16 research outputs found

    The first long-read nuclear genome assembly of Oryza australiensis, a wild rice from northern Australia

    Get PDF
    Oryza australiensis is a wild rice native to monsoonal northern Australia. The International Oryza Map Alignment Project emphasises its significance as the sole representative of the EE genome clade. Assembly of the O. australiensis genome has previously been challenging due to its high Long Terminal Repeat (LTR) retrotransposon (RT) content. Oxford Nanopore long reads were combined with Illumina short reads to generate a high-quality ~ 858 Mbp genome assembly within 850 contigs with 46Ă— long read coverage. Reference-guided scaffolding increased genome contiguity, placing 88.2% of contigs into 12 pseudomolecules. After alignment to the Oryza sativa cv. Nipponbare genome, we observed several structural variations. PacBio Iso-Seq data were generated for five distinct tissues to improve the functional annotation of 34,587 protein-coding genes and 42,329 transcripts. We also report SNV numbers for three additional O. australiensis genotypes based on Illumina re-sequencing. Although genetic similarity reflected geographical separation, the density of SNVs also correlated with our previous report on variations in salinity tolerance. This genome re-confirms the genetic remoteness of the O. australiensis lineage within the O. officinalis genome complex. Assembly of a high-quality genome for O. australiensis provides an important resource for the discovery of critical genes involved in development and stress tolerance.Aaron L. Phillips, Scott Ferguson, Nathan S. Watson, Haigh, Ashley W. Jones, Justin O. Borevitz, Rachel A. Burton, Brian J. Atwel

    Generation of a reference genome to investigate population fitness and transitional cell carcinoma occurrence in the fishing cat (Prionailurus viverrinus)

    Get PDF
    Many species are vulnerable or on the verge of extinction as a result of increased habitat degradation and fragmentation. Conservation genetics has attempted to apply an understanding of species genetics to reduce the risk of severe population reductions with an assumed correlate to lower fitness. Better management strategies could be implemented if these principles can be used to determine the evolutionary context of endangered or vulnerable species. With sequencing technologies rapidly advancing and becoming more cost-effective, wildlife managers of both wild and zoo-managed species can now define the population genetics of their organism of interest to develop risk adverse mating plans that promote self-sustaining and stable populations. While studying wild population genetics is ideal for conservation, the availability of zoomanaged species can provide an opportunity to examine molecular diversity and trait outcomes in controlled environments for the typical smaller zoo cohorts. This genetic insight provides detailed maps of sequence variation and its putative functional impact, which will aid in disease control if it occurs in captive populations. Since all captive populations were once wild, estimates of these past wild sources of genetic variation can be extrapolated to update their diversity status in the wild and possibly promote species sustainability. In these studies, the fishing cat (Prionailurus viverrinus) is examined within the context of captive species conservation genetics. The Fishing Cat Species Survival Plan (SSP) group managing zoo-born individuals is facing management challenges due to its small population history and recent disease occurrence. More specifically, an increase in the occurrence of transitional cell carcinoma (TCC), a type of bladder cancer that affects older fishing cats, is now a concern for the SSP. Despite the fact that this type of bladder cancer has been observed in a variety of species, the exact cause is unknown. To investigate potential germline risk alleles linked to confirmed cancer cases, a reference genome was constructed, and whole genome sequences (WGS) of 11 fishing cats were generated. In addition, comparative population genetic analyses for the fishing cat, Asian leopard cat, and tiger were performed to test hypotheses about genetic fitness and answer questions about the health of the fishing cat zoo population, such as the prevalence of missense (amino acid-altering) and nonsense (loss-of-function) variants, nucleotide diversity, and runs of homozygosity. Ultimately, this research will help answer the question of whether these collated metrics of genetic fitness reflect great concern for the future of the zoo fishing cat population, including the possibility that germline risk alleles for TCC are present. Moreover, the first assessment of the fishing cat's genome diversity is conducted and compared its closest relatives, the Asian leopard cat (Prionailurus bengalensis).Includes bibliographical references

    Platypus and echidna genomes reveal mammalian biology and evolution

    Get PDF
    Published online: 6 January 2021Egg-laying mammals (monotremes) are the only extant mammalian outgroup to therians (marsupial and eutherian animals) and provide key insights into mammalian evolution (1,2). Here we generate and analyse reference genomes of the platypus (Ornithorhynchus anatinus) and echidna (Tachyglossus aculeatus), which represent the only two extant monotreme lineages. The nearly complete platypus genome assembly has anchored almost the entire genome onto chromosomes, markedly improving the genome continuity and gene annotation. Together with our echidna sequence, the genomes of the two species allow us to detect the ancestral and lineage-specific genomic changes that shape both monotreme and mammalian evolution. We provide evidence that the monotreme sex chromosome complex originated from an ancestral chromosome ring configuration. The formation of such a unique chromosome complex may have been facilitated by the unusually extensive interactions between the multi-X and multi-Y chromosomes that are shared by the autosomal homologues in humans. Further comparative genomic analyses unravel marked differences between monotremes and therians in haptoglobin genes, lactation genes and chemosensory receptor genes for smell and taste that underlie the ecological adaptation of monotremes.Yang Zhou, Linda Shearwin-Whyatt, Jing Li, Zhenzhen Song, Takashi Hayakawa, David Stevens, Jane C. Fenelon, Emma Peel, Yuanyuan Cheng, Filip Pajpach, Natasha Bradley, Hikoyu Suzuki, Masato Nikaido, Joana Damas, Tasman Daish, Tahlia Perry, Zexian Zhu, Yuncong Geng, Arang Rhie, Ying Sims, Jonathan Wood, Bettina Haase, Jacquelyn Mountcastle, Olivier Fedrigo, Qiye Li, Huanming Yang, Jian Wang, Stephen D. Johnston, Adam M. Phillippy, Kerstin Howe, Erich D. Jarvis, Oliver A. Ryder, Henrik Kaessmann, Peter Donnelly, Jonas Korlach, Harris A. Lewin, Jennifer Graves, Katherine Belov, Marilyn B. Renfree, Frank Grutzner, Qi Zhou, Guojie Zhan

