28 research outputs found

    Design and Control Modeling of Novel Electro-magnets Driven Spherical Motion Generators

    Get PDF

    Multi-level-objective design optimization of permanent magnet synchronous wind generator and solar photovoltaic system for an urban environment application

    Get PDF
    This Ph.D. thesis illustrates a novel study on the analytical and numerical design optimization of radial-flux permanent magnet synchronous wind generators (PMSGs) for small power generation in an urban area, in which an outer rotor topology with a closed-slot stator is employed. The electromagnetic advantages of a double-layer fractional concentration non-overlapping winding configuration are discussed. The analytical behavior of a PMSG is studied in detail; especially for magnetic flux density distribution, time and space harmonics, flux linkages, back-EMF, cogging torque, torque, output power, efficiency, and iron losses computation. The electromagnetic behavior of PMSGs are evaluated when a number of various Halbach array magnetization topologies are presented to maximize the generator’s performance. In addition, the thermal behavior of the PMSG is improved using an innovative natural air-cooling system for rated speed and higher to decrease the machine’s heat mainly at the stator teeth. The analytical investigation is verified via 2-D and 3-D finite element analysis along with a good experimental agreement. Design optimization of electrical machines plays the deterministic role in performance improvements such as the magnetization pattern, output power, and efficiency maximization, as well as losses and material cost minimization. This dissertation proposes a novel multi-objective design optimization technique using a dual-level response surface methodology (D-RSM) and Booth’s algorithm (coupled to a memetic algorithm known as simulated annealing) to maximize the output power and minimize material cost through sizing optimization. Additionally, the efficiency maximization by D-RSM is investigated while the PMSG and drive system are on duty as the whole. It is shown that a better fit is available when utilizing modern design functions such as mixed-resolution central composite (MR-CCD) and mixed-resolution robust (MR-RD), due to controllable and uncontrollable design treatments, and also a Window-Zoom-in approach. The proposed design optimization was verified by an experimental investigation. Additionally, there are several novel studies on vibro-acoustic design optimization of the PMSGs with considering variable speed analysis and natural frequencies using two techniques to minimize the magnetic noise and vibrations. Photovoltaic system design optimization considered of 3-D modeling of an innovative application-oriented urban environment structure, a smart tree for small power generation. The horizon shading is modeled as a broken line superimposed onto the sun path diagram, which can hold any number of height/azimuth points in this original study. The horizon profile is designed for a specific location on the Barcelona coast in Spain and the meteorological data regarding the location of the project was also considered. Furthermore, the input weather data is observed and stored for the whole year (in 2016). These data include, ambient temperature, module’s temperature (open and closed circuits tests), and shading average rate. A novel Pareto-based 3-D analysis was used to identify complete and partial shading of the photovoltaic system. A significant parameter for a photovoltaic (PV) module operation is the nominal operating cell temperature (NOCT). In this research, a glass/glass module has been referenced to the environment based on IEC61215 via a closed-circuit and a resistive load to ensure the module operates at the maximum power point. The proposed technique in this comparative study attempts to minimize the losses in a certain area with improved output energy without compromising the overall efficiency of the system. A Maximum Power Point Track (MPPT) controller is enhanced by utilizing an advanced perturb & observe (P&O) algorithm to maintain the PV operating point at its maximum output under different temperatures and insolation. The most cost-effective design of the PV module is achieved via optimizing installation parameters such as tilt angle, pitch, and shading to improve the energy yield. The variation of un-replicated factorials using a Window-Zoom-in approach is examined to determine the parameter settings and to check the suitability of the design. An experimental investigation was carried out to verify the 3-D shading analysis and NOCT technique for an open-circuit and grid-connected PV module.Esta tesis muestra un novedoso estudio referente al diseño optimizado de forma analítica y numérica de un generador síncrono de imanes permanentes (PMSGs) para una aplicación de microgeneración eólica en un entorno urbano, donde se ha escogido una topología de rotor exterior con un estator de ranuras cerradas. Las ventajas electromagnéticas de los arrollamientos fraccionarios de doble capa, con bobinas concentradas se discuten ampliamente en la parte inicial del