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ABSTRACT 

Design and Control of a 6-Degree-of-Freedom Levitated Positioner with High Precision. 

(May 2005) 

Tiejun Hu, B.S., Tsinghua University, China; 

M.S., Tsinghua University, China 

Chair of Advisory Committee: Dr. Won-jong Kim 

 

This dissertation presents a high-precision positioner with a novel superimposed 

concentrated-field permanent-magnet matrix. This extended-range multi-axis positioner can 

generate all 6-DOF (degree-of-freedom) motions with only a single moving part. It is actuated 

by three planar levitation motors, which are attached on the bottom of the moving part. Three 

aerostatic bearings are used to provide the suspension force against the gravity for the system. 

The dynamic model of the system is developed and analyzed. And several control techniques 

including SISO (single input and single output) and MIMO (multi inputs and multi outputs) 

controls are discussed in the dissertation. The positioner demonstrates a position resolution of 20 

nm and position noise of 10 nm rms in x and y and 15 nm rms in z. The angular resolution 

around the x-, y-, and z-axes is in sub-microradian order. The planar travel range is 160 mm × 

160 mm, and the maximum velocity achieved is 0.5 m/s at a 5-m/s2 acceleration, which can 

enhance the throughput in precision manufacturing. Various experimental results are presented in 

this dissertation to demonstrate the positioner’s capability of accurately tracking any planar 

trajectories. Those experimental results verified the potential utility of this 6-DOF high-precision 

positioner in precision manufacturing and factory automation.  
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CHAPTER I 

INTRODUCTION 

 

1.1 High-Precision Motion-Control Technology 

With the rapid development of material science and advanced manufacturing, high-

precision (nanometer- or micrometer- scale) motion control technology is used in industry more 

frequently than ever. The birth of nanotechnology at the beginning of last century accelerated the 

application of high-precision motion control technology in industry. Some key challenges such 

as nano-manipulation require to control and  fabricate nano-scale objects in very high precision. 

The related instruments, such as scanning tunneling microscopes (STMs), which have already 

become a common interface for many manipulation systems [1−3], also heavily rely on the high-

precision motion control technology. Besides, the nano-scale assembling technique which 

requires ultra high-precision motion control is still in infancy in the nanotechnology field. 

In microelectronic manufacturing in the semiconductor industry, high-precision motion 

control is very critical. One example is the photolithography in wafer fabrications (FABs). As it 

can be seen from Fig. 1-1, in this process, a wafer coated with a light-sensitive photoresist is 

transported to the exposure field by a wafer stage which has a high-resolution positioning 

capability in several different directions. The wafer stage, which can be also called the step-and-

repeat aligner or stepper, is critical equipment for photolithography. The wafer stage will align 

and expose successive reticle which has the die patterns by stepping from one exposure site to 
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another on the resist-coated wafer surface. The industry has converted to the step-and-scan 

system for deep ultraviolet (DUV) light source system called step-and-scan technology [6]. The 

accuracy of the position for each die has a significant effect on the critical dimension (CD). So 

the precision motion control is very important in the current and future deep-submicron 

lithography technology. 

 Besides shrinking feature size and demanding overlay accuracy, transitioning the wafer 

size to 300 mm in diameter and beyond will introduce significant design challenges in 

microelectronics manufacturing and material handling automation. For example, an unprocessed 

300-mm wafer is more than twice as heavy as a 200-mm wafer (125 g vs. 56 g). Thus, the mass 

of twenty-five 300-mm wafers along with their film frame and cassette will be over 13.5 kg, 

which will double the mass of the cassette of twenty-five 200-mm wafers currently being used 

[4]. It will introduce significant changes in wafer dicing, mounting, die-attach machines, pod 

door openers, stockers, and handling robots, increasing foot prints, and force and power 

requirements. And the traditional wafer handling systems mainly consist of pneumatic, hydraulic, 

and mechanical/electromechanical devices [5]. Such systems are complicated and expensive to 

produce, and it takes much time and cost to repair and maintain them. Those conventional wafer 

handling technologies for 200-mm wafers may not be able to meet the new specifications and 

many technical challenges of this transition to 300-mm wafers. Therefore, reliable low-cost 

positioning for precision manufacturing processes requiring clean room, extreme-temperature, or 

vacuum environments is key for microelectronics manufacturing, packaging, machine tool, and 

high-precision inspection industries. In this thesis, a novel high-precision 6-degree-of-freedom 

(DOF) positioner is presented as a potential future wafer stage in semiconductor manufacturing 

industry.     
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Fig. 1-1  Illustration of photolithography process in wafer fabrications (after [6]) 

 

1.2 Stage Technology 

With high-accuracy positioning capabilities for sophisticated photolithographic 

processes, wafer stages have been used to manufacture integrated circuits (ICs) via fully 

automated control for many years [7]. According to the semiconductor industry association’s 

(SIA) annual report published in 2004, the 193-nm photolithography technology is now under 

commercialization [8]. Like other strategic equipment, high precision wafer steppers, whose 

motion is mainly confined in the x-y plane must be available at least two years before the 

production ramps up. As a result, the high-precision positioner being used in a wafer stepper in 

semiconductor manufacturing faces new challenges. The wafer stage in photolithography process 
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usually has three basic purposes, all of which should meet critical specifications for accuracy and 

repeatability [6]: 

• Focus and align the wafer surface to the quartz plate reticle containing the circuit 

patterns. 

• Reproduce a high-resolution reticle image on the wafer through exposure of 

photoresist. 

• Produce an adequate quantity of acceptable wafers per unit time to meet 

production requirements. 

In order to meet these requirements, the research on the stage technology never stopped 

since the beginning of semiconductor industry. The crossed-axis type as shown in Fig. 1-2 (a), 

where a stage for one axis stacks on top of another is one of the most common design concepts. 

This design usually has two or three moving parts driven by stepper motors and ball screws. 

Each actuator takes care of one DOF. And many of those conceptual designs use ball or roller 

bearings for guidance and suspension. Some sophisticated systems may use aerostatic bearings 

to eliminate the friction. Another traditional design for the positioning system is called gantry 

type which is shown in Fig. 1-2 (b). This gantry-type configuration usually has a bridgelike 

framework which spans a distance between two motors at the end. For applications which do not 

require high positioning resolution such as scanners and plotters, stepper motors are frequently 

used. Either crossed-axis-type or gantry-type positioners do not have the capability to generate 

rotary motion. If rotational motion is needed, one or more independent mechanical devices and 

actuators should be added. Those additional apparatuses usually make the whole positioning 

system more complicated and bulkier, and lead to complex dynamics, which makes it difficult to 

control the whole system [9−11].  
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(a) 

 

(b) 
Fig. 1-2  Configurations of (a) crossed-axis and (b) gantry type positioning system (photo 

courtesy of Aerotech, Inc.) 
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There are three different motors commonly used in the positioning system in the past 

years. They are DC motors, synchronous motors, and induction motors. The DC motors have 

brushes, and a mechanical commutator is necessary. The field magnetomotive force (mmf) and 

armature mmf are maintained orthogonal to each other, and the axis for the armature mmf is 

fixed in space. As a result, a DC motor has a simple decoupled system and it can be easily 

controlled. Before the advent of microcomputers, DC motors were the most common type used 

for motion control purpose. The main drawback for a DC motor used in high-precision 

positioning system is the wear in the brush. The wear particles excluded the DC motors from the 

applications in clean-room manufacturing. 

The steady-state speed of a synchronous motor is proportional to the electrical frequency 

in the armature excitation. The rotor spins at the same speed as the rotating armature magnetic 

field. The spin speed of the motor is not affected by the load, which affects the torque angle. The 

torque angle is defined by the phase difference between the mmf of the field winding and the 

resultant air-gap magnetic flux per pole. The traditional synchronous motors normally have two 

excitations for magnetic field sources: one for the rotor and the other for the stator are with many 

windings. This makes the structure of a wound-field synchronous motor complicated. Moreover, 

the power consumption due to the current in the rotor may bring thermal expansion to the 

positioner which will reduce the accuracy. 

Now the induction motor is often used as an actuator in maglev-train propulsion. 

However, this kind of motor is seldom used in high-precision positioning system. First of all, the 

heat generated by the induced current can cause thermal expansion of the rotor, which is 

problematic in high-precision control applications [12]. Second, the induced current can be 

generated only by the speed difference, there will be no magnetic force if there is no relative 

motion between the excitation field wave and the stage. Third, the speed characteristic of 
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induction motors is complicated and nonlinear, modeling and control of such a motor for 

precision positioning system is difficult. Furthermore, since the angular position of the rotor 

magnetic axis is unknown, vector control or field oriented control is necessary [12]. 

The traditional rotary motors can hardly be used in a high-precision positioning system 

alone although they can be used as actuators for low-precision coarse motions. The high-

precision positioning capability is often achieved by piezoelectric or voice-coil actuators. One 

reason is that additional mechanical system, such as rack and pinions or ball screws, is needed to 

convert rotary motions from those servo motors into planar motions. The backlash due to the 

mechanical tolerance introduced by the transmission system is a significant obstacle to achieve 

high precision. The other reason is the bearings used in the rotary motors and the positioning 

systems are typically mechanical contact bearings such as angular ball bearings, antithrust 

bearings, and barrel bearings [13]. Those bearings have frictions between the balls and the 

surface. Due to these inherent frictions, those traditional positioners are limited to applications 

requiring repeatability on the order of 0.5 to 0.1 µm [13]. To achieve high-precision positioning, 

those mechanical bearings must be replaced by non-friction air bearings or magnetic bearings 

[14]. Piezoelectric motors and voice-coil motors are two of the most promising motors used in 

the high-precision positioning system. 

  

1.2.1 Piezoelectric Motors 

Piezoelectric motors use a piezoelectric ceramic element to produce ultrasonic vibrations 

of an appropriate type in a stator structure. The elliptical movements of the stator are converted 

into the movement of a slider pressed into frictional contact with the stator [13]. The consequent 

movement may either be rotational or linear depending on the design of the structure. According 

to the number of ceramic layers, piezoelectric motors can be classified as single layer motor, 
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two-layer motor, and multi-layer motors. Single layer piezoelectric motors typically offer one 

degree of freedom, such as in linear stages.  However, the multi-layers motor can provide more 

complex positioning factors by combining several layers in different way.  Rotating piezoelectric 

motors are commonly used in sub-micrometric positioning devices. Large mechanical torque can 

be achieved by combining several of these rotational units [15]. 

 

(a) 

 

 

(b) 
Fig. 1-3  Working principle of (a) one layer and (b) two layers piezoelectric motor [16] 
 

The working principle of the piezoelectric motors is simple. It can be illustrated in Fig. 

1-3. Suppose there is an electrical field Vin which has the same polarity and orientation as the 

original polarization field P of a sheet of piezoceramic with the thickness of T. When this 

electrical field is applied across the piezoceramic sheet, the sheet expands ∆T in the thickness or 

"longitudinal" direction (i.e., along the axis of polarization) and contracts in the transverse 

direction (perpendicular to the axis of polarization). Thus it will generate corresponding driving 

force Fout in the expanding direction. When the electrical field is reversed, the motions are 

reversed. 

Fig. 1-3 (b) illustrates the working principle of a 2-layer piezoelectric motor. A 2-layer 

element behaves similar to a single layer when both layers expand (or contract) together. If an 

electric field is applied which makes the element thinner, extension along the length and width 
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happens. Typically, only motion along one axis is utilized. Usually the extending motion is on 

the order of micrometers to tens of micrometers, and the driving force is on the order of tens to 

hundreds of newtons [16]. 

Piezoelectric motors have been in industrial use for years, but have not been popular due 

to what was perceived as an exorbitant cost of production and use. Those piezoelectric motors do 

have some disadvantages.  These disadvantages include the need for high voltage, high 

frequency power sources and the possibility of wear at the rotor / stator interface, which tends to 

shorten service life [17]. Most of all, because of the deformation of the material is limited by the 

property of the ceramics, the maximum displacement generated by a piezoelectronic motor is 

always limited to the order of hundreds of micrometers. So for the application which needs both 

long travel range and high precision positioning, piezoelectric motor can be only cooperatively 

used with another positioning system which can provide longer travel range with low positioning 

resolution.  

