC 1/2 2.00 8192 6.33
17 16APSK AR4JA LDPC 2/3 2.67 6144 8.98
18 16APSK AR4JA LDPC 4/5 3.20 5120 11.19
19 16APSK C2 LDPC 7/8 3.50 2040 12.94
20 32APSK AR4JA LDPC 1/2 2.50 6554 8.98
21 32APSK AR4JA LDPC 2/3 3.33 4916 11.63
22 32APSK AR4JA LDPC 4/5 4.00 4096 13.90
23 32APSK C2 LDPC 7/8 4.37 1632 15.73
24 64APSK AR4JA LDPC 1/2 3.00 5462 10.97
26 64APSK AR4JA LDPC 4/5 4.80 3414 16.61
27 64APSK C2 LDPC 7/8 5.25 1360 18.60

Modes 2,3,13,25 are unassigned
Frame Length + 256 symbol FM is PLF length

67

Table 6.2. Forward Error Correcting Coding Types in VITAMIN

Modes Type Rate
Length

k
Encoded Length

n
1 0,4 Turbo 1/6 8920 53520
2 1,5 Turbo 1/4 8920 35680
3 6 Turbo 1/3 8920 26760
4 7 Turbo 1/2 8920 17840
5 8,12,16,20,24 LDPC 1/2 16384 32768
6 9,17,21 LDPC 2/3 16384 24576
7 10,14,18,22,26 LDPC LDPC 4/5 16384 20480
8 11,15,19,23,27 LDPC-C2 223/255 (7/8) 7136 8160

6.4 Future Work

6.4.1 Bin-Packing

The Top Down algorithm was developed from this thesis and is proven to be an effective

method for VCM mode ordering, but it can be improved upon. Digging deeper into bin-

packing theory and other heuristic approaches could offer valuable insight. Only circular

LEO orbits were analyzed, which present bell shaped SNR curves that are rather simple.

Ground stations can have masking profiles, bind spots, and predictable interference which

will add complexity to the SNR curve and require more flexible algorithms in the TMS

program. SNR curves that have multiple peaks and sharper transitions will require an

improved algorithm for VCM mode selection.

6.4.2 Fully Functional Software Defined Radio Ground Station

In order to obtain a fully functional software defined radio ground station several im-

provements are necessary. To support higher symbol rates and real time data gathering it

is necessary to increase the speed of decoders. The LDPC codes are currently fast enough

to support 109 symbols per second, while the turbo decoders only support speeds of 103

symbols per second. This can be done by removing initialization of certain parameters

and pre-computing the lookup tables and matrices for the executable functions. There are

also improvements in memory management and data passing that can be investigated in

LabVIEW.

A final product will require further investigation of the codeword error rate perfor-

mance, mainly the discrepancy between the LabVIEW results and theoretical performances.

68

There are alternative techniques for noise measurement and SNR estimation.

The VITAMIN protocol has several amplitude shift keying modulation types, which

were not implemented due to added complexity. The USRP is documented as supporting

this modulation type. The addition of these modulation types will greatly increase the

overall throughput for applications that are able to operate with low noise levels.

Another way to increase the amount of data received is to attempt to recover any packet

errors that may occur. Added complexity to the receiver will accomplish this. Currently a

missed detection of a frame marker will result in two missed packets, but a smart receiver

could correct this error. Re-examining received frames that are unsuccessfully decoded is

worth the extra processing time. Simply researching the frame marker at another threshold

level could result in recovered data. Another method would be trail and error decoding:

each decoder will produce a valid flag if the packet is correctly recovered which could

result in recovered data.

Further work is needed in investigating the benefits of a carrier signal and using co-

herent detection versus the current noncoherent detection system. The demodulators used

in the LabVIEW receiver would benefit and possibly work as is if the incoming signal

contained a carrier. This could result in a higher success rate of locking the demodulators.

Research into other methods for coherent detection is advised. If a coherent method solves

demodulation issues, analysis must be done to ensure the added complexity and power

cost in the transmitter does not create more harm than good.

This thesis does not investigate the Doppler affect. Research into how this could affect

performance under noise, frame marker detection, and overall throughput performance of

VITAMIN is necessary as all moving satellites will have this phenomenon.

6.4.3 Develop a CubeSat Sized Transmitter

Although it has been researched that a VITAMIN transmitter can be implemented in the

small and power constrained CubeSat with FPGAs, it would be very valuable to prototype

this transmitter and measure power consumption. Analysis of power consumption versus

time will be valuable information as CubeSats can have additional power resources at

different times in the orbit, introducing the idea of preprocessing the encoding and symbol

mapping steps and retaining maximum power for signal transmission.