diseño del mismo, así como las características de distribución de la inducción, los armónicos espaciales y temporales, la fem generada, el par de cogging así como las características de salida (par, potencia generada, la eficiencia y la distribución y cálculo de las pérdidas en el hierro que son analizadas detalladamente) Posteriormente se evalúan diferentes configuraciones de estructuras de imanes con magnetización Halbach con el fin de maximizar las prestaciones del generador. Adicionalmente se analiza la distribución de temperaturas y su mejora mediante el uso de un novedoso diseño mediante el uso de ventilación natural para velocidades próximas a la nominal y superiores con el fin de disminuir la temperatura de la máquina, principalmente en el diente estatórico. El cálculo analítico se completa mediante simulaciones 2D y 3D utilizando el método de los elementos finitos así como mediante diversas experiencias que validan los modelos y aproximaciones realizadas. Posteriormente se desarrollan algoritmos de optimización aplicados a variables tales como el tipo de magnetización, la potencia de salida, la eficiencia así como la minimización de las pérdidas y el coste de los materiales empleados. En la tesis se proponen un nuevo diseño optimizado basado en una metodología multinivel usando la metodología de superficie de respuesta (D-RSM) y un algoritmo de Booth (maximizando la potencia de salida y minimizando el coste de material empleado) Adicionalmente se investiga la maximización de la eficiencia del generador trabajando conjuntamente con el circuito de salida acoplado. El algoritmo utilizado queda validado mediante la experimentación desarrollada conjuntamente con el mismo. Adicionalmente, se han realizado diversos estudios vibroacústicos trabajando a velocidad variable usando dos técnicas diferentes para reducir el ruido generado y las vibraciones producidas. Posteriormente se considera un sistema fotovoltaico orientado a aplicaciones urbanas que hemos llamado “Smart tree for small power generation” y que consiste en un poste con un generador eólico en la parte superior juntamente con uno o más paneles fotovoltaicos. Este sistema se ha modelado usando metodologías en 3D. Se ha considerado el efecto de las sombras proyectadas por los diversos elementos usando datos meteorológicos y de irradiación solar de la propia ciudad de Barcelona. Usando una metodología basada en un análisis 3D y Pareto se consigue identificar completamente el sistema fotovoltaico; para este sistema se considera la temperatura de la célula fotovoltaica y la carga conectada con el fin de generar un algoritmo de control que permita obtener el punto de trabajo de máxima potencia (MPPT) comprobándose posteriormente el funcionamiento del algoritmo para diversas situaciones de funcionamiento del sistemaLa tesis desenvolupa un nou estudi per al disseny optimitzat, analític i numèric, d’un generador síncron d’imants permanents (PMSGs) per a una aplicació de microgeneració eòlica en aplicacions urbanes, on s’ha escollit una configuració amb rotor exterior i estator amb ranures tancades. Es discuteixen de forma extensa els avantatges electromagnètics dels bobinats fraccionaris de doble capa així com les característiques resultats vers la distribució de les induccions, els harmònics espacials i temporals, la fem generada, el parell de cogging i les característiques de sortida (parell, potencia, eficiència i pèrdues) Tanmateix s’afegeix l’estudi de diferents estructures Halbach per als imants permanents a fi i efecte de maximitzar les característiques del generador. Tot seguit s’analitza la distribució de temperatures i la seva reducció mitjançant la utilització d’una nova metodologia basada en la ventilació natural. Els càlculs analítics es complementen mitjançant anàlisi en 2 i 3 dimensions utilitzant elements finits i diverses experiències que validen els models i aproximacions emprades. Una vegada fixada la geometria inicial es desenvolupen algoritmes d’optimització per a diverses variables (tipus de magnetització dels imants, potencia de sortida, eficiència, minimització de pèrdues i cost dels materials) La tesi planteja una optimització multinivell emprant la metodologia de superfície de resposta i un algoritme de Booth; a més, es realitza la optimització considerant el circuit de sortida. L’algoritme resta validat per la experimentació realitzada. Finalment, s’han considerat diversos estudis vibroacústic treballant a velocitat variable, emprant dues tècniques diferents per a reduir el soroll i les vibracions desenvolupades. Per a finalitzar l’estudi es considera un sistema format per una turbina eòlica instal·lada sobre un pal de llum autònom, els panells fotovoltaics corresponents i el sistema de càrrega. Per a modelitzar l’efecte de l’ombrejat s’ha emprat un model en 3D i les dades del temps i d’irradiació solar de la ciutat de Barcelona. El model s’ha identificat completament i s’ha generat un algoritme de control que considera, a més, l’efecte de la temperatura de la cèl·lula fotovoltaica y la càrrega connectada al sistema per tal d’aconseguir el seguiment del punt de màxima potenciaPostprint (published version