 

1.2.2 Voice-Coil Motors 

Voice-coil motors (VCM), offer the speed, efficiency, and accuracy modern industries 

need. Because voice-coil motors are direct drive, they generate no backlash or positioning 

problems. Additionally, voice coils eliminate losses attributed to gear heads, which typically 

operate at only 60 to 70% efficiencies [18]. These losses, which usually show up as heat 

dissipation, are expensive. Voice-coil motors were originally used in loudspeakers but these non-

commutated devices can now be widely found in linear and rotary-motion devices such as hard 

disk drive (HDD), camera focus systems, and high-precision linear positioner which require 

linear force or torque and high acceleration (50 g or more) or high-frequency actuation (20 to 

400 Hz). 
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The name of “voice-coil” comes from the original application of this motor as a speaker 

invented by Alexander Graham Bell in 1876. In speakers, the magnet is cylindrical north-south 

pole in-out (or top-bottom of the cylinder) and the coil goes north-to-south pole (or top-bottom 

of an inner cylinder).  Changing the amplitude and polarity of the current in the coil causes an in-

out force that 'plays' the diaphragm on the speaker.  The spring tension on the diaphragm keeps 

the voice coil actuator centered when no current is applied. The working principle can be 

illustrated in Fig. 1-4.  

 

(a) 

 

(b) 
Fig. 1-4  (a) cross-sectional view of VCM and (b) its working principle[19] 
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Fig. 1-4 (a) shows a cross sectional view of a typical voice coil motor. It can be seen in 

the figure, there is a permanent radial distributed magnetic field, whose magnetic flux density is 

B, inside the motor. When there is a current i flowing in the moving voice coil, a magnetic force, 

whose direction is at right angles to both the direction of current and magnetic field, will be 

generated by Lorentz force law with interaction of the magnetic field and the current in the voice 

coil. 

Compared with the piezoelectric motor, voice coil motor has a much larger operating 

range and less natural frequency [20]. As a result, the voice coil motor and piezoelectric 

transducer are often used together as a dual-actuator system in many industry applications 

[21−27]. A typical application is in the computer hard disk drive (HDD) manufacturing. Fig. 1-5 

shows the servo system of a typical computer hard disk drive.  

 

 

Fig. 1-5  Schematic diagram of a hard disk drive with dual actuator servo system [20] 
 

There the voice coil motor, which has large operating range and low natural frequency, 

is used as the first coarse positioning stage actuator and a push-pull-type piezoelectric transducer 

(PZT), which has a small operating range and a high natural frequency, is used as the second 
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stage actuator for fine positioning purpose [28−31]. Since in most cases, only the sum of two 

different PZT actuator’s and VCM actuator’s output, i.e., the position of read/write head is 

available for the servo controller, the controller design is a big challenge to deal with two 

different dynamics of actuators. 

 

1.2.3 Planar Motors 

Compared with traditional rotary motors, planar motors which can generate two-

dimensional motions in a plane are used in precision manufacturing industry more frequently 

than ever. Since the planar motor can provide dual-axis driving forces, it can easily generate 

crossed-axis motions without any other additional mechanical devices. It can be expected that a 

planar motor driving positioner can easily generate any 3 dimensional motions with much 

simpler and more compact structure.   

Based on the previous research on the planar motors [32], the structure of planar motor 

can be mainly categorized as variable-reluctance type, permanent-magnet matrix type, and 

induction type [33−38]. A variable-reluctance type planar motor has many salient teeth on its 

rotor surface. The rotor has a tendency to align for geometry with minimum air-gap reluctance so 

that the whole motor stays at the minimum magnetic energy status [39−43]. It is unnecessary to 

use feedback control to get relatively low precision of a fraction of tooth pitch. A typical 

example of variable-reluctance type planar motor is the Sawyer motor which has frequently been 

used in industry without explicit position feedback [44].  

Keeping pace with advances in permanent-magnet materials in the last decades, another 

type of planar motor, i. e. the permanent-magnet matrix planar motor was developed, which uses 

permanent magnet matrix as sources of magnetic field intensity and windings for current density. 

The driving force for motion is generated by controlling the current in the windings. The planar 
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positioning concepts using permanent magnet matrix were presented by Asakawa [45] and 

Ebihara and Watada [46]. Another planar motion system, which led to the SVGL Micrascan 

system, was designed by Buckley, et al. [47]. It has two unipolar permanent-magnet planar 

motors to generate major two-dimensional motions and rotation about the normal to the stage. 

Much progress in precision planar motors based on the permanent-magnet matrix type and the 

variable reluctance type have been recently reported [48−52]. The development and research on 

induction planar motors have a long way to go to make this kind of planar motor be used in real 

world precision industry. 

In the following sub sections, the variable reluctance (VR) type and permanent magnet 

matrix type planar motor will be discussed in detail due to their wide applications in the planar 

motion control. 

Sawyer Motor 

The sawyer motor is the first VR-type planar motor. It has been widely used in industry 

such as wafer probing and automated assembly for long time. The motor is made by 

conceptually superimposing two orthogonal linear variable reluctance motors. As it can be seen 

from Fig. 1-6, the motor consists of housing with four symmetrically mounted linear motors. In 

the base plate as shown in Fig. 1-6 (b), there are many square protrusions (teeth) which are used 

to generate magnet flux density. The motor floats on a steel waffle platen by air bearings (at a 

nominal air gap of 20 µm) and has two translational degrees of freedom (DOF) along with a 

rotational DOF about the z-axis. Those aerostatic bearing pads are used to cancel the attraction 

force and the gravity load acting on the platen. The original sawyer motor was operated in open 

loop, since the resolution it can achieve at that time was enough for those relatively low 

resolution applications. For precision motion control with a particular emphasis on wafer stepper 

stages, Hinds and Nocito [53] and Pelta [54] improved the original version of the Sawyer motor. 
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Furthermore, the closed-loop control of Sawyer motors has recently received attention in the 

literature [55−60]. 

 
(a) 

 
(b) 

Fig. 1-6  (a) Bottom view of Sawyer motor and (b) its working principle [61] 
 

The sawyer motor was commercialized by Northern Magnetics and Megamation.   

However, there are some drawbacks in the sawyer motor: (1) According to Northern Magnetics 

the 2-phase full-step size is as coarse as 250 µm with a possibility of reduction by microstepping.  

(2) The Sawyer motor needs tight air gap less than 25 µm, so it requires ultra-fine surface finish 

of the motor surfaces.  (3) Its position repeatability is only as good as 5 µm.  (4) In addition to 

large cogging force, attractive force of one model is as large as 1800 N [62]. (5) When it is 
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operated in open-loop, they can miss steps, have long settling time of 100−200 ms, and degraded 

performance due to the possible loss of synchronization between motor and platen teeth. (6) 

Typically the Sawyer motor has about ten times stronger attraction force than lateral force. The 

vertical motions can not be controlled at high resolution with the presence of aerostatic bearings.   

Megamation’s x-y stage has been used in an IBM printed circuit board assembly line, and its 

accuracy specification is about 25 µm [63]. 

Permanent Magnet Matrix Planar Motor 

The design concept of Sawyer motor inspired the design of Asakawa and Chitayat in 

magnet matrix planar motor. Instead of using a large number of iron protrusions in the base plate, 

they use many permanent-magnet cubes which form the checker-board-like stator in the base 

plate. The rotor usually carries windings with it. When there is current flowing in those windings, 

the magnet force will be generated in the specific magnet field provided by those permanent 

magnet matrices. Since the design of windings are quite similar and well developed the main 

difference in planar motors lies in the design concept of permanent magnet matrix. There are two 

papers [64−65] discussing the design of the magnet matrix. 

Asakawa was the first person that proposed the permanent magnet arrays for planar 

motor [66]. Fig. 1-7 (a) shows the structure of Asakawa magnet matrix. It is the direct 

superposition of two orthogonal conventional one-dimensional magnet arrays. The blank square 

space denotes non-magnetic material. Besides those magnet matrices presented in the figure, 

there are four coils on the platen to interact with the magnets. However, the magnet packing 

density in Asakawa’s magnet matrix is half of that in the one-axis driving linear motor [67]. In 

addition, the available forces are varied with the relative position between the coils and the 

magnet matrix, and they are nonlinear with position. Chitayat improved the packing density of 
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the magnets by assembling the magnets in diagonal direction. His magnet matrix is much more 

compact than Asakawa’s design. 

 

 
                                                (a)                                                 (b) 

 

Fig. 1-7  Permanent magnet matrix (a) Asakawa and (b) Chitayat (after [67]) 

 

  

1.3 Proposed 6-DOF High-Precision Positioner 

Fig. 1-8 shows the novel concentrated-field magnet matrix that produces the constant 

magnetic field for actuation. Compared with other magnet matrices, this magnet matrix is 

produced by the superimposition of two orthogonal Halbach arrays resulting in the plane view 

shown in Fig. 1-8. The detailed analysis of this magnet matrix will be given in Chapter III. Based 

on this magnet matrix, the prototype multi-dimensional positioner is designed and fabricated 

whose picture and perspective view are shown in Fig. 1-9. 

This multi-dimensional positioner as an synchronous permanent magnet planar motor 

(SPMPM) presented in this thesis overcomes all these shortcomings of the established Sawyer 

motor and traditional permanent magnet planar motor technology, and can generate all fine and 

coarse motions with only one levitated moving part required for wafer processing. 
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Fig. 1-8  Conceptual superimposition of two orthogonal Halbach magnet arrays to produce a 

concentrated-field magnet matrix [68]. 

 

This prototype achieved a 20-nm positioning resolution and 160 × 160 mm travel range 

without requiring additional primary coarse-motion or secondary fine-motion stages. It employs 

a novel superimposed concentrated-field double-axis magnet matrix patented by one of the 

authors. to improve the positioner’s force capability by a factor of 2  [68]. It does not require 

excessive surface finish, and its cogging force is less than a fraction of a newton without strong 

attractive force.  
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(a) 

 

(b) 

Fig. 1-9  (a) Picture of the six-degree-of-freedom positioner with high resolution. (b) Perspective 

view of the positioning system. 
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This positioning technology has potential to satisfy the dynamic performance 

specifications necessary for next-generation deep-submicron semiconductor manufacturing 

equipment with significant advantages:  (1) A non-contact stage requires no lubricants, does not 

generate wear particles, is non-contaminating, and thus is highly suited for clean-room 

environments.  (2) Footprint is reduced by superimposing multiple linear motors into one unified 

actuation system.  (3) One moving part can be designed to have high natural frequencies 

compared with prevailing multi-element stages with complex dynamics.  (4) By eliminating 

complicated mechanical elements, the fabrication cost is reduced and the reliability is increased.  

Therefore, the development of extended-range 6-DOF high-precision motion generation 

technology holds promise for future semiconductor manufacturing and factory automation 

applications. 

 

1.4 Dissertation Overview 

This dissertation consists of seven chapters: introduction, mechanical design and 

assembly, electromagnetic design, dynamic analysis and modeling, control system design and 

implementation, multivariable control system design and implementation, and conclusions and 

future work. 

Chapter I of the thesis first provides a literature review of the precision motion control 

technology and its application in precision engineering. Then an overview of the stage 

technology which is often used in the precision engineering is given. Some widely used actuators 

in precision motion control, such as piezoelectric motor (PZT), voice coil motor (VCM), variable 

reluctance motor (VRM), and synchronous permanent magnetic planar motor (SPMPM) are 

discussed. 
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Chapter II presents the mechanical design and assembly of the positioning system. The 

detailed mechanical design procedure and assembly is discussed in this chapter. Chapter III 

focuses on the electromechanical analysis of the permanent-magnet planar motor. The design 

concept for the platen and the magnet matrix is determined. A full analysis of the permanent-

magnet matrix is covered in the chapter. This chapter also introduced the sensor system and DSP 

control system. Some critical issues in low-level bus programming such as byte swapping, data 

format change are also discussed in the chapter. 

Chapter IV concentrated on the dynamic analysis and modeling of the system. The 

dynamics of the system is analyzed using Newton’s second law. Then both the decoupled model 

and the state-space model were developed by using linearization near the operating point. To 

eliminate nonlinearity in the dynamics, DQ decomposition is used in developing the model. 

Some system parameters are also identified. 

Chapter V and chapter VI are control system design and implementation for the system. 

Chapter V mainly used the classical control algorithm to achieve the precision motion objective. 

Chapter VI employed multivariable control methodology to control the system. Both of the two 

chapters include detailed design procedures and experimental results.  

In the last chapter, conclusions of the thesis and future work about the positioning 

system are given. Appendices include mechanical design drawings, real-time control codes, and 

Matlab files.  