Testing of the transmitter’s ability to process the input data payload and function from

an up-linked mode versus time input file created by the TMS program will bring forward

69

any issues with the pass prediction techniques and system architecture.

71

Acronym Index

8PSK 8 Phase Shift Keying . 13

16APSK 16 Amplitude and Phase Shift Keying . 13

32APSK 32 Amplitude and Phase Shift Keying . 13

64APSK 64 Amplitude and Phase Shift Keying . 13

ACM Adaptive Coded Modulation. .4

AR4JA Accumulate Repeat 4 Jagged Accumulate . 9

ASGP Alaska Space Grant Program . xvii

AWGN Additive White Gaussian Noise . 2

BPSK Binary Phase Shift Keying . 10

CCSDS Consultative Committee for Space Data Systems . 7

CWER Codeword Error Rate . 14

DVB-S Digital Video Broadcasting - Satellite . 4

DVB-S2 Digital Video Broadcasting - Satellite Second Generation . 4

FD Frame Descriptor . 9

FEC Forward Error Correction . 4

FM Frame Marker . 9

FPGA Field Programmable Gate Array . 3

IQ in-phase and quadrature data . 44

LDPC Low-Density Parity-Check . 10

MATLAB Matrix Laboratory . 9

MEX MATLAB Executable . 15

NASA National Aeronautics and Space Administration . xvii

P-POD Poly-Picosatellite Orbital Deployer . 1

PLF Physical Layer Frame . 9

PSK Phase Shift Keying . 13

QPSK Quadrature Phase Shift Keying . 13

72

SCCC Serial Concatened Convolutional Code . 7

SNR signal-to-noise ratio . 1

USRP Universal Software Radio Peripheral . 35

VCM Variable Coded Modulation . 3

VI File-extension: Variable Information . 52

VITAMIN Variable Coded Modulation to Maximize Information . 7

73

Bibliography

[1] I. Nason, J. Puig-Suari, and R. Twiggs, “Development of a family of picosatellite

deployers based on the CubeSat standard,” in Aerospace Conference Proceedings, 2002.

IEEE, vol. 1, 2002. doi: 10.1109/AERO.2002.1036865 pp. 1–457–1–464 vol.1.

[2] L. David. (2004, Sept. 8) CubeSats: Tiny spacecraft, huge payoffs. Space.com. [Online].

Available: http://www.space.com/308-{C}ube{S}ats-tiny-spacecraft-huge-payoffs.

html

[3] W. Stallings, Data and Computer Communications. Prentice Hall, 2011.

[4] M. Bernhardt. (2009, Jun. 12) Rapid terrestrial imaging CubeSat constellation.

University of Washington Dept of Aeronautics. [Online]. Available: http:

//www.agi.com/downloads/partners/edu/UW PDR 2009 paper.pdf

[5] SatelliteDish.com. (2011, Jul. 11) Large dish. [Online]. Available: http:

//www.satellitedish.com/page-6.htm

[6] J. Cutler and J. Mann, “Global ground station survey,” in CubeSat Developers

Workshop. Stanford University, 2008, pp. 1–15. [Online]. Available: http:

//gs.engin.umich.edu/documents/Mann etal 2008.pdf

[7] M. Caffrey and J. Palmer, “Exploiting link dynamics in LEO-to-

ground communications,” in CubeSat Developers Workshop. San Luis

Obispo, CA: Los Alamos National Laboratory, 2009, pp. 1–15. [On-

line]. Available: http://www.{C}ube{S}at.org/images/{C}ube{S}at/presentations/

DevelopersWorkshop2009/4 Comm/2 Caffrey-Link Dynamics.pdf

[8] S. Olivieri, “Modular FPGA-based software defined radio for CubeSats,” Master’s

thesis, Worcester Polytechnic Institute, Worcester, MA, 2011. [Online]. Available: http:

//www.wpi.edu/Pubs/ETD/Available/etd-042711-091356/unrestricted/solivieri.pdf

[9] BusinessCom Networks. (2013, Nov. 11) Dvb-s2/acm services. [Online]. Available:

http://www.bcsatellite.net/dvb-and-dvbs2-acm/

[10] J. Lee, “Richard Wesley Hamming: 1915-1998,” in Annals of the History of Computing,

IEEE, 1998. doi: 10.1109/MAHC.1998.667309 pp. 60–62.