    Platypus and echidna genomes reveal mammalian biology and evolution

    Get PDF
    Egg-laying mammals (monotremes) are the only extant mammalian outgroup to therians (marsupial and eutherian animals) and provide key insights into mammalian evolution1,2. Here we generate and analyse reference genomes of the platypus (Ornithorhynchus anatinus) and echidna (Tachyglossus aculeatus), which represent the only two extant monotreme lineages. The nearly complete platypus genome assembly has anchored almost the entire genome onto chromosomes, markedly improving the genome continuity and gene annotation. Together with our echidna sequence, the genomes of the two species allow us to detect the ancestral and lineage-specific genomic changes that shape both monotreme and mammalian evolution. We provide evidence that the monotreme sex chromosome complex originated from an ancestral chromosome ring configuration. The formation of such a unique chromosome complex may have been facilitated by the unusually extensive interactions between the multi-X and multi-Y chromosomes that are shared by the autosomal homologues in humans. Further comparative genomic analyses unravel marked differences between monotremes and therians in haptoglobin genes, lactation genes and chemosensory receptor genes for smell and taste that underlie the ecological adaptation of monotremes.We thank members of BGI-Shenzhen, China National GeneBank and VGP, and P. Baybayan, R. Hall and J. Howard for help carrying out the sequencing of the platypus and echidna genomes, M. Asahara for discussion, and D. Charlesworth for comments. Work was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB31020000), the National Key R&D Program of China (MOST) grant 2018YFC1406901, International Partnership Program of Chinese Academy of Sciences (152453KYSB20170002), Carlsberg foundation (CF16-0663) and Villum Foundation (25900) to G.Z. Q.Z. is supported by the National Natural Science Foundation of China (31722050, 31671319 and 32061130208), Natural Science Foundation of Zhejiang Province (LD19C190001), European Research Council Starting Grant (grant agreement 677696) and start-up funds from Zhejiang University.T.H. was financed by JSPS KAKENHI grant numbers 16K18630 and 19K16241 and the Sasakawa Scientific Research Grant from the Japan Science Society. The echidna RNA-sequencing analysis was supported by H.K.’s grant from the European Research Council (615253, OntoTransEvol). This work was supported by Guangdong Provincial Academician Workstation of BGI Synthetic Genomics No. 2017B090904014 (H.Y.), Robert and Rosabel Osborne Endowment, Howard Hughes Medical Institute (E.D.J.), Rockefeller University start-up funds (E.D.J.), Intramural Research Program of the National Human Genome Research Institute, National Institutes of Health (A.R. and A.M.P.), Korea Health Technology R&D Project through the Korea Health Industry Development Institute HI17C2098 (A.R.). This work used the computational resources of BGI-Shenzhen and the NIH HPC Biowulf cluster (https://hpc.nih.gov). Animal icons are from https://www.flaticon.com/ (made by Freepik) and http://phylopic.org/

    Origin and evolution of the bread wheat D genome

    Get PDF
    Bread wheat (Triticum aestivum) is a globally dominant crop and major source of calories and proteins for the human diet. Compared with its wild ancestors, modern bread wheat shows lower genetic diversity, caused by polyploidisation, domestication and breeding bottlenecks1,2. Wild wheat relatives represent genetic reservoirs, and harbour diversity and beneficial alleles that have not been incorporated into bread wheat. Here we establish and analyse extensive genome resources for Tausch’s goatgrass (Aegilops tauschii), the donor of the bread wheat D genome. Our analysis of 46 Ae. tauschii genomes enabled us to clone a disease resistance gene and perform haplotype analysis across a complex disease resistance locus, allowing us to discern alleles from paralogous gene copies. We also reveal the complex genetic composition and history of the bread wheat D genome, which involves contributions from genetically and geographically discrete Ae. tauschii subpopulations. Together, our results reveal the complex history of the bread wheat D genome and demonstrate the potential of wild relatives in crop improvement

    Origin and evolution of the bread wheat D genome

    Get PDF
    Bread wheat (Triticum aestivum) is a globally dominant crop and major source of calories and proteins for the human diet. Compared with its wild ancestors, modern bread wheat shows lower genetic diversity, caused by polyploidisation, domestication and breeding bottlenecks. Wild wheat relatives represent genetic reservoirs, and harbour diversity and beneficial alleles that have not been incorporated into bread wheat. Here we establish and analyse extensive genome resources for Tausch’s goatgrass (Aegilops tauschii), the donor of the bread wheat D genome. Our analysis of 46 Ae. tauschii genomes enabled us to clone a disease resistance gene and perform haplotype analysis across a complex disease resistance locus, allowing us to discern alleles from paralogous gene copies. We also reveal the complex genetic composition and history of the bread wheat D genome, which involves contributions from genetically and geographically discrete Ae. tauschii subpopulations. Together, our results reveal the complex history of the bread wheat D genome and demonstrate the potential of wild relatives in crop improvement

    Towards Complete and Error-Free Genome Assemblies of all Vertebrate Species

    Get PDF
    corecore