     

1.5 Dissertation Contributions 

The dissertation presents the design, construction, and control of a novel integrated 6-

DOF high-precision positioning system consisting of a novel superimposed concentrated-field 

double-axis magnet matrix with a triangular single-moving platen. It has only a single moving 
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platen with a 5.91-kg mass, and is based on a patented concentrated-field magnet matrix with 

dimensions of 304.8 mm × 304.8 mm × 12.7 mm. The moving platen carries the multi-phase 

windings, and the concentrated-field magnet matrix was assembled in the stationary base plate.  

Specific contributions of this thesis include: (1) Design and construction of the 

mechanical system and electrical instrumentation of the multidimensional high-precision 

positioning system, (2) Analysis and development of the primary dynamic model of the 

positioning system, (3) Design and implement digital control system which includes both 

classical single input and single output (SISO) control and advanced multi-input-and-multi-

output (MIMO) control methodologies, (4) Experimental verification of nanometer and sub-

micrometer level planar position control. Hopefully, this thesis can be a good practical reference 

in the design and control of permanent-magnet planar motor. 
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CHAPTER II 

ELECTROMAGNETIC DESIGN 

 

In this chapter, detailed electromagnetic design procedure and working principles are 

discussed. A novel patented concentrated-field magnet matrix based on the Halbach magnet 

array is first presented. Then the electromagnetic analysis of this magnet matrix is carried out. 

The digital control structure based on a digital signal processor (DSP) and its hardware setup are 

also covered.  

 

2.1 Design and Fabrication of Concentrated Magnet Matrix 

2.1.1 Halbach Magnet Array 

In magnet arrays used for conventional permanent-magnet linear motors, there exists 

two-sided field if no iron backing is used. In usual cases with the winding on one side of the 

array, half of the field is wasted. A type of magnet array which provides a magnetic field 

concentrated on one side of the array was first proposed by Halbach for use in undulators and 

particle accelerators [69]. The Halbach magnet array has the remarkable property of primarily 

single-sided field pattern. This type of magnet array differs from conventional arrays in that each 

adjacent magnet segment is rotated around an axis perpendicular to the direction in which the 

array extends by a predetermined angle, for instance 90˚ or 45˚. As shown in Fig. 2-1, one spatial 

pitch of such a Halbach array consists of four blocks of magnets with magnetization rotated by 

90° in each successive block. Such a linear Halbach array has 2 times stronger field than that 
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of a conventional ironless magnet array with the same volume, thereby doubling the power 

efficiency of the linear motor or reducing magnet mass. Such an array was also studied by 

Marinescu, et al. [70], where it is represented by a two dimensional multiple field expansion via 

complex variable theory. Abele, et al. [71] represented the magnet array in spherical harmonics 

and calculated its coefficients. Leupold, et al. suggested a free-electron laser with a pair of 

permanent-magnet wigglers with a Halbach array [72]. 

 

2.1.2 Concentrated-Field Magnet Matrix 

Fig. 2-1 shows the novel concentrated-field magnet matrix that produces the constant 

magnetic field for actuation [73]. This magnet matrix can be produced by the superimposition of 

two orthogonal Halbach arrays [74] resulting in the plane view shown in Fig. 2-1. In Fig. 2-1 (b), 

magnet blocks with an arrow have 1/ 2  remanence of the magnets noted with North (N) and 

South (S) poles, since they correspond to the vector addition of two orthogonal vectors rather 

than parallel vectors. Shaded blocks with solid arrows tip up at 45° whereas shaded blocks with 

hollow arrows tip down at 45°. Magnetic field cancellation occurs in the blank squares. The 

Halbach array has a stronger fundamental field by a factor of 2 . This will also be the case with 

the two-dimensional magnet matrices, since the magnetic fields obey linear superposition. By 

using such an array higher power efficiency can be achieved than those which utilize 

conventional magnetization patterns. This innovative magnet matrix will play a key role in the 

development of the unified motion generation technology. As mentioned earlier the magnet 

matrix in the positioner is present in the stationary base plate. The number of pitches on the 

magnet matrix determines the travel range of the positioner. In the prototype design the whole 
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magnet matrix has 6 pitches in the x- and y-directions, respectively, to have a 160 mm × 160 mm 

planar travel range. 

 

 

 
Fig. 2-1  (a) Conceptual superimposition of the two orthogonal Halbach magnet arrays to 

produce a concentrated-field magnet matrix. (b) Top view of the concentrated-field magnet 

matrix. In the current prototype positioner, there are 24 × 24 individual magnet pieces in the 

matrix. 

 

2.1.3 Magnet Specifications 

Various magnetic materials like alnicos, ferrites, samarium-cobalt, neodymium-iron-

boron (NdFeB) are available. Alnicos have low coercivity, ferrites have low remanence, and 

samarium magnets are expensive [75]. Therefore NdFeB material was considered to be the most 



25 

 

suitable material for the concentrated-field magnet matrix. However, since NdFeB material 

corrodes easily, proper coating is required for any application. One of the coating methods, 

nickel coating, proved to be inappropriate for adhesion of epoxy. Phenolic resin coating was 

considered most appropriate for this application, as epoxy adheres to it very well. The magnet 

matrix used has two kinds of magnets. One is a strong magnet with 90˚ magnetization. NdFeB50 

material was chosen for the strong magnet which has a residual flux density of 1.43 T. The other 

magnet used was a weak magnet with magnetization in 45˚. NdFeB30 with a residual flux 

density of 1.10 T was chosen as the material for the weaker magnets. Both the weak magnets and 

strong magnets were of dimensions 0.5 × 0.5 × 0.5” with a dimensional tolerance ±0.002”. To 

distinguish the two magnets from each other, we had specified two chamfers on the weaker 

magnet and one chamfer on the stronger magnet as shown in Fig. 2-2. The magnets were 

purchased from Magstar Technologies.  

 

 

 

Fig. 2-2  Magnet specifications [after Bhat] 

 

chamfer of  
radius 1 mm 
at one place  

chamfer of 
radius 1 mm 
at two places 

strong magnet weak magnet 
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2.1.4 Fabrication of the Concentrated-Field Magnet Matrix 

The design and fabrication of the concentrated field magnet matrix was based on Dr. 

Won-jong Kim’s US patent [68, 74]. One of Dr. Kim’s former students, Nikhil Bhat, supervised 

and helped fabricate the concentrated-field magnet matrix and the base plate. The magnet matrix 

consisted of a total of 432 weak magnets, 72 strong magnets and 72 aluminum spacers of 

dimensions 0.5 × 0.5 × 0.5” with a dimensional tolerance of ±0.002”. To glue the magnets 

together, PC-7 epoxy was chosen as it adheres very well to the phenolic resin coating. Gluing of 

the magnet array was a significant challenge, as the magnets during gluing have to be held at all 

the faces to prevent them from either flipping or coming out of the matrix. The magnet matrix 

was present in an aluminum base plate of 24 × 24 × 1.5”. It contained a pocket of 12.125 × 

12.125 × 0.540” for the magnet matrix. The epoxy thickness between the magnets was 0.010”. 

Fig. 2-3 shows the magnet assembly in its preliminary stage.  

 

 

Fig. 2-3  Assembly process of the magnets [after Bhat] 

 

¼’’ clear holes 
for leverage 
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top holder 

tool for inserting 
the magnets 
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For assembly, 1/4-20 tap holes were made on the base plate at 24 places on each side to 

fix the top holder of the magnets. Then ¼’’ clearance holes of depth 0.5” were made in the 

pocket at 576 places at distances of 0.5” from each other such that each hole is exactly at the 

center of each magnet. These were made to give leverage to the tool, which was designed to push 

the magnets next to each other in the matrix. During the assembly, initially the top holder was 

sprayed with E408 Dry Film Mold Release by Stoner, so that the epoxy does not stick to the top 

holder while gluing the magnets. Then the top holder was fixed in place over the row being 

assembled. It consisted of 24 brass set screws at a distance of 0.5” from each other, such that 

when the magnet was placed, the set screw over that particular magnet was tightened, preventing 

the magnet from moving. Then the orientation of the magnet was fixed using the pole finder 

manufactured by Walker Scientific Corporation. To give the epoxy a very good surface for 

gluing, the magnet coating was very lighted roughed using fine sandpaper. After sanding the 

magnet, the required layer of epoxy was applied, and the magnet was placed in the tool, and 

pushed into the correct location using the tool. The tool to push the magnet was the result of 

experience with pushing the magnet in by hand. Initially when the assembly of magnets was 

started, we tried to push the magnets in by hand, but the magnetic force was very strong and it 

took a lot of effort in pushing in the magnets by hand. So this tool was designed. As shown in 

Fig. 2-4, it consisted of a channel of dimensions 2.544 × 0.510 × 0.513” with a plunger behind it 

having a hole for providing the leverage for pushing the magnet. The channel prevented the 

magnet from flipping. As mentioned earlier the magnet with the correct orientation was placed in 

the channel then the locating rod was used to locate the position where the magnet was to be 

inserted. After that the plunger was used with the locating rod to push the magnet into its correct 

position. After the magnet was positioned correctly the top holder set screw was brought down 
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and tightened lightly to prevent the magnet from moving. This process was repeated for 24 

magnets in a single row. 

 

 

Fig. 2-4  Tools for inserting the magnets into the correct position [after Bhat] 

 

After the completion of one row, all the set screws in the holder were reexamined to 

ascertain that equal amount of force was applied to each magnet. The top holder was kept in this 

position for 24 hours to allow the epoxy to cure completely. Then next row was assembled using 

a similar method with a new top holder. In one single day we were able to assemble 4 rows. 

After 4 rows were assembled, a teflon block was placed next to the last row. Then an aluminum 

block was placed next to the teflon block and two clamps were used to clamp the entire assembly. 

A teflon block was used because epoxy does not stick to the teflon block. Fig. 2-5 (a) shows the 

magnet matrix after completion of four rows and (b) shows the completed concentrated-field 

magnet matrix. 
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(a) 

 

(b) 

Fig. 2-5  (a) Magnet matrix after the completion of one set of four rows. (b) Completed 

concentrated-field magnet matrix. 
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2.1.5 Fabrication of the Base Plate 

After the entire magnet matrix was assembled in the base plate, the pocket which was 

opened in the base plate for facilitating the assembly of the last two rows, was closed by tightly 

fitting an aluminum block of the exact same dimension of the pocket as can be seen in Fig. 2-6 

(a). The block had four ¼-20 tap holes at the bottom. So four ¼-20 screws were used to fix the 

block into the base plate. During the assembly of the magnets some excessive epoxy which was 

squeezed out between the magnets and formed high points on the matrix which can be seen in 

Fig. 2-6 (a). To remove this excess epoxy, a very sharp razor blade was used. Air bearings, which 

are critical in providing the levitation for the positioner, require a very good surface finish of ±20 

µm. To achieve this over the whole magnet matrix was a big challenge. Initially the gap between 

the surface of magnet matrix and the base plate was calculated after measuring thickness of the 

aluminum base plate and the magnet matrix by using a CMM. Then, a 0.050”-thick layer of 

epoxy was spread over the whole magnet matrix as shown in Fig. 2-6 (b).  

As it can be seen in Fig. 2-7 that, after the epoxy was cured, the base plate was mounted 

over a big chuck of a lathe, and by using a long facing tool, the surface was faced and 0.030” of 

material was removed. So the thickness of epoxy over the magnet matrix became 0.020”. After 

the finishing was completed, the entire surface was flat. The epoxy after machining has small 

pores as we had anticipated. So to get the good finished surface of known thickness for the 

optimum performance of the air bearings, mirror finished aluminum sheet with surface 

roughness of 0.1 µm dimensions 24 × 24 × 0.040” bought from MacMaster is placed over the 

entire base plate. Although the eddy current damping effect produced between the aluminum 

sheet and the base plate prevented it from moving, several adhesive tapes were used to fix the 

sheet to the base plate to prevent the aluminum sheet from warping. 
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(a) 

 
(b) 

Fig. 2-6  (a) Magnet matrix base plate after closing the pocket. (b) 0.05’’ thick layer of epoxy 

covered magnet matrix. [after Bhat] 



32 

 

 
(a) 

 
(b) 

Fig. 2-7  (a) Large-chuck lathe. (b) Picture of the unfinished base plate with epoxy layer 
mounted on the big chuck lathe with long facing tool. (c) The base plate is under facing and the 
excessive epoxy was faced off.   
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(c) 

Fig. 2-7 continued 

 

2.2 Design and Assembly of the 3-Phase Planar Motor 

2.2.1 Motor Windings 

The planar motor consists of coil windings. There are at least four types of windings for 

planar motor: (1) single-layer winding, (2) double-layer winding, (3) triangular winding, and (4) 

wrap-around winding which is termed as a Gramme-type winding. Gramme-type winding was 

found to be the most suitable for the positoner [76]. 

