831 research outputs found

    A family of asymptotically stable control laws for flexible robots based on a passivity approach

    Get PDF
    A general family of asymptotically stabilizing control laws is introduced for a class of nonlinear Hamiltonian systems. The inherent passivity property of this class of systems and the Passivity Theorem are used to show the closed-loop input/output stability which is then related to the internal state space stability through the stabilizability and detectability condition. Applications of these results include fully actuated robots, flexible joint robots, and robots with link flexibility

    Momentum Control of Humanoid Robots with Series Elastic Actuators

    Full text link
    Humanoid robots may require a degree of compliance at the joint level for improving efficiency, shock tolerance, and safe interaction with humans. The presence of joint elasticity, however, complexifies the design of balancing and walking controllers. This paper proposes a control framework for extending momentum based controllers developed for stiff actuators to the case of series elastic actuators. The key point is to consider the motor velocities as an intermediate control input, and then apply high-gain control to stabilise the desired motor velocities achieving momentum control. Simulations carried out on a model of the robot iCub verify the soundness of the proposed approach

    A passivity based control methodology for flexible joint robots with application to a simplified shuttle RMS arm

    Get PDF
    The main goal is to develop a general theory for the control of flexible robots, including flexible joint robots, flexible link robots, rigid bodies with flexible appendages, etc. As part of the validation, the theory is applied to the control law development for a test example which consists of a three-link arm modeled after the shoulder yaw joint of the space shuttle remote manipulator system (RMS). The performance of the closed loop control system is then compared with the performance of the existing RMS controller to demonstrate the effectiveness of the proposed approach. The theoretical foundation of this new approach to the control of flexible robots is presented and its efficacy is demonstrated through simulation results on the three-link test arm

    Passivity/Lyapunov based controller design for trajectory tracking of flexible joint manipulators

    Get PDF
    A passivity and Lyapunov based approach for the control design for the trajectory tracking problem of flexible joint robots is presented. The basic structure of the proposed controller is the sum of a model-based feedforward and a model-independent feedback. Feedforward selection and solution is analyzed for a general model for flexible joints, and for more specific and practical model structures. Passivity theory is used to design a motor state-based controller in order to input-output stabilize the error system formed by the feedforward. Observability conditions for asymptotic stability are stated and verified. In order to accommodate for modeling uncertainties and to allow for the implementation of a simplified feedforward compensation, the stability of the system is analyzed in presence of approximations in the feedforward by using a Lyapunov based robustness analysis. It is shown that under certain conditions, e.g., the desired trajectory is varying slowly enough, stability is maintained for various approximations of a canonical feedforward

    Evaluation and Comparison of SEA Torque Controllers in a Unified Framework

    Get PDF
    Series elastic actuators (SEA) with their inherent compliance offer a safe torque source for robots that are interacting with various environments, including humans. These applications have high requirements for the SEA torque controllers, both in the torque response as well as interaction behavior with its the environment. To differentiate state of the art torque controllers, this work is introducing a unifying theoretical and experimental framework that compares controllers based on their torque transfer behavior, their apparent impedance behavior, and especially the passivity of the apparent impedance, i.e. their interaction stability, as well as their sensitivity to sensor noise. We compare classical SEA control approaches such as cascaded PID controllers and full state feedback controllers with advanced controllers using disturbance observers, acceleration feedback and adaptation rules. Simulations and experiments demonstrate the trade-off between stable interactions, high bandwidths and low noise levels. Based on these tradeoffs, an application specific controller can be designed and tuned, based on desired interaction with the respective environment

    Adaptive computed reference computed torque control of flexible manipulators

    Get PDF
    • …
    corecore