http://www.space.com/308-{C}ube{S}ats-tiny-spacecraft-huge-payoffs.html
http://www.space.com/308-{C}ube{S}ats-tiny-spacecraft-huge-payoffs.html
http://www.agi.com/downloads/partners/edu/UW_PDR_2009_paper.pdf
http://www.agi.com/downloads/partners/edu/UW_PDR_2009_paper.pdf
http://www.satellitedish.com/page-6.htm
http://www.satellitedish.com/page-6.htm
http://gs.engin.umich.edu/documents/Mann_etal_2008.pdf
http://gs.engin.umich.edu/documents/Mann_etal_2008.pdf
http://www.{C}ube{S}at.org/images/{C}ube{S}at/presentations/DevelopersWorkshop2009/4_Comm/2_Caffrey-Link_Dynamics.pdf
http://www.{C}ube{S}at.org/images/{C}ube{S}at/presentations/DevelopersWorkshop2009/4_Comm/2_Caffrey-Link_Dynamics.pdf
http://www.wpi.edu/Pubs/ETD/Available/etd-042711-091356/unrestricted/solivieri.pdf
http://www.wpi.edu/Pubs/ETD/Available/etd-042711-091356/unrestricted/solivieri.pdf
http://www.bcsatellite.net/dvb-and-dvbs2-acm/

74

[11] X. Qiu and K. Chawla, “On the performance of adaptive modulation in cellular sys-

tems,” in IEEE Trans. Commun., vol. 47, no. 6, 1999. doi: 10.1109/26.771345 p. 884

895.

[12] “Flexible advanced coding and modulation scheme for high rate telemetry

applications,” in Recommendation for Space Data System Standards, CCSDS 131.2-B-1.

Washington, D.C.: CCSDS Blue Book Issue 1, Mar 2012. [Online]. Available:

http://public.ccsds.org/publications/archive/131x2b1.pdf

[13] “TM synchronization and channel coding,” in Recommendation for Space Data System

Standards, CCSDS 131.0-B-2. Washington, D.C.: CCSDS Blue Book Issue 2, Aug 2011.

[Online]. Available: http://public.ccsds.org/publications/archive/131x0b2ec1.pdf

[14] J. Hamkins, L. Deutsch, D. Divsalar, S. Dolinar, D. Lee, F. Stocklin, J. Wesdock, and

C. Patel, “Formulation of forward error correction recommendations for future NASA

space communications,” in IEEE Aerospace Conference, Big Sky, MT, Mar. 2008. doi:

10.1109/AERO.2008.4526321 pp. 1–18.

[15] B. Sklar. (2008) Fundamentals of turbo codes. University of Massachusetts Lowell.

Lowell, MA. [Online]. Available: http://faculty.uml.edu/jweitzen/16.548/classnotes/

art sklar3 turbocodes.pdf

[16] S. Moser and P. Chen, A Students Guide to Coding and Information Theory. Cambridge

University, 2012.

[17] D. MacKay, Information Theory, Inference & Learning Algorithms. New York, NY, USA:

Cambridge University Press, 2002. ISBN 0521642981

[18] J. Hamkins, “Performance of low-density parity-check coded modulation,” in IEEE

Aerospace Conference, Big Sky, MT, Mar. 2010. doi: 10.1109/AERO.2010.5446927 pp.

1–14.

[19] Second generation framing structure, channel coding and modulation systems for Broadcast-

ing, Interactive Services, News Gathering and other broadband satellite applications, Digital

Video Broadcasting Satellite Standard Std. ETSI EN 302 30, 2006.

http://public.ccsds.org/publications/archive/131x2b1.pdf
http://public.ccsds.org/publications/archive/131x0b2ec1.pdf
http://faculty.uml.edu/jweitzen/16.548/classnotes/art_sklar3_turbocodes.pdf
http://faculty.uml.edu/jweitzen/16.548/classnotes/art_sklar3_turbocodes.pdf

75

[20] T. Sielicki, J. Hamkins, and D. Thorsen, “Variable coded modulation soft-

ware simulation,” in IEEE Aerospace Conference, Big Sky, MT, Mar. 2013. doi:

10.1109/AERO.2013.6497354 pp. 1–7.

[21] S. Sweep. Three dimensional bin-packing issues and solutions. University of

Minnesota Morris. Morris, MN. [Online]. Available: http://micsymposium.org/

mics 2004/Sweep.pdf

[22] P. Hoffman, The Man Who Loved Only Numbers: the Story of Paul Erdos. New York,

NY: Hyperion, 1998.

[23] R. Lyons, Understanding Digital Signal Processing. Upper Saddle River, NJ: Prentice

Hall, 2010.