Fig. 2-8 shows the shape and dimensions of the stator winding which is 0.3345” thick. 

Twelve windings are stacked side by side to form one planar motor. Each of the three phases 

consists of four such windings in series. One such winding has three hundred and five turns with 



34 

 

AWG#24 heat bondable wire (diameter of 0.0213”). To maintain a good flatness of the bottom 

surface, the leads of each winding are soldered inside of the motor, and also at the short sides of 

the windings.  

 

 

Fig. 2-8  Dimensions of the motor winding 

 

 

Determining winding parameters such as, thickness of wire, number of layers, number of 

turns, along with the peak phase current and terminal voltage required a lot of design iterations. 

The final winding specifications were as follows: according to the wire specifications AWG#24 

has resistivity of 0.02567Ω/ft. The resistance of one winding was measured to be 5 Ω, which 

matched the calculated value. The number of turns is 305. The cross sectional area of one 

winding was 8.6534 × 10-5 m2.  A preliminary force calculation indicated that at a nominal 

current density of 2 × 106 A/m2 the force generated by the three motors would be sufficient to 

meet the requirements. At this current density the current flowing through the wire was 

calculated to be 0.5674 A. As there are 4 windings per phase the resistance per phase was found 

out to be 20 Ω. So the nominal terminal voltage per phase was calculated to be 11.348 V, which 

is reasonable. 
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2.2.2 Motor Assembly 

Three delrin cores were designed to attach the windings to the moving part. All the 

windings were stacked into the delrin cores side by side. The connection of those windings was 

critical to the planar motor. The assembly of the windings was done as follows. First the first 

winding A was slid onto the core and moved to the farthest end. The windings were placed in 

such a way that the flat surface of the windings will face the base plate. Then the winding B was 

slide next to A. Then the winding C was slid. When the winding A’ was slid, A and A’ were 

soldered from inside and a heat-shrinkable tubing was placed on top to insulate the leads. 

Similarly windings B’ and C’ are placed and connected to windings B and C respectively. This 

whole process completes assembling one pitch. In a similar way the second pitch is assembled. 

Then the outside leads of A’, B’ and C’ of the first pitch are soldered to the outside leads of A’, B’ 

and C’ of the second pitch. After all the windings were stacked and soldered together in such a 

pattern, four screws were used for each motor to press the core tightly onto the bottom surface of 

the moving part. This completes the assembly of the planar motor, which is shown in the 

following Fig. 2-9. The flatness of the three planar motor is critical to the magnet force generated 

by those planar motors. A flat granite table was used as a criteria plane to measure the flatness of 

the planar motors. Several standard-thickness shims made by 3M were inserted in the pockets 

which accommodated the windings to adjust the flatness of the planar motors. Finally, the 

roughness of the whole surface of the planar motor was achieved to be 0.1 mm.  
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Fig. 2-9  Planar motors are under assembly. (The inner leads of the windings are soldered inside 

the windings and outer leads are connected in the side of the windings to make a flat bottom 

plane for the planar motors.) 

 

2.2.3 Working Principle of the Multi-Dimensional Positioner 

In Fig. 2-10 (a), on the bottom surface of the single moving part, namely the platen, is 

attached a two-dimensional superimposed concentrated-field magnet matrix.  The stator currents 

flow in orthogonally interwoven multi-phase x- and y-windings.  The stator current in the x- and 

y-windings generate air-gap magnetic field traveling in the x- and y-directions, respectively.  

Consequently, the x- and y-stator currents interact only with the corresponding x- and y-magnet 

array component. Fig. 2-11 shows the working principle of this technology. For visualization 

purpose, the windings were replaced with the sinusoidal waves of the magnetic field generated 

by the multi-phase stator currents. 
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Fig. 2-10  Perspective views of integrated multi-dimensional positioner concepts.  (a) Moving-

magnet-stationary-winding design. (b) Moving-winding-stationary-magnet design. [after Dr. 

Won-jong Kim] 

 

 

 
Fig. 2-11  Working principle of the integrated multidimensional positioning technology. (a) y-

directional motion generation. (b) Diagonal motion generation. [after Dr. Won-jong Kim] 

In Fig. 2-11 (a), the windings in the y-direction generated sinusoidal magnetic field. At the 

same time the magnetic field generated by the x-windings is stationary (without commutation) 
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and serves as a “magnetic rail.” As a result, the platen can move continuously in the y-direction 

and does not move in the x-direction. In part (b), both the x- and the y-windings generate the 

sinusoidal magnetic field, such that diagonal motion can be generated by controlling the phase 

currents in the x- and y-windings, independently.   

On the other hand, another positioner concept shown in Fig. 2-10 (b) carries the 

windings that energize the actuation system on the platen.  Since only half the power consumed 

by the windings can be used to generate the magnet force, put more windings in the stationary 

base plate will consume more power which will require much more powerful power amplifiers 

for the system. Three winding sets instead of four are decided to be accommodated in the platen, 

as the four winding sets shown in Fig. 2-10 (b) are redundant to generate 6-DOF motions.  

 

2.3 Design of Power Amplifiers 

Power amplifiers supply current to the planar motor. They are important elements in 

positioning systems. Since three 3-phase planar motors were used in the multi-dimensional 

system, nine-channel power amplifiers were needed to control the individual phase current in 

each planar motor.  As for a planar motor, the magnetic suspension and drive force was primarily 

determined by the current flowing in the windings, the power amplifier should provide 

appropriate current for the planar motors corresponding to the voltage command from those D/A 

converters. If the dynamics of the power amplifier circuit including the winding is fast enough, 

compared with the mechanical dynamics of the system, the power amplifier dynamics can be 

simply ignored in the control loop. Then, the power amplifier can be regarded as a controlled 

current source for the planar motors. 
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2.3.1 Power OP Amp 

Among many power OP Amps, PA12A by Apex1 was proven to be a good linear power 

OP Amp in our previous experience. It matches or exceeds the required current and voltage 

swings and has a decent voltage slew rate. Fig. 2-12 shows the picture of PA12A power OP 

amplifier. 

Fig. 2-12  Picture of power OP Amp PA12A and its external connections. [After Apex PA12] 

 

It has the following specifications [Apex PA12 data sheet]. 

• Wide supply range: ±10 V to ±50 V 

• High output current: up to ±15 A peak 

• Low thermal resistance: 1.4 ˚C/W 

• Power dissipation: 125 W 

                                                      

1 Apex Microtechnology Corp., 5980 N. Shannon Road, Tucson, Arizona 85741 
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As these power OP Amps may output large current to the planar motor, heat sinks which 

were provided by Thermalloy were used to lower the temperature of those OP Amps. For safe 

operation, the output current was limited to 2.0 A by a fuse. 

 

2.3.2 Power Supplies 

In order to prevent any electrical noise from going into the system, a linear power supply 

was chosen to provide power for the power amplifier circuits. It was proved that linear power 

supply was more desirable for high precision applications. Take the ripple errors of linear and 

switching power supply as an example, the ripple errors of linear power supplies were 5 mV but 

those of switching power supplies were typically 150 mV. 

Considering the power capacity of the system, two LZS-250-3 power2 supplies were 

used. It has the followings specifications. 

• Output voltage range: 18.0 – 29.4 V 

• Output current (@ 40 ˚C): 12.5 A 

• Ripple and noise (@ 20 MHz bandwidth): 100 mV (pk-pk) 

The current and voltage ratings of the power supply were determined by the power OP 

Amp ratings and maximum output current to the planar motors. Since the maximum current that 

will flow in each phase is 1.3 A, the maximum input current should be larger than 1.3 × 9 = 11.7 

A (the planar motors altogether have 9 phases). It can be seen that the LZS-250-3 satisfies the 

maximum current requirement for the system. 

                                                      

2 Lambda Americas, 3055 Del Sol Blvd, San Diego, CA 92154 
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One HDC-15 power supply purchased from Lambda Americas Inc., was used to supply 

power to the operational amplifiers (TL072). This power supply has dual output voltage of 15 V 

and current of 3.4 A. 

 

2.3.3 Power Amplifier Circuit 

The power amplifier is shown in Fig. 2-13. This circuit consists of three main parts: 

differential amplifier, feedback amplifier, and power booster. The differential amplifier blocks 

common-mode input signals from the D/A converter and it also serves as a low pass. The 

accuracy of those resistors R1, R2, R3, and R4 in differential amplifier was critical to realize the 

function of the differential amplifier. The selected resistors all had an accuracy of 10 ± 0.001 kΩ. 

A feedback amplifier was designed to stabilize the current control loop. 

In the power booster part, R10 with resistance of 1 Ω was used as a current sensor to 

measure the current flowing through the winding of planar motor in realtime. That is because the 

feedback gain resistor R7 (1.3 kΩ) had a much larger resistance than R10 almost all the phase 

current through the winding flows through the sensing resistor. Since the resistance of R10 is 1 Ω, 

the numerical value of voltage across R10 was equal to the numerical value of phase current. 

Then this value was feedback to the second TL072 OP Amp, which serves as a proportional-

integral (PI). 
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Fig. 2-13  Power amplifier circuit 

 

By Laplace transform, the transfer function of each subsystem can be derived. The 

whole system can be presented in the following block diagram in s domain as shown in Fig. 2-14. 

Here the Vi is the differential input voltage to the system and Vo is the corresponding output 

voltage to the windings. Special attention must be paid for the transfer function of
sCR 111

1
+

, 

since it is based on the fact of R1 = R2 = R3 = R4. 
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Fig. 2-14  Transfer function block diagram of power amplifier system 
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Fig. 2-15  Frequency response of power amplifier 

 

The element parameters in the power amplifier circuits were designed as following: R1 = 

R2 = R3 = R4 = R5 = R8 = R9 =10 kΩ, = R6 = 82 kΩ, = R7 = 1.3 kΩ, = R10 = 1Ω, C1 = C2 = C3 = 

0.01 µF, Ra = 19.44 Ω, La = 15.26 mH. As a result, the amplifier closed-loop bandwidth was 1.3 

kHz, which can be seen from Fig. 2-15. Considering that the mechanical dynamics and overall 

control bandwidth will not exceed 100 Hz, the dynamics of the power amplifier can be ignored. 

After the power amplifiers were built, they were tested to demonstrate its capability of 

supplying required current to the planar motors. In this test, the power amplifiers were connected 

to a single winding, which has a resistance of 4.98 Ω. The input of the power amplifier was 

connect to the digital/analog (D/A) converters output. The power amplifier was supposed to 
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output ± 1.3 A current corresponding to the D/A converters output of ± 10 V. The testing results 

were shown in Table 2.1. 

 

Table 2.1 Power amplifier and D/A converters test results 

Board/Channel 0x000 0x400 0x800 0xc00 0xfff 
 

V (V) -10 -5.02 N/A 5.02 10 1-1 
UP I (A) -1.278 -0.640 0 0.639 1.276 

V (V) -10.1 -5.03 N/A 5.01 10 1-2 
DOWN I (A) 1.29 0.639 -0.004 -0.646 -1.287 

V (V) -10.1 -5.05 N/A 5.04 10 2-1 
UP I (A) -1.29 -0.649 -0.005 0.639 1.281 

V (V) -10.1 -5.06 N/A 4.99 9.99 2-2 
DOWN I (A) 1.291 0.644 -0.004 -0.653 -1.3 

V (V) -10.0 -5.02 N/A 5.07 10.1 3-1 
UP I (A) -1.285 -0.646 -0.005 0.635 1.274 

V (V) -9.98 -4.97 N/A 5.09 10.1 3-2 
DOWN I (A) 1.300 0.65 -0.002 -0.654 -1.305 

V (V) -10 -5.01 N/A 5.04 10.01 4-1 
UP I (A) -1.258 -0.645 -0.004 0.637 1.277 

V (V) -10.1 -5.02 N/A 5.04 10.0 4-2 
DOWN I (A) 1.282 0.64 -0.005 -0.649 -1.291 

V (V) -10 -5 N/A 5.07 10.1 5-1 
UP I (A) -1.284 -0.646 -0.005 0.634 1.273 

V (V) -10.0 -5.01 N/A 5.04 10.0 5-2 
DOWN I (A) 1.293 0.646 -0.002 -0.651 -1.298 
 

   

2.4 Instrumentation Structure 

Fig. 2-16 shows a schematic diagram of the instrumentation structure of the 

multidimensional positioning system. The Pentek 4284 board with a TMS320C40 DSP is 

employed for the real-time digital control of the system. Sampling of position data, control 

variable calculation, and real-time control take place in an interrupt service routine (ISR). A 

VMEbus (Versa Module Eurocard bus) based PC (VMIC 7751), 3 laser-axis boards (Agilent 
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VMEbus 

10897B) and a DATEL3 DVME-622 D/A converter board are on the VME chassis along with the 

DSP board. The VME PC is used to compile the C codes and downloads the executable file to 

the DSP and to transfer the commands in real time via user interface during the system operation. 