    Extended analytical charge modeling for permanent-magnet based devices : practical application to the interactions in a vibration isolation system

    Get PDF
    This thesis researches the analytical surface charge modeling technique which provides a fast, mesh-free and accurate description of complex unbound electromagnetic problems. To date, it has scarcely been used to design passive and active permanent-magnet devices, since ready-to-use equations were still limited to a few domain areas. Although publications available in the literature have demonstrated the surface-charge modeling potential, they have only scratched the surface of its application domain. The research that is presented in this thesis proposes ready-to-use novel analytical equations for force, stiffness and torque. The analytical force equations for cuboidal permanent magnets are now applicable to any magnetization vector combination and any relative position. Symbolically derived stiffness equations directly provide the analytical 3 £ 3 stiffness matrix solution. Furthermore, analytical torque equations are introduced that allow for an arbitrary reference point, hence a direct torque calculation on any assembly of cuboidal permanent magnets. Some topics, such as the analytical calculation of the force and torque for rotated magnets and extensions to the field description of unconventionally shaped magnets, are outside the scope of this thesis are recommended for further research. A worldwide first permanent-magnet-based, high-force and low-stiffness vibration isolation system has been researched and developed using this advanced modeling technique. This one-of-a-kind 6-DoF vibration isolation system consumes a minimal amount of energy (Ç 1W) and exploits its electromagnetic nature by maximizing the isolation bandwidth (> 700Hz). The resulting system has its resonance > 1Hz with a -2dB per decade acceleration slope. It behaves near-linear throughout its entire 6-DoF working range, which allows for uncomplicated control structures. Its position accuracy is around 4mum, which is in close proximity to the sensor’s theoretical noise level of 1mum. The extensively researched passive (no energy consumption) permanent-magnet based gravity compensator forms the magnetic heart of this vibration isolation system. It combines a 7.1kN vertical force with <10kN/m stiffness in all six degrees of freedom. These contradictory requirements are extremely challenging and require the extensive research into gravity compensator topologies that is presented in this thesis. The resulting cross-shaped topology with vertical airgaps has been filed as a European patent. Experiments have illustrated the influence of the ambient temperature on the magnetic behavior, 1.7h/K or 12N/K, respectively. The gravity compensator has two integrated voice coil actuators that are designed to exhibit a high force and low power consumption (a steepness of 625N2/W and a force constant of 31N/A) within the given current and voltage constraints. Three of these vibration isolators, each with a passive 6-DoF gravity compensator and integrated 2-DoF actuation, are able to stabilize the six degrees of freedom. The experimental results demonstrate the feasibility of passive magnet-based gravity compensation for an advanced, high-force vibration isolation system. Its modular topology enables an easy force and stiffness scaling. Overall, the research presented in this thesis shows the high potential of this new class of electromagnetic devices for vibration isolation purposes or other applications that are demanding in terms of force, stiffness and energy consumption. As for any new class of devices, there are still some topics that require further study before this design can be implemented in the next generation of vibration isolation systems. Examples of these topics are the tunability of the gravity compensator’s force and a reduction of magnetic flux leakage

    A superconducting magnet plate:for a planar motor application

    Get PDF

    A superconducting magnet plate:for a planar motor application

    Get PDF

    Design and control of a 6-Degree-of-Freedom levitated positioner with high precision

    Get PDF
    This dissertation presents a high-precision positioner with a novel superimposed concentrated-field permanent-magnet matrix. This extended-range multi-axis positioner can generate all 6-DOF (degree-of-freedom) motions with only a single moving part. It is actuated by three planar levitation motors, which are attached on the bottom of the moving part. Three aerostatic bearings are used to provide the suspension force against the gravity for the system. The dynamic model of the system is developed and analyzed. And several control techniques including SISO (single input and single output) and MIMO (multi inputs and multi outputs) controls are discussed in the dissertation. The positioner demonstrates a position resolution of 20 nm and position noise of 10 nm rms in x and y and 15 nm rms in z. The angular resolution around the x-, y-, and z-axes is in sub-microradian order. The planar travel range is 160 mm ?? 160 mm, and the maximum velocity achieved is 0.5 m/s at a 5-m/s2 acceleration, which can enhance the throughput in precision manufacturing. Various experimental results are presented in this dissertation to demonstrate the positioner??s capability of accurately tracking any planar trajectories. Those experimental results verified the potential utility of this 6-DOF high-precision positioner in precision manufacturing and factory automation

    Beitrag zur Gestaltung und Herstellung einer integrierten Mikropositionierungssystem

