6 research outputs found

    A dynamic inequality generation scheme for polynomial programming

    Get PDF
    Hierarchies of semidefinite programs have been used to approximate or even solve polynomial programs. This approach rapidly becomes computationally expensive and is often tractable only for problems of small size. In this paper, we propose a dynamic inequality generation scheme to generate valid polynomial inequalities for general polynomial programs. When used iteratively, this scheme improves the bounds without incurring an exponential growth in the size of the relaxation. As a result, the proposed scheme is in principle scalable to large general polynomial programming problems. When all the variables of the problem are non-negative or when all the variables are binary, the general algorithm is specialized to a more efficient algorithm. In the case of binary polynomial programs, we show special cases for which the proposed scheme converges to the global optimal solution. We also present several examples illustrating the computational behavior of the scheme and provide comparisons with Lasserre’s approach and, for the binary linear case, with the lift-and-project method of Balas, Ceria, and Cornuejols

    Solving unconstrained 0-1 polynomial programs through quadratic convex reformulation

    Get PDF
    We propose a solution approach for the problem (P) of minimizing an unconstrained binary polynomial optimization problem. We call this method PQCR (Polynomial Quadratic Convex Reformulation). The resolution is based on a 3-phase method. The first phase consists in reformulating (P) into a quadratic program (QP). For this, we recursively reduce the degree of (P) to two, by use of the standard substitution of the product of two variables by a new one. We then obtain a linearly constrained binary program. In the second phase, we rewrite the quadratic objective function into an equivalent and parametrized quadratic function using the equality x 2 i = x i and new valid quadratic equalities. Then, we focus on finding the best parameters to get a quadratic convex program which continuous relaxation's optimal value is maximized. For this, we build a semidefinite relaxation (SDP) of (QP). Then, we prove that the standard linearization inequalities, used for the quadratization step, are redundant in (SDP) in presence of the new quadratic equalities. Next, we deduce our optimal parameters from the dual optimal solution of (SDP). The third phase consists in solving (QP *), the optimal reformulated problem, with a standard solver. In particular, at each node of the branch-and-bound, the solver computes the optimal value of a continuous quadratic convex program. We present computational results on instances of the image restoration problem and of the low autocorrelation binary sequence problem. We compare PQCR with other convexification methods, and with the general solver Baron 17.4.1 [39]. We observe that most of the considered instances can be solved with our approach combined with the use of Cplex [24]

    An Iterative Scheme for Valid Polynomial Inequality Generation in Binary Polynomial Programming

    Full text link
    Semidefinite programming has been used successfully to build hierarchies of convex relaxations to approximate polynomial programs. This approach rapidly becomes computationally expensive and is often tractable only for problems of small sizes. We propose an iterative scheme that improves the semidefinite relaxations without incurring exponential growth in their size. The key ingredient is a dynamic scheme for generating valid polynomial inequalities for general polynomial programs. These valid inequalities are then used to construct better approximations of the original problem. As a result, the proposed scheme is in principle scalable to large general combinatorial optimization problems. For binary polynomial programs, we prove that the proposed scheme converges to the global optimal solution for interesting cases of the initial approximation of the problem. We also present examples illustrating the computational behaviour of the scheme and compare it to other methods in the literature

    Conic Programming Approaches for Polynomial Optimization: Theory and Applications

    Get PDF
    Historically, polynomials are among the most popular class of functions used for empirical modeling in science and engineering. Polynomials are easy to evaluate, appear naturally in many physical (real-world) systems, and can be used to accurately approximate any smooth function. It is not surprising then, that the task of solving polynomial optimization problems; that is, problems where both the objective function and constraints are multivariate polynomials, is ubiquitous and of enormous interest in these fields. Clearly, polynomial op- timization problems encompass a very general class of non-convex optimization problems, including key combinatorial optimization problems.The focus of the first three chapters of this document is to address the solution of polynomial optimization problems in theory and in practice, using a conic optimization approach. Convex optimization has been well studied to solve quadratic constrained quadratic problems. In the first part, convex relaxations for general polynomial optimization problems are discussed. Instead of using the matrix space to study quadratic programs, we study the convex relaxations for POPs through a lifted tensor space, more specifically, using the completely positive tensor cone and the completely positive semidefinite tensor cone. We show that tensor relaxations theoretically yield no-worse global bounds for a class of polynomial optimization problems than relaxation for a QCQP reformulation of the POPs. We also propose an approximation strategy for tensor cones and show empirically the advantage of the tensor relaxation.In the second part, we propose an alternative SDP and SOCP hierarchy to obtain global bounds for general polynomial optimization problems. Comparing with other existing SDP and SOCP hierarchies that uses higher degree sum of square (SOS) polynomials and scaled diagonally sum of square polynomials (SDSOS) when the hierarchy level increases, these proposed hierarchies, using fixed degree SOS and SDSOS polynomials but more of these polynomials, perform numerically better. Numerical results show that the hierarchies we proposed have better performance in terms of tightness of the bound and solution time compared with other hierarchies in the literature.The third chapter deals with Alternating Current Optimal Power Flow problem via a polynomial optimization approach. The Alternating Current Optimal Power Flow (ACOPF) problem is a challenging non-convex optimization problem in power systems. Prior research mainly focuses on using SDP relaxations and SDP-based hierarchies to address the solution of ACOPF problem. In this Chapter, we apply existing SOCP hierarchies to this problem and explore the structure of the network to propose simplified hierarchies for ACOPF problems. Compared with SDP approaches, SOCP approaches are easier to solve and can be used to approximate large scale ACOPF problems.The last chapter also relates to the use of conic optimization techniques, but in this case to pricing in markets with non-convexities. Indeed, it is an application of conic optimization approach to solve a pricing problem in energy systems. Prior research in energy market pricing mainly focus on linear costs in the objective function. Due to the penetration of renewable energies into the current electricity grid, it is important to consider quadratic costs in the objective function, which reflects the ramping costs for traditional generators. This study address the issue how to find the market clearing prices when considering quadratic costs in the objective function
    corecore