This communication between the DSP and the VME PC is established via a dual-port memory 

on the Pentek 4284 board.   

 

Fig. 2-16  Schematic diagram of the instrumentation structure 

 

The laser interferometer system consists of a laser head, three laser interferometers, 

beam benders, beam splitters, receivers, plane mirrors, and laser-axis boards. An Agilent laser 

head (HP 5517D) is the 632.99 nm HeNe laser source with the 0.5-m/s maximum slew rate for 

plane-mirror interferometer.  The beam power output is 180 µW ~ 1 mW. Fig. 2-17 (a) shows the 

photograph of the laser head. 

                                                      

3 DATEL, Inc., 11 Cabot Blvd., Mansfield, Massachusetts 02048 
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(a) 

 

 

 

 

 

 

(b) 

Fig. 2-17  Picture of (a) HP 5517D laser head. (b) HP 10706B laser interferometer [After optics 

and laser head data sheet of Aiglent Corp.] 

 

As shown in Fig. 2-17 (b), the three interferometers (HP 10706B) can give the 3-DOF 

position information (translation in x, y, and yawn) of the platen at a position resolution of 0.6 

nm. Digital 35-bit-position and 24-bit-velocity data are available directly from the laser-axis 

boards (HP 10897B) at a refresh rate of 10 MHz. Three laser distance sensors (Nanogage 100) 

are used for position feedback in the vertical mode (translation in z, pitch, and roll). The sensors 

were made of nonmagnetic body, and their response is independent of the magnetic field in 

which they will operate. They work on the principle of optical triangulation. Their linear 

measuring range is 100 µm and resolution is 15 nm. They had a bandwidth of 100 kHz. Fig. 2-18 

shows the picture of those instruments. 
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(a) 

 

(b) 

Fig. 2-18  Photographs of (a) HP 10897B VME bus laser-axis board. (b) Nanogage 100 laser 

distance sensor [After HP 10897 manual and Nanogage 100 datasheet]. 

 

These distance sensors pass the 3 vertical-axis position measurements to a data-

acquisition board through first-order RC anti-aliasing filters with a cut-off frequency of 1 kHz. 

The data-acquisition system contains 8 channels of 16-bit analog-to-digital converters (ADCs) 

(Pentek 6102) and 16 channels of 12-bit digital-to-analog converters (DACs) (Datel DVME-622) 

with the input and output voltage swings of ±5 V and ±10 V, respectively. The ADC board 

communicates with the DSP via the MIXbus while the DAC board, via the VME bus. Nine DAC 

channels are used to give the control outputs to the 9 transconductance amplifiers. Then, these 

amplifiers flow commanded currents through the linear motor winding sets to generate the 

actuation forces.  

 



48 

 

2.5 Anti-Aliasing Filter and Voltage Clamp Circuit Design 

In order to prevent aliasing by sampling, an anti-aliasing filter was designed and 

implemented right after the output signal of those distance sensors. The anti-aliasing filter is 

basically a first order low-pass analog filter with a cut-off frequency of 1 kHz. Fig. 2-19 shows 

the designed circuit. 

 

 

Fig. 2-19  Anti-aliasing filter with voltage clamp circuit 

  

In Fig. 2-19, the resistor R and capacitor C were designed to be 10 kΩ and 0.015 µF, 

respectively. This low-pass filter was proven in Fig. 2-20 to have a cut-off frequency of about 1 

kHz. There are two clamping diodes D1 and D2 in the anti-aliasing filter circuit. These two 

clamping diodes were used to clamp the output voltage of the laser distance sensors to the range 

of ±5 V, which was the input swing of A/D converters. The clamping circuits were necessary to 

protect the A/D converters from over-voltage, because when the laser distance sensors went of 

their measuring range, their output voltage was within ±10 V which may blow out the A/D input 

channels. 
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Fig. 2-20  Frequency response of anti-aliasing filter 

   

 

2.6 Control Structure 

2.6.1 Configuration of Control Hardware 

Fig. 2-17 shows a detailed hardware schematic diagram of the control structure of the 6-

DOF high precision-positioning system, which illustrates how the control and sensor signals go 

into and out of the DSP. All the sensors and interface circuits are already introduced in previous 

sections. And the Pentek 4284 board with a TMS320C40 DSP is used to perform the real-time 

digital control of the system. A VersaModule Eurocard (VME) personal computer is used to 

compile the C codes and transfer the executable file to the DSP. 
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Fig. 2-21  Diagram of the control structure 

 

An interrupt service routine (ISR) we developed, which processes all the position 

measurement data and computes the control outputs for the positioner, runs on the DSP at a 

sampling frequency of 5 kHz. Once the control outputs are calculated, they are sent to a 9-

channel power amplifier through 12-bit digital-to-analog converters (DACs). Then this amplifier 

supplies commanded 9 independent phase currents through the planar motor winding sets to 

generate the actuation forces. 

2.6.2 Control Software 

The control software includes two parts. One is the VME PC-based user interface which 

runs on the VME PC to build a real-time interface between the operator and the DSP.  The other 

is the DSP-based real-time control routine which runs on the DSP and performs the real-time 

control for the high-precision positioner according to the command from the operator and real-

time sensing information. The communication between those two programs was achieved by the 

dual-port DRAM located in Pentek 4284 DSP board. Most of the original software development 
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was done by Jie Gu, one of Dr. Won-jong Kim’s former students. The control software especially 

the user interface used here is a modification of Jie Gu’s work. 

Fig. 2-22  User interface of the high-precision multidimensional positioning system 

 

Fig. 2-22 showed the user interface (control panel) of the system. The user interface 

routine was developed on the VMIC VME PC by Visual C++.net. The user can use following 

functions from the user interface: 

(1) Send user’s commands to the DSP. These commands include step commands in all 

axes, demonstration commands of different motions for the positioner, and system 

initial commands for initializing DSP, A/D and D/A boards, and sensors. 
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(2) Display the whole system’s status in real time.  This information let the operator 

know whether the system runs properly. All the measurement values from the laser 

interferometers and laser distance sensors will be displayed on the screen in realtime. 

(3) Snap and save data into the computer for further use. As mentioned earlier, the DSP 

communicates with VME PC via a 4-Mbyte dual-port dynamic random access 

memory (DRAM). In the real-time control routine, DSP will snap all the position 

information in the DRAM if there is a snap command sent from user interface. After 

the DSP saved all the data in the DRAM, the user interface routine will read all the 

data from DRAM and write them into the hard disk of VME PC with the file format 

of “data.txt.” 

Some commands and register variables were defined to allocate the physical position in 

the DRAM. The configuration of memory allocation for the command, and data is shown in 

Table 2.2. 

The TMS320C30/C40 C compiler makes all the data be of 32-bit wide, so that there is 

no difference among short, int, and long data types. Since the minimum separable address is 32-

bit apart, the 320C40’s byte size is also 32 bits. However, since the VMEbus uses a byte of 8 bits, 

a conversion from the address on the VMEbus to the TMS320C40 address is needed when the 

DSP accesses VMEbus-based modules such as the laser axis boards and the D/A board. Eq. (2.1) 

shows the conversion formula from VMEbus address to the DSP address. 

 TMS320C40 address = 
4

address VMEbus
 + 0xb0000000                        (2.1) 

The real-time control routine running on the DSP was originally edited and compiled in 

the VME PC by Texas Instrument (TI) TMS320C3x/4x code composer. This code composer is 

running under the Windows 2000 environment. C language resource codes were first developed 
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by us. Then they were compiled and built into the executive ASM language for the DSP by the 

code composer. If no errors were found in the codes, the code composer will download those  

Table 2.2 Memory map in the dual-port DRAM 

Data Type and Capacity Detailed Data Type DSP Address 

PC Command 0x80000000 

Snap Command 0x80000001 

Commands 

(0x80000000~0x8000000F) 

Position Command 0x80000002~0x80000007 

PC_Command_Acknowledge 0x80000010 

Snap_Command_Acknowledge 0x80000011 

Control variables and flags 

(0x80000010~0x8000001F) 

Interrupt Count 0x80000012 

Platen Position 0x80000020~0x80000025 

Platen Velocity 0x80000026~0x8000002B 

Measurement Value 0x80000030~0x80000035 

Current 0x80000036~0x8000002B 

Real-time position and 

velocity variable 

(0x80000020~0x8000004F) 

Force 0x80000040~0x80000045 

Snapped data 

(0x80100000~0x801FFFFF) 

ψψϕθ ,,,,,,,, yxzyx  0x80100000~0x801FFFFF 

 

executive files to the DSP. Since data transfer between VME 8-bit-width bus and the Intel 

Pentium III processor on the VME PC, there is a byte-ordering problem. In big-endian 

architectures, the leftmost bytes are most significant. On the other hand, in little-endian the 

rightmost bytes are most significant. Byte swapping must be done whenever there is a data 

communication between those two different byte ordering convention systems. SwiftNet which 
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is a commercial software designed by Pentek can automatically perform the byte swapping. Thus 

SwiftNet was always running on the background when the DSP is operated. 

The whole real-time control routine was developed in the C language. It can be divided 

into three parts: 

(1) main.c is the main body of the whole control routine. This routine initializes all the 

variables and constants. And it calls several functions to initialize and set up all the 

input/output (I/O) devices. It also writes real-time information such as position, 

velocity, and sensors’ readings to the dual-port DRAM.  When all the initialization 

and setup were completed, the routine keeps checking the command status from the 

user interface.  

(2) dsp_command.c routine is called by main.c in every looping time to check the 

command status from the VME PC.  Once any command was set by the user, the 

“dsp_command” routine calls the corresponding functions. 

(3) cint_01.c routine was designed as an ISR. The interrupt signal is generated by the 

programmable Intel 82C54 clock timer counter chip embedded in the Pentek 4284 

board. The chip accurately generates 5000 interrupt signals per second. A real-time 

digital controller was implemented in this routine. In each sampling period, cint_01 

reads the sensors and extracts the position information. 

Fig. 2-23 (a), (b), and (c) shows a flowchart of these routines. To save space, the 

flowcharts only illustrate the key processes of each routine. The complete routines are listed in 

Appendix of this dissertation. 
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Fig. 2-23  Flowcharts of (a) main.c, (b) dsp_command.c, and (c) cint_01.c 

main.c: 
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(b) 

Fig. 2-23  continued 

dsp_commmand.c: 
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Fig. 2-23  continued 

 

cint_01.c: 
(ISR) 
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CHAPTER III 

MECHANICAL DESIGN AND ASSEMBLY 

 

In this chapter, the detailed mechanical design of the whole positioner is first explored. 

The design process of the main parts in the positioner is also explained. With the mechanical 

fabricated, the assembly process is then illustrated. Mr. Nikhil Bhat, a former student of Dr. 

Won-jong Kim did most of the mechanical design and help assembly of the positioner. 

 

3.1 Design Considerations 

3.1.1 Dynamic Performance Goals 

This positioner is supposed to have a capability of both coarse motion and nanoscale 

positioning resolution. In other words, the positioner should have a long travel range in the 

horizontal mode and at the same time have a nanometer-level positioning capability. In order to 

satisfy the requirements in industry, the positioner should also have high precision positioning 

capability in the vertical mode. The travel range in the vertical direction was within hundreds of 

micrometers. And the dynamic response of the positioner should be fast enough to meet the 

ever-increasing product efficiency in industry. Since the main application of this positioner will 

be in the precision manufacturing industry, power consumption of the system should be as small 

as possible to meet the thermal stability requirement.  