    Get PDF
    Modern positioning systems are significantly applied in many engineering fields dealing with products emerging from different technologies at macro-, micro- and nanoscale. These systems are the back-bone systems behind any manipulation task in these areas. Currently, miniaturization trend have led numerous scientific communities to realize down scaled versions of these systems with a footprint size up to few hundreds of millimeters. These miniature positioning systems are cost effective solutions in many micro applications. This thesis presents the development of a miniature positioning system integrated with a non-contact long range displacement sensor. The uniqueness of the presented positioning system lies in its simple design with ability to perform micrometer to millimeter level strokes with pre-embedded auto guidance feature. Its design consists of a mobile part driven with four electromagnetic linear motors. Each motor consists of a fixed two phase current carrying planar electric drive coil and permanent magnet array that is realized with 14 permanent magnets arranged in north-south configuration. In order to achieve smooth motion a four point contact technique with hemispherical glass beads has been adapted to minimize the adherence effect. The overall design of the planar positioning system have been optimized to achieve a footprint size of 80 mm × 80 mm. The device can deliver motion within working range of 10 mm × 10 mm in xy-plane with sub micrometer level resolution at a speed of 12 mm/s. The device is capable to deliver a rotation motion of ±11° about the z axis in the xy-plane. Secondly, in order to measure the displacement performed by the mobile part, a non-contact long range linear displacement sensor has been designed. The overall dimensions of the sensor were optimized using a geometrical model. The fabrication of the sensor has been carried out via microfabrication in silicon material to achieve compact dimensions, so that it could be integrated in the mobile part of the positioning system. The sensor is able to provide 30.8 nm resolution with a linear measurement range of 12.5 mm. At the end, a novel cross structure has been designed and fabricated using microfabrication with the perspective to integrate the long range sensor.Moderne Positioniersysteme werden in vielen aufstrebenden Bereichen der Technik eingesetzt. Die Produkte stammen hierbei aus unterschiedlichen Technologiebereichen, die den Makro-, Mikro- und Nano- Maßstab abdecken. Diese Systeme bilden die Basis jeder Manipulationsaufgabe, in diesen Bereichen. In jüngster Zeit hat der Miniaturisierungstrend dazu geführt, dass in zahlreichen wissenschaftlichen Bereichen immer kleinere Versionen von Systemen realisiert wurden. Die typischen Abmessungen wurden dabei auf einige hundert Millimeter reduziert. Diese Miniatur Positioniersysteme sind kostengünstige Lösungen in vielen Mikro Anwendungen. Die vorliegende Arbeit stellt die Entwicklung eines Miniatur-Positioniersystems dar, in welches ein berührungsloser Wegsensor für lange Distanzen integriert wurde. Die Einzigartigkeit dieses Positionierungssystems liegt in der Einfachheit der Konstruktion in Kombination mit der Fähigkeit Bewegungen vom Mikrometer bis zum Millimeter Bereich mittels einer eingebetteten Autopilotfunktion auszuführen. Das Design besteht aus einem beweglichen Teil, welches mit vier elektrischen Linearmotoren angetrieben wird. Jeder Motor besteht aus zwei Teilen: Einem planaren elektrisch angetriebenen Schlitten und einer Anordnung von Permanentmagneten. Die Anordnung ist mit 14 Permanentenmagneten in Nord-Süd Ausrichtung realisiert. Um eine sanfte Bewegung zu erreichen wird eine Vierpunktauflage mit halbkugelförmigen Glasperlen verwendet. Hierdurch werden Adhäsionseffekte minimiert. Das Positionierungssystem kann Bewegungen im Arbeitsbereich von 10 mm × 10 mm in der xy-Ebene mit Submikrometer Auflösung und einer Geschwindigkeit von 12 mm/s ausführen. Das Gerät ist in der Lage eine Drehbewegung von ±11° um die z-Achse in der xy-Ebene auszuführen. Weiterhin wurde, um die Verschiebung des beweglichen Teils zu messen, ein kontak tloser Langstrecken-Wegsensor entworfen. Die Gesamtabmessungen des Sensors wurden mit einem geometrischen Modell optimiert. Die Herstellung des Sensors wurde mittels Mikrostrukturierung in Silizium ausgeführt um eine kompakte Abmessung zu erreichen, so dass es in den beweglichen Teil des Positionierungssystems integriert werden konnte. Der Sensor erreicht eine Auflösung von 30,8 nm in einem linearen Messbereich von 12.5 mm. Am Ende der Arbeit wurde eine neue Kreuz-Struktur konzipiert und hergestellt, gleichfalls mit Hilfe der Mikrostrukturierungstechnik. Hieraus ergibt sich die Perspektive den Langstrecken Wegsensor problemlos zu integrieren

    International Symposium on Magnetic Suspension Technology, Part 1

    Get PDF
    The goal of the symposium was to examine the state of technology of all areas of magnetic suspension and to review related recent developments in sensors and controls approaches, superconducting magnet technology, and design/implementation practices. The symposium included 17 technical sessions in which 55 papers were presented. The technical session covered the areas of bearings, sensors and controls, microgravity and vibration isolation, superconductivity, manufacturing applications, wind tunnel magnetic suspension systems, magnetically levitated trains (MAGLEV), space applications, and large gap magnetic suspension systems
    corecore