[24] D. Ichikawa. (2007, Feb. 23) CubeSat to ground communication and mobile

modular ground station development. University of Hawaii at Manoa. Honolulu,

HI. [Online]. Available: http://www.spacegrant.hawaii.edu/reports/16 SUM06-FA06/

Ichikawa Dylan FA06.pdf

http://micsymposium.org/mics_2004/Sweep.pdf
http://micsymposium.org/mics_2004/Sweep.pdf
http://www.spacegrant.hawaii.edu/reports/16_SUM06-FA06/Ichikawa_Dylan_FA06.pdf
http://www.spacegrant.hawaii.edu/reports/16_SUM06-FA06/Ichikawa_Dylan_FA06.pdf

77

Appendix A

Thesis Source Code

A.1 Archive Files

All source code is attached with this thesis electronically through the Rasmuson Library

at the University of Alaska - Fairbanks [http://library.uaf.edu/]. Alternatively I am

available for questions and resources via email [tommy@sielicki.com] until the 22nd century.

Any proprietary code is removed.

A.1.1 MATLAB Simulation

Due to large number of proprietary functions source code is unavailable.

A.1.2 TMS Program

Java Eclipse export file “TMS.zip” contains source code and data files.

A.1.3 LabVIEW URSP Implementation

LabVIEW 2012 Project Solution archive “LABVIEW.zip” contains the VI files developed.

Only transmission mode uncoded ”-1” will work without the proprietary LDPC and Turbo

encoder / decoder functions. Consider replacing the missing DLL files with alternative

DLL files for other error correcting codes.

A.2 Code Highlights

Since LabVIEW is a visual dataflow programming language screenshots of select VIs

are shown in Figure A.1, Figure A.2, Figure A.3, and Figure A.4.

http://library.uaf.edu/
mailto:tommy@sielicki.com

78

Figure A.1. Encoding Process - Interface with C DLL Function

Figure A.2. Randomization Process Using Shift Registers

79

Fi
gu

re
A

.3
.F

ra
m

e
M

ar
ke

r
D

et
ec

ti
on

80

Fi
gu

re
A

.4
.P

LF
Pr

oc
es

si
ng

:C
om

pl
ex

Sy
m

bo
ls

to
H

ar
d

Bi
ts

81

Appendix B

Programs Specifications and User Guide

B.1 TMS Dependencies

• CSV file of the VCM modes to available to transmit from the spacecraft including the

following details

– Coding Type

– Modulation Type

– Coded length

– FEC Rate (Information bits/sym)

– Minimum Es/N0 need for communication with CWER of 10−4

• Satellite Pass Report for a specific orbit and ground station (STK export)

– Timestamp (minimum 1 second spacing)

– Es/N0

– Elevation

• Link Budget Constant (accounts for everything besides path loss)

• Length of the Frame Marker

• Number of consecutive frames to follow frame Marker

• Symbol Rate

B.2 TMS Outputs

• Shannon-Hartley Throughput (information bits)

• Best one mode per pass Throughput (percentage of Shannon Limit)

• VCM Throughput - using first fit algorithm

• VCM Throughput - using top down algorithm

• VCM Throughput - using random available algorithm

• Throughput - using traditional fixed rate communication system

• Mode switching commands file (for satellite uplink)

• VCM Modes used for data set including percentage of time used

B.3 TMS Bin-Packing Approaches

82

Using the classical Bin-Packing approaches to create programming methods for mode

selection several techniques were created and compared.

B.3.1 First Choice Selection

1. If Es/N0 at t0 < Minimum Es/N0 threshold for all modes, t0 = t0 + 1, repeat step 1, if

no more data points exist communication ends, else continue

2. Check which modes can operate at Es/N0 at time t0

3. Select the mode with the highest information capacity, called ”mode candidate”

4. Knowing the length of ”mode candidate” and t0 determine the time PLF ends, te,

then check which modes can operate at te

5. If mode candidate can operate at te, finalize ”mode candidate”, set t0 to te and return

to step 2.

6. If mode candidate cannot operate at te, return step 2 using next best mode, If no

”candidate mode” works, end communications.

B.3.2 Top Down Selection

1. Determine time at which Es/N0 is maximum for entire pass, called tmax

2. Determine which modes can operate at tmax, select mode with greatest information

capacity called ”mode candidate”.

3. Determine time at which ”mode candidate” is first operable, called t0

4. Determine te from mode candidate and check if mode candidate is operable at te, if

not repeat step 2 but select next best mode.

5. Increase t0 and te by one increment (default 1 second) until mode is not operable at

either t0orte, then finalize mode candidate and time placement.

6. Solve from te to tendo f pass using ”First Choice Selection” technique.

7. Solve from t0 to tstarto f pass using ”First Choice Selection”, working backwards through

time.

B.3.3 Random Solution

1. If Es/N0 at t0 < Minimum Es/N0 threshold for all modes, t0 = t0 + 1, repeat step 1, if

no more data points exist communication ends, else continue

83

2. Check which modes can operate at Es/N0 at time t0

3. Select a mode from the list randomly, called ”mode candidate”

4. Knowing the length of ”mode candidate” and t0 determine the time PLF ends, te,

then check which modes can operate at te

5. If mode candidate can operate at te, finalize ”mode candidate”, set t0 to te and return

to step 2.

6. If mode candidate cannot operate at te, return step 2 using another random mode, If

no ”candidate mode” works, end communications.

B.3.4 One Mode Solution

1. Iterate through all modes

2. Determine time t0 at which mode is operable

3. Determine the time at which mode is not longer operable te, and determine how

many whole PLFs can fit in the time period te − t0.

4. Calculate throughput and record

5. Return the result of the mode with the highest throughput

B.3.5 Fixed Mode Solution

1. Determine time t0 at which mode is operable

2. Determine the time at which mode is not longer operable te, and determine how

many whole PLFs can fit in the time period te − t0.

3. Calculate throughput and record

B.4 LabVIEW Transmitter/Receiver User Guide

B.4.1 User Variables

The hardware simulation has many configurable user parameters. All inputs are easy

to modify on the graphical user interface of the LabVIEW VI file. The transmitter needs

to specify the transmission modes, this is done using an array listing the modes to be

84

transmitted in order from start to finish. The transmitter also is configurable to loop the

modes 1 to N times, where a negative input will cause the transmitter to loop infinitely.

By default the transmitted data is random, dictated by a seed. The user has the ability to

insert a frame number into the data packet that can be extracted by the receiver, 232 frame

numbers are supported. Another input is for the frame marker detection function in the

receiver, this is an adjustable threshold value that can range from 0-256. Pulse shaping is

supports three types: Root Raised Cosine, Raised Cosine, and Gaussian. The user must

specify apha and the filter lengths. The remaining user inputs deal mainly with the USRP

itself: carrier frequency, symbol rate, IQ rate of the radio to pc, oversampling factor, antenna

port, IP address of the USRP, and TX/RX gain.

	Signature Page
	Title Page
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	List of Appendices
	Acknowledgments
	Thesis Introduction
	Significance of CubeSats
	The Communications Link Budget
	Forward Error Correcting Codes
	Thesis Overview

	Developing and Simulating the VCM Protocol
	Introduction
	The VITAMIN System Design
	CCSDS Turbo and LDPC codes
	CCSDS Modulations
	The VCM modes

	CubeSat Implementation Feasibility
	Simulation
	System Performance
	Frame Marker Identification Error Rate
	Frame Descriptor Error

	Design for Receiver Frame Marker Synchronization
	Overall Data Throughput Performance
	Low Symbol Rate Performance

	Bin-Packing: Maximizing Throughput
	Introduction
	Applying Bin-Packing in the VITAMIN Protocol
	Program Overview
	Determining the Shannon Hartley Limit
	Simulation Data Set
	VITAMIN Analysis from the TMS Program
	Monthly Simulation
	Varying the Consecutive Number of Frames
	Identifying the Workhorses of VITAMIN

	Conclusions

	VITAMIN Radio Implementation
	Introduction
	The Hardware and Software
	Data Flow Overview
	Transmitter Development
	Transmitter Initialization
	Data Transmission Flow

	Communications Channel
	Receiver Development
	USRP Initialization
	IQ Data Fetch
	Resample
	Matched Filter, Time Align, Frequency Offset, Phase Offset, and Decimation
	Frame Marker Detection
	Aligning Phase
	Queuing of PLF
	Determining the Mode of PLF
	Soft Demodulation
	LLR Scaling
	Decoding
	Derandomization
	Sink

	Pulse Shaping and Matched Filtering
	Constellation Workaround

	VITAMIN Performance
	Codeword Error Rate Analysis of Modes in LabVIEW
	Codeword Error Rate Analysis for USRP via RF
	Simulation of CubeSat Pass
	Process and Observations

	Simulation of Random VCM Mode
	LabVIEW Performance Under Noise

	Final Recommended VITAMIN Protocol
	Purpose
	Scope
	Data Handling
	Signal Constellations
	Pseudo Randomization
	Frame Marker
	Physical Layer Frame
	Data Recovery Properties
	Mode Ordering

	Future Work
	Bin-Packing
	Fully Functional Software Defined Radio Ground Station
	Develop a CubeSat Sized Transmitter

	Acronym Index
	Bibliography
	Appendices