The specific performance values of the positioner were shown as following: 

• Horizontal mode travel range: 200 × 200 mm 
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• Horizontal angular range (yaw): ±500 µrad 

• Vertical mode travel range:  ± 100µm 

• Vertical mode angular range (pitch and roll): ± 200µrad 

• Linear positioning speed capability: 500 mm/s 

• Linear positioning acceleration capability: 1 g (= 10 m/s2) 

• 3-σ position noise: 

x, y: 20 nm 

z: 100 nm 

θ (rotation around x), ϕ (rotation around y), ψ (rotation around z): 0.5 µrad 

The single-moving-part design concept presented in this thesis is different from the 

conventional design in high precision positioning system, which is either a crossed-axis type or 

gantry type. The only moving part can be designed in a compact structure and has good dynamic 

properties for precision control. Furthermore, the single light-weight moving part can reduce the 

power consumption of the system. 

 

3.1.2 Selection of Actuators 

The actuators should have the capability of generating 6-DOF forces for the positioner.  

There are many choices for the actuators. The variable-reluctance motor has inevitable cogging 

and attraction forces. It is thus difficult to get high-precision position control. The resolution of 

such a stepper motor is limited by its minimum step, which is usually much bigger than 1 µm. 

The multi-dimensional positioner as an SPMPM presented in this thesis overcomes all 

these shortcomings of the established Sawyer motor technology, and can generate all fine and 

coarse motions with only a single levitated moving part required for wafer processing.   It 
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employs a novel superimposed concentrated-field double-axis magnet matrix patented by Dr. 

Won-jong Kim. The planar motor used in the positioning system can generate both horizontal as 

well as vertical forces. Thus, 6-DOF motions can be achieved by flowing proper current in the 

planar motors. The windings of the planar motor were shown in Fig. 3-1. The planar motor was 

designed to have 3 phases, and each motor consists of two pitches. The electromagnetic working 

principle is discussed in Chapter IV. 

  

 

Fig. 3-1  Windings of planar motor 

 

3.2 Design of the Platen 

There are two different ways to accommodate the planar motor in a high precision 

positioning system. One is having the permanent magnet matrix on the stator. The other is 

having the windings on the stator. If the windings are stationary, since only the permanent 

magnet matrix will be attached to the mover, namely the platen, there will be no umbilical cable 

connecting to the platen. In this way, the unbalanced attraction force between the permanent 

magnet matrix and the platen can be eliminated if no ferromagnetic material is used on the platen. 

However, there are some drawbacks in this design. If those windings were fixed in the base plate, 
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much of total power will be wasted. This is because that only the top surface of the windings can 

generate magnetic field that will interact with the permanent magnets. The more windings used, 

the more power will be wasted. Therefore, the moving-magnet design concept will make the 

moving part (platen) much heavier than moving-winding design concept. And more power will 

be dissipated to control the positioner. As a result, the moving-winding design concept was used 

in the mechanical structure design for the postioning system. This design concept can also 

achieve the objective of 6-DOF motion for the system. 

So the platen consists of the planar motor windings, while the magnets are present on the 

stationery base plate. To achieve maximum acceleration and cheap control for the system, the 

mass of the platen has to be as small as possible. Several different non-ferromagnetic material 

such as: copper, aluminum, and Delrin®, can be candidates to make the platen. The mass density 

of them is 8.94 g/cm3, 2.70 g/cm3, and 1.54 g/cm3 respectively. If the platen was made of Delrin, 

the total mass of the platen will be reduced by 85% and 43% respectively, compared with copper 

and aluminum. Meanwhile, all the other mechanical properties of Delrin were comparable to 

those of aluminum. As a result, Delrin was chosen to be the appropriate material for the platen. 

The platen was designed in an equilateral triangular shape with dimensions of 15”. The 

motivation for the triangular design was to make the system as compact as possible. Three planar 

motors were used as the actuators in the system. The working principle will be illustrated in 

Chapter IV. 

Fig. 3-2 shows the perspective views of the positioner. There are two high-precision 

stick mirrors attached on the top surface of the platen. Those mirrors were used to reflect the 

laser beams to the interferometers.  The air supply distributor was used to supply air to the three 

aerostatic bearing pads.  As in Fig. 3-2 (b), the platen carries three windings and three laser 
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distance sensors. The currents flow into the windings through the terminal blocks mounted on 

one side of the triangular platen. Although the platen can be levitated by magnetic forces, three  

 

(a) 

 

(b) 
Fig. 3-2  (a) Top and (b) bottom views of the platen 

stick mirrors  

air-supply 

terminal blocks 

aerostatic bearing pad 

3-phase winding B 

laser distance sensor 

pockets for mass reduction  

3-phase winding C  

3-phase winding A  



63 

 

aerostatic bearing pads were used to levitate the platen to put most of the power into the 

dynamics control. By levitating the platen in this way, the vertical force generated by the planar 

motor can be wholly used to control the motion in vertical direction. 

As mentioned earlier in Chapter II the dimension of the coils is 1.8025 × 2.8580 × 

0.3345”. Twelve coils make one motor, so the overall dimension of one linear motor is 1.8025 × 

2.8580 × 4.014”. As a result, at the bottom of the platen, three pockets of dimensions 2.959 × 

4.134 × 0.75” with a tolerance of ± 0.005” were made to accommodate the planar motor 

windings. According to the force calculations, the pitch of the system was fixed at 2.007”. The 

distance between the motors was 1 pitch. In order to make the platen have enough strength to 

bear all the elements, the thickness of the platen was designed to be 1”. Three triangular pockets 

were made to decrease the total mass of the platen.  

 

3.3 Mirror and Mirror Mounting 

Fig. 3-3 shows the configuration of the stick mirror and its mount. The length of the 

mirror is determined by the plane travel range of the platen. And the flatness of the mirror is 

determined by the positioning resolution of the system. In order to achieve the desired 

positioning resolution and travel range, two stick mirrors of dimensions 250 × 25 × 12 mm are 

mounted on the top surface of the platen. Those mirrors made of zerodur with flatness of 31 nm 

were produced by Bond Optics4. To reduce the mass of the mirror, 12 round holes of diameter 

9.5 mm were made in the mirror. The mass of one mirror is 177.5 g.  

                                                      

4 Bond Optics, Etna road, Dept. 60H Lebanon, NH 03766 
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Fig. 3-3  Mirror and its mounts [after Bhat] 

 

A Delrin mount was designed to mount the mirrors. Two 4-40 through round holes were 

drilled on each side of the mount to fix it to the top of the platen. Double-sided tape by 3M5 was 

used to glue the mirror and the mount together. Because the mount is attached by 4-40 screw 

holes drilled by CNC machine to the platen, once the mirror and mount is parallel in the vertical 

mode, the mirror will be parallel to one edge of the platen too. To make the mirror and mount 

parallel in the vertical mode, a granite table was used as a standard surface when sticking them 

together. After that, the mirror and mount were mounted on the platen by using 4-40 screws. 

 

                                                      

5 3M, 3M Center, St. Paul, MN 55144 

Delrin mount 

stick mirror 
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3.4 Aerostatic Bearing System Design and Assembly 

Three aerostatic bearing pads were used to provide levitation to the platen. The model of 

FP-C-010 produced by Nelson Air Corporation6 was found to be suitable. The air bearings were 

made of ceramic and each one could bear a load of 10 kg with the air gap maintained at 25 µm. 

Fig. 3-4 shows the photo and dimension of the aerostatic pad. These air bearings require 

approximately 20− 90 psi air supply. Air regulator made by Parker Hannifin7  was used to 

regulate the air pressure. 

  

Fig. 3-4  Aerostatic bearing pad [after Nelson Air Corp.] 

 

Delrin mounts were designed to mount the air bearings. A ball joint was designed to 

connect the pads and mounts. Delrin balls of radius 0.25” were initially used to mount the air 

bearings onto the air bearing mounts. But it was found that by using 0.25” radius balls, the gap 

between the motor surface and the base plate surface becomes 0.150”. So the Delrin balls were 

                                                      

6 Nelson Air Corp., 559 Route 13 South, Milford, NH 03055 

7 Parker Hannifin Corp., 2220 Palmer Avenue, Kalamazoo, MI 49001 
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sanded to a hemi-sphere ball by using fine sandpaper. And their height was reduced to 0.380”. 

The gap between the motor surface and the bottom surface becomes 0.03” which is 762 µm. Fig. 

3-5 shows the assembly procedure of the air bearings. The whole platen sits on the air bearings 

through the hemi-sphere. This ball-joint connection design made the adjustment of the height 

very flexible.  

 

Fig. 3-5  Ball-joint mounts of aerostatic bearing [after Bhat] 

 

3.5 Laser Distance Sensor Assembly 

As mentioned in the previous chapter, the gap between the planar motor windings and 

the magnetic matrix base plate is monitored by laser distance sensor, Nanogage 100. To mount 

the laser distance sensor on the platen, three clearance holes of diameter 0.614 ± 0.001” were 

drilled near each corner of the platen. The laser distance sensors were inserted through these 

holes from the top of the platen and then were mounted by the top and bottom mounts.  

air bearing 
pad 

Delrin hemi-
sphere

air bearing mount 
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notch where the 
sensor mounting 
diameter sits 

4-40 set screws 
at 3 different places 
to hold the sensor 

Nanogage 100 requires a standoff distance of 3 mm for operation so the mounting for the 

sensors was designed in such a way to maintain 3 mm standoff exactly. The perpendicular 

tolerance of the laser distance sensor was ±0.1 degrees. To meet the specifications, mounts were 

designed for 2 different places. Fig. 3-6 shows bottom and top mounts for the sensor. The bottom 

mount had a clearance hole of diameter 0.614 ± 0.001” up to a distance of 0.631 ± 0.001”. The 

sensor has a change in diameter from 0.610” to 0.5”, so the mount was designed in such a way 

that the step in the sensor diameter rests exactly on the notch. And when the sensor fit in, the 

standoff was 3 mm. 

 

Fig. 3-6  Bottom and top mounts for Nanogage 100 [after Bhat] 
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bottom mount 

Nanogage 100 

top mount 

 

Fig. 3-7  Assembly of Nanogage 100 [after Bhat] 

 

Small variations in the standoff can be adjusted by the three set screws on the mount. 

The mount was fastened on the bottom of the platen by using three 2-56 screws. To mount the 

sensor from the top, a Delrin hat as shown in Fig. 3-6 was designed for the sensor. It also had 

three 4-40 set screws to hold the sensor in its correct position.  

The assembly of the sensor system is shown in Fig. 3-7. The top mount was placed in 

the sensor with the help of sensor’s manufacturer. For the purpose of providing a clearer 

perspective view of the assembly, the platen was omitted in Fig. 3-7. The laser distance sensor 

was inserted through the platen and was fixed by the bottom and top mounts. The clearance 

holes of 0.614 ± 0.005” on the platen and bottom mount provide a guide to the sensor to make it 

perpendicular to the base plate. 
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assembly 
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mount 
 

3.6 Whole Platen Assembly 

To make the three planar motors generate precision force, the gap between those planar 

motors and the base plate should be the same. In other words, the coplanarity of the bottom 

surface of the three planar motors should be high. The windings were put in the pocket and fixed 

by Delrin core in the vertical direction. The pocket was designed to exactly fit the windings so 

that the windings cannot move in the pocket in the horizontal direction. However, after 

individual planar motor was assembled on its core, the total length of the motor became 4.014”. 

The dimension of the pocket was 4.134”. Thus to get the tight fit of the motor into the pocket, 

shims of 0.003” thickness were inserted between the individual windings. Shims of thickness 

0.045” were inserted between the ends of the coil core and the pocket. Then the motor was 

placed into the pocket in the platen as shown in the Fig. 3-8.  

 

 
Fig. 3-8  Exploded view of the assembly of the parts at the bottom [after Bhat] 

 

After assembling the motors, the platen was placed on the granite table, the height of 

individual coils of the three motor surfaces were checked, which face the magnet matrix. The 
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results were shown in Table 3.1. From the table, it can be seen that motor C is a little bit lower 

than the other two, so a shim of thickness 0.003” was placed between the winding sets of motor 

C and the platen to make all the planar motors planar to the granite surface, after trial and error. 

 

Table 3.1 Height measurement results of individual coils 
 

 Motor A (mm) Motor B (mm) Motor C (mm) 

1 0.000 0.295 0.496 

2 0.108 0.374 0.638 

3 0.218 0.349 0.710 

4 0.121 0.405 0.531 

5 0.256 0.418 0.715 

6 0.264 0.628 0.645 

7 0.252 0.472 0.573 

8 0.331 0.544 0.550 

9 0.351 0.551 0.710 

10 0.461 0.552 0.730 

11 0.417 0.543 0.774 

12 0.413 0.499 0.628 

 

The three planar motors were pressed on the bottom surface of the pockets in the platen 

by the Delrin cores. The air bearing pads were mounted on the bottom surface of the platen by 

using 4-40 screws. Then three laser distance sensors’ bottom mounts with 4-40 set screws were 

also mounted on the bottom surface of the platen by three 2-56 screws. The whole bottom parts 

assembly process is shown in the Fig. 3-8. 

When the assembly of bottom parts in the platen was finished, the platen was flipped 

over to assemble the top parts such as air distributor for the air bearings, terminal blocks, stick 

mirrors, and top mounts of the laser distance sensors to the platen. The air distributor used for 
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sensor mount top 

laser distance sensor 

air distributor 

terminal 
block 

supplying air to all the three air bearings was mounted on one of the side walls of the platen by 

using an adhesive tape. Then the terminal blocks were also mounted on the wall of the platen. 

The mirror was then mounted on the top of the platen by using 4-40 screws. Fig. 3-9 shows an 

exploded view of the top parts assembly. As shown in the figure, the laser distance sensors were 

inserted into three guiding holes and fixed by the top mounts. And the terminal blocks for the 

signal cables were attached on one side of the platen. All the detailed drawings of those 

mechanical parts can be found in the appendix A of the thesis. 

 

 

Fig. 3-9  Exploded view of the assembly of the parts at the top [after Bhat] 
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CHAPTER IV 

DYNAMIC ANALYSIS AND MODELING 

 

After the postioner was constructed, dynamic characteristics of the postioner were 

determined. Moments of inertia were determined by both software and calculation. Other 

dynamic parameters such as spring constant and damping coefficient of the air bearings were 

found experimentally. A dynamic model of the system is developed in this chapter.     

 

4.1 Mass and Inertia Tensor of the Platen 

The mass of the assembled platen carrying all the sensors and attachments was measured 

by a precision scale which has a resolution of 0.1 g. The total mass of the assembled platen, 

which includes three planar motors, two stick mirrors, three laser distance sensors, air distributor, 

and connection terminals, was measured to be 5.91 kg. So the weight of the platen is 57.92 N. 

From Chapter II, the total suspension force generated by the three planar motors was 68.60 N. 

Therefore, compared with the total weight of the platen, it would be possible to levitate the 

platen magnetically. 

The whole assembled model of the positioner was built in Solidworks. With material 

properties and dimensions assigned to each part of the assembled platen, Solidworks can 

accurately calculate the center of the mass of the positioner. The coordinates of the mass center is 

calculated as:  

CM = [CMx CMy CMz]T = [191.8 106.6 −1.0]T  

in millimeters. And the center of the triangular platen is 
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CG = [CMx CMy CMz]T = [190.5 109.9 −1.2]T 

in millimeters. It can be seen the offset of the platen center of mass is significant in the x-y plane 

compared with that in the vertical mode, due to the location of the three planar motors and two 

stick mirrors. The mirror was intended to be placed at the center of each side of the platen to get 

longer travel range in the x-y plane. Solidworks defines the right bottom corner as the origin for 

the mass center calculation. Fig. 4-1 shows the origin and coordinates that Solidworks used to 

determine the center of the mass of the platen. 

 

 

Fig. 4-1  Coordinate system of the model in Solidworks  

 

The intertia matrix at the center of the mass of the platen was calculated by the 

Solidworks: 
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in kg-m2. Where the quantities Ixx, Iyy, and Izz are known as the moments of inertia of a body 

about the x, y, and z axes, respectively, and Ixy, Iyz, Izx, Iyx, Ixz, and Izy are known as products of 

inertia. The products of inertia were more than 10 times less than those moments of inertia about 

the x, y, and z axes, which indicated that the rotational dynamics mainly lie on the x, y, and z 

axes simplifying the rotational dynamics modeling of the system. 

 

4.2 Decoupled Equations of Motion 

In this section, linearized force equations for one planar motor in vertical and horizontal 

directions are derived. Most of the analysis in this section is based on Dr. Won-jong Kim’s Ph. D. 

thesis in MIT. 

4.2.1 Magnetic Force Equation and DQ Decomposition 

When the magnetic field solutions of both the stator and the mover were ready, the total 

magnet field equation can be easily derived by superposition of those two magnet field. Maxwell 

stress tensor methodology was used to derive the final interact force between the stator and the 

planar motor. The force equation [77−78] of one planar motor was derived as following: 
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where fyλ and fzλ were the y-directed and z-directed forces per spatial wavelength, respectively. Ja 

and Ja were the input current density. And µ0M0 was the remanence of the permanent magnets. 

The constant  
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contains the effects of the motor geometry; w is the width of one magnet array; ∆ is the thickness 

of magnet array; Γ is the thickness of the winding in planar motor; and γ1 is the absolute value of 

the fundamental wave number. z0 denots the nominal motor air gap between the bottom surface 

of the planar motor and the top surface of the magnet matrix. The displacement in the y-direction 

was denoted by “y” in Eq. (4.2). This planar motor is basically a Lorentz-force-type actuator, 

since it obeys the Lorentz force law, 

                              F = J × B,                                                                 (4.4) 

Since the motor geometric constant G has a unit in m3, the right hand side of Eq. (4.2) gives the 

force in N. The force equation of Eq. (4.2) exhibits spatial nonlinearity. The DQ decomposition 

methodology is used here to partially eliminate the nonlinearity in the model.  

 

 

Fig. 4-2  DQ coordinates attached to the platen 

 

 The DQ decomposition in conventional rotary machines was originally introduced to 

separate the stator current component that generates torque [76]. Here, the direct-axis (D-axis) 

and quadrature-axis (Q-axis) are attached to the mover (positioner) such that they move with the 

positioner. As a result, the magnetic force equations and commutation described in the DQ frame 
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do not contain the position dependence with respect to the stator (magnet matrix base plate). So 

the nonlinearity due to the trigonometric function dependence in the Eq. (4.2) can be eliminated. 

Conventionally, the D-axis is aligned to the stator magnetic axis and Q-axis was orthogonal to 

the D-axis with a 90˚ electrical angle leading shown as in Fig. 4-2. The D-component current 

does effective work in the vertical direction, the Q-component current generates driving force in 

the horizontal direction. 

The planar motor is designed to generate the suspension force and the drive force. 

Decoupling these two orthogonal force components was necessary to control the two DOFs 

independently. As shown in Fig. 4-2, the D-axis is defined as the z’-axis in the DQ coordinates. 

And the Q-axis leads the D-axis by l/4, which is 90˚ in electrical angle, in the +y-direction.  

 Now the transformation from [Ja Jb]T to [JQ JD]T can be built as following:   
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where yJe 1γ  is a transformation matrix given by 
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4.2.2 Linearized Force Equations 

The relationship between the total forces fy,z and f(y,z)λ that are the forces per spatial 

wavelength is shown as following. 

λ

λ
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where Nm was the number of the planar-motor pitches. The relationship between ia,b and Ja,b can 

be derived as:  
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where η0 denoted the winding turn density in one planar motor and ia and ib were the peak 

current components in the winding. Plugging Eqs. (4.5) and (4.6) into (4.2), the force equation 

of one planar motor can be rewritten as the relationship between total vertical and lateral 

forces fy and f,z and the peak current components ia and ib.  
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According to the inverse Blondel-Park transformation, the relationship between the peak 

current ia and ib and each phase current iA, iB, and iC was shown in Eq. (4.10) [79−81]. 
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Then Eq. (4.11) represents the relationship between the phase currents and the magnetic force 

as following: 
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With the above equation, the magnetic force can be generated by flowing corresponding phase 

current in the planar motors.  

From Eqs. (4.2) and (4.5) that the magnetic force can be decoupled in the lateral and 

vertical components in JQ (iQ) and JD (iD). 
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The above equations have multiplicative terms of position z0 and current iQ or iD which can be 

linearized near the operating point by using Taylor series expansion. 
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Let 0000
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where z0, iQ0, and iD0 are corresponding constant values of air gap, iQ and iD at equilibrium 

point.  Since the coefficients of z~ , Qi
~ , and Di

~  were constant, the force equations of (4.15) 

and (4.16) are linear force equations of one planar motor about z~ , Qi
~ , and Di

~ .  

4.3 Dynamic Analysis of System 

With the equations of forces generated by planar motors, it is ready to derive the 

dynamics of the system. To generate motions in any direction, each of the three planar motors 
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should be responsible for its own contribution for the motion. Basically, any motion is achieved 

by all of the three planar motors, which is illustrated in Fig. 4.3. In this figure, the Roman 

numeral I, II, and III denots the planar motor A, B, and C respectively. The coordinate system on 

the uper left hand side of the picture, whose origin was located at the mass center of the 

positioner (for the purpose of clearly presenting, the origin of the coordinate was placed outside 

of the positioner in Fig. 4.3), defined the force and torque direction. Motors A and B can generate 

force f1y and f2y in the y-direction respectively. Motor C can generate force f3x in the x-direction. 

All the planar motors A, B, and C can also generate magnetic suspension force f1z, f2z, and f3z in 

the z-direction. 

Fig. 4-3 (b), (c), and (d) illustrated how the positioner generated motion in the horizontal 

mode. If the positioner wanted to make a movement in the x-direction, motor C will generate f3x 

in the x-direction and at the same time motor A and B will generate a canceling torque τz to 

balance the torque brought by motor C. Translation in the y-direction can be achieved by motor 

A and B. (e), (f), and (g) explained the way to generate motion in the vertical mode. Since all the 

planar motors can generate the vertical force, changing the direction and magnitude of those 

vertical forces can generate the vertical motion.  

The magnitude and direction of magnet force generated by each motor can be 

determined by force equations. And the moments about the center of mass can be calculated by  

LFM c ×= ,                                                                     (4.17a)  

where L was the arm from the center of the planar motor to the corresponding x-, y-, or z-axis, 

which can be obtained from the dimensions of the positioner. The positioner can generate any 6-

DOF motion by inputting proper phase currents into these planar motors.       
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Fig. 4-3  Illustration of generating 6-DOF motions by three planar motors 

 

Since the movement due to the deformation of the positioner is only a minor part of its 

motion in all 6-DOF motions, the positioner can be regarded as a rigid body [82]. To analyze the 
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dynamics of the positioner, two sets of coordinate systems were defined for the system. As 

shown in Fig. 4-4, the XOY coordinate system was fixed at the initial position of the positioner 

which was the center of the mass of the positioner at the beginning. Another coordinate system 

xoy, whose origin was the mass center of the positioner, was attached on the positioner. XOY and 

xoy coordinates were overlapped in the beginning. The magnet force generated by the planar 

motor can be regarded as concentrated force which was applied at the center of each planar 

motor.  

L A
y

L B
y

L C
y

z y
3 z y

1

z y
2

 

Fig. 4-4  Coordinate systems of the positioner (Top view) 

  

There, L (A, B, C) x denoted the distance from the centers of motors A, B, and C to the y-axis 

respectively. Similarly, L (A, B, C) y denoted the distance to the x-axis respectively. The three dash 

line circles labeled 1, 2, and 3 in counterclockwise sequence were the aerostatic bearing pads. zx 

(1,2,3) denote the distance from the center of the air bearing pad to the x-axis. zy (1,2,3) means the 

distance from that to the y-axis. The values of those distances are presented in the Fig. 4-1. 
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Table 4.1 Dimensions of planar motors and air bearings to xoy coordinate system 

Variable Value (mm) Variable Value (mm) 

LAx  49.7 zx1  147.0 

LBx  52.7 zx2  1.3 

LCx  1.3 zx3  167.0 

LAy  44.8 zy1  88.0 

LBy  44.8 zy2  175.0 

LCy  84.3 zy3  95.0 

 

Since the displacement in the horizontal mode was measured by three fixed laser 

interferometers, the displacement was actually already measured in the XOY coordinate system. 

As a result, for the motion in horizontal mode, it is unnecessary to apply any coordinate 

transformation from the xoy system to the XOY system. However, the three laser distance sensors 

were attached on the platen which means those displacements (translation in the z-axis, rotation 

about the x- and y-axis) were measured in the moving coordinate system xoy. To simplify the 

calculation, a coordinate transformation was carried out to transform all the displacement in the 

XOY coordinate system to the xoy coordinate system. 

The coordinate system transformation can be divided into three steps: (i) yaw about the 

z-axis, (ii) roll about the x-axis, and (iii) pitch about the y-axis. The corresponding 

transformation matrix was: 
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As a result, the overall transformation can be obtained by combining Eqs. (4.17), (4.18), 

and (4.19), with the result that 
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With those coordinate transformation equations, it is ready to develop equations of 

motion for the system by using Newton’s second law as following: 
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In the foregoing, ∑Fx, ∑Fy, and ∑Fz are the sums of the external forces acting on the 

positioner in the three coordinate directions. Similarly, ∑Mox, ∑Moy, and ∑Moz represent the sum 

of the moments of the external forces about the coordinate axes whose origin is point O. Here, it 
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must be emphasized that point O is selected as the center of mass of the positioner to satisfy the 

moment Eq. (4.23). 

Since the positioner is levitated by the air bearings, there is no friction between the 

positioner and the base plate. As a result, the positioner can be regarded as a pure mass system in 

the horizontal mode. The equations of motion in the horizontal mode can be presented as  

xf
dt

xdm =2

2

,                                                            (4.24) 

yf
dt

ydm =2

2

,                                                           (4.25) 

yxyyxxozzz IIM
dt
dI ωωφ )(2

2

−+= ,                                       (4.26) 

Compared with Ixx, Iyy, and Izz, those products of inertia can be neglected. This equation 

can be linearized at equilibrium point, where ωx = ωy = 0 rad/s. The linearized equation is 

presented in Eq. (4.27). 

ozzz M
dt
dI =2

2φ
,                                                       (4.27) 

In the vertical direction, because of the presence of the air bearings, the system can be 

modeled as spring-mass-damper system. The same case will happen to the other rotational 

motion about the x- and y-axis. So the similar methodology can be used to derive equation of 

motions in those directions. 

θθθ
θθ CKM

dt
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,                                                      (4.28) 
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85 

 

where Kθ, Kφ, and Kz, are spring constants in the vertical mode and Cθ, Cφ, and Cz, are damping 

ratio coefficients. The spring constant and damping ratio coefficient in the z-axis can be 

determined by experiment using Hooke’s law [83]. Then the whole positioner can be regarded as 

a stage sitting on three sets of spring as shown in the Fig. 4-5. 

 

 

Fig. 4-5  Spring-mass model of the positioner in the vertical mode (side view) 

    

K1, K2, and K3 were the spring constant of the three air bearings 1, 2, and 3. Their value 

is 1/3 of Kz, which is determined to be 106 N/m by experiment. With the distance from the center 

of the air bearing pads to the x- and y-axis in the xoy coordinate system, which is shown in Fig. 

4-4, the rotational spring constant Kθ and Kφ can be determined by the following mathematic 

manipulations. As shown in Fig. 4-6, suppose the positioner has a rotational angle φ about the y-

axis. This angular motion will cause deflection in the three springs. 
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Fig. 4-6  Illustration of rotation about the y-axis 

 

Then the displacement of each spring introduced by φ can be determined by the 

following formula 

r
d

=ϕ ,                                                               (4.31) 

where, r is the distance from each spring to the y-axis. And d is the length of arc which took 

place in the intersection point between the spring and the positioner. Since the angel φ is a small 

angle (on the order of microradians), d can be regarded as the displacement of spring due to the 

rotational displacement. As a result, the force generated by the spring due to the deformation of 

spring can be calculated by Hooke’s law 

KdF = ,                                                             (4.32) 

According to the dimensions shown in Fig. 4-4, the force can be calculated as following 

ϕ
ϕ

ϕ

333

222

111
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−=
=
=

.                                                      (4.33) 

Now applying Newton’s second law to the moment about the y-axis as shown in Eq. (4.34), the 

moment of equation about the y-axis can be developed in Eq. (4.35). 
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Plugging K1, K2, K3, zx1, zx2, and zx3, Kφ can be calculated as 11653 N-m/rad. A similar formula 

can be derived for Kθ as shown in Eq. (4.36). 
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11 yyy zKzKzKK ++= ,                                      (4.36) 

And Kθ is calculated as 11152 N-m/rad. Those coefficients of damping coefficient Cz, Cθ, and Cφ, 

can be experimentally determined by observing the time domain dynamics of the pulse response 

of the postioner. After those parameters are determined, it is ready to derive the models for the 

positioner by Laplace transform of Eqs. from (4.24) to (4.30). 
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Eqs. (4.37), (4.38), and (4.39) are the dynamic models of the positioner in the horizontal 

mode. A similar Laplace transform can be applied to these ordinary differential equations (ODE) 

in the vertical mode. Then the corresponding dynamic model can be developed. 
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Eqs. (4.37) to (4.42) are the dynamic models of the positioning system. With those 

equations, proper controllers can be designed to satisfy the dynamic requirement for the system. 

However, the input to those models is forces and moments instead of phase currents to those 

planar motors. There exists a force allocation to each motor when some commanded force or 

moment is generated. 

4.4 Force Allocation 

As mentioned in last section, force allocation for each planar motor will be discussed in 

this section. Fig. 4-7 illustrated the force allocation for each planar motor A, B, and C when 

commanded fore or moment is generated. The relationship of total force or moment applied in 

center of mass and those generated by actuators can be developed as follows. 

Fig. 4-7  Illustration of force allocation 

 

The force and moment in horizontal mode are first studied. From Fig. 4-7, it can be seen 

that each force or moment in the horizontal mode can be achieved as follows. 

cxx ff = ,                                                               (4.43) 

A 
B 

C 

 
ψ  

ϕ  
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ByAyy fff += ,                                                       (4.44) 

CxCyByBxAyAxoz fLfLfLM −+−= ,                                       (4.45) 

As mentioned in section 4.3, these L values are lengths from each actuator to the center 

of the mass. The above equations can be rewritten as the matrix from. 
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The relationship from total force or moment to each planar motor force in the horizontal 

mode can be got by inversing the coefficient matrix. 
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Plugging those L values shown in the Table 4.1, the above force allocation matrix becomes 
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Similarly, according to the Fig. 4-7, in the vertical mode, the total force and moments can be 

generated by each planar motor as following. 

CzBzAzz ffff ++= ,                                                            (4.49) 

CyCzByBzAyAzox LfLfLfM +−−= ,                                                (4.50) 

CxCzBxBzAxAzoy LfLfLfM −−= ,                                                 (4.51) 

The corresponding matrix form is: 
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After plugging those L values into the Eq. (4.52), the force allocation in the vertical mode is 
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The Eqs. (4.48) and (4.52) has are a way to allocate the total force or moment to 

each planar motor which actually made a connection between the commanded force or 

moment and the forces for each actuator. These relations make it possible to use these 

models shown in Eqs. (4.37) through (4.42) to design single input and single output (SISO) 

controllers, which have “force” or “moment” as the outputs to these models. Eqs. (4.37) and 

(4.42) are force allocations in the horizontal and vertical mode respectively. Here, the 

reason that divided the force allocation into two independent planes is that there are two 

steps to make the positioner work from its initial position. So the controllers in the 

horizontal mode and the vertical mode will not work simultaneously at the beginning. 

 

4.5 State-Space Model of the System 

In Section 4.4, the force allocation equations make it possible to design controllers for 

each decoupled dynamic model of the system (6 models for 6-DOF motions). For such a multi-

directional positioning system, there are inevitable coupled dynamics. To study the dynamics, a 

state-space model based on the real inputs and outputs of the system is necessary to be developed. 

In this section, the current input and displacement output state-space model will be developed for 

the advanced controller design, such as LQR, and LQG in the following chapters.       
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In order to derive the state-space model which has the current input, those dynamics 

presented in Eqs. (4.24) through (4.30) should be in “current” form. Plugging the force Eq. 

(4.12), the dynamics can be represented as 

 CQ
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The right-hand-side non-linear equations can be linearized about an equilibrium point. 

Plugging the linearized horizontal force equations from Eq. (4.15), the linearized equation is 

presented as follows. 
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Comparing above equations and 4.15, it can be seen that iQ0 term is missing. That is 

because in the equilibrium point all the iQ0 terms are zero. The above linearized equations can be 

presented in standard state-space form. Since the term of 01
0002

1 z
mGeNM γηµ −  is a constant, let 

character C denote that expression in the state-space form. Six states x, y, r, h, u, and v are 

introduced to represent above equations in state-space form. 
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The above Eqs. (4.60) and (4.61) are the state-space model of the positioner in the 

horizontal mode. In Eq. (4.61) Y1 is used to denote the outputs of interferometers in the 

horizontal mode. Because the interferometers in the horizontal mode can provide both 

displacement and velocity information, the output matrix is a 6 by 6 identity matrix.  

For the vertical mode motions, the similar methodology of plugging in linearized 

vertical force equation can be applied to get the linearized equations in the vertical mode. 
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Let C equal to 01
0002

1 z
mGeNM γηµ − and introduce z, s, t, p, q, and w as the states of the 

system. Then the state-space model in the vertical mode can be presented as 
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Here in the vertical mode, three laser distance sensors can only measure the 

displacement. That’s the reason why the C matrix in the vertical mode is not an identity matrix. 

Similar to Eq. (4.61) Y2 is used here to denote the outputs of laser distance sensors in the vertical 

mode. Attention must be paid that in the state-space form, the inputs are actually lateral currents 

[iAQ, iBQ, iCQ]T and quadratic currents [iAD, iBD, iCD]T instead of the physical phase current. As 

discussed earlier, this DQ decomposition is basically a feedback linearization approach for the 

original nonlinear system. As a result, whenever a MIMO controller gives an output (input to the 

model), the current conversion from iQ and iD to phase current iA, iB, and iC is needed to get the 

real phase current inputs for each planar motor. 

 

4.6 Sensor Equations 

As mentioned in Chapter III, three laser interferometer sensors measure the displacement 

(x, y, andφ ) and velocity (h, u, and v) in the horizontal mode. Since laser interferometers only 
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measure the distance and velocity between the sensors and the stick mirrors, mathematical 

conversion must be needed to convert those sensors’ measurement into the coordinates of the 

positioner. 
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Fig. 4-8  Diagram illustrating metrology principle of laser interferometers 

 

Fig. 4-8 illustrated the metrology principle of those laser interferometer sensors. By 

programming, the laser interferometers Yl1 and Yl2 in the y-direction are set to measure the 

displacement in the y-axis and rotation angle about the z-axis. Basically, sensor Yl1 are assigned 

to measure the displacement in the y-direction and Yl2 are set to measure the difference of 
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readings between Yl1 and Yl2. And sensor Xl is set to measure the distance between the mirror and 

positioner. Those measurements can be represented in symbols labeled in Fig. 4-8 as following  

11 dYl = ,                                                               (4.67) 

122 ddYl −= ,                                                         (4.68) 

4dX l = ,                                                              (4.69) 

In the initial position, all the laser interferometers will be set to be zero. In other words, 

those laser interferometer sensors will only measure any relative displacement and rotational 

angles compared to the initial point. So the displacement in the y-axis is the reading from sensor 

Yl1. And rotational angle about the z-axis can be calculated. 

1lYy = ,                                                               (4.70) 

L
Y

L
dd l 212tan =

−
=φ ,                                                (4.71) 

Since the rotation angle about the z-axis is quite small (less than 10-4 radian), φφ ≈tan . 

So the rotational angle about the z-axis can be directly calculated by Eq. (4.71) 

L
Yl 2=φ ,                                                             (4.72) 

It can be noticed that there is an angle of 30˚ between the Xl axis and the x-axis. As a 

result, there will be much more considerations when the reading of sensor Xl is converted to the 

XOY coordinate system.   

Fig. 4-8 illustrated the movement process of the stage from one position to another 

position. The positioner first moved y meters in the +y-axis (the dash line configuration is the 

positioner after the +y-axis movement). Then it moved from point B to A in the –x-axis. The 

whole process, the positioner moved lBA in the –x-axis. Whereas the displacement in the Xl axis is 

–lCA. That’s because the movement in the +y-axis makes another displacement –d3 in the Xl axis. 
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In order to get the right displacement in the x-axis, the extra displacement –d3 introduced by y 

must be excluded from –lCA. Since the positioner is an equilateral triangle, the displacement in 

the x-axis can be calculated as follows.   

30cos/)30sin(30cos/)3( yXdllx lCABA +=+−=−= ,               (4.73) 

After replacing y in Eq. (4.73) with Yl1, the displacement in the x-axis can be expressed 

as 

30tan
30cos 1l
l Y

X
x += ,                                                     (4.74) 

The corresponding velocity equations can be easily got by differentiating those 

displacement sensor equations. From those sensor equations of (4.70), (4.72), and (4.74), the 

transformation matrix of both displacement and velocity can be generalized as 
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Where Vl, Vl1, and Vl2 are the velocity readings from laser interferometer sensors Xl, Yl1, 

and Yl2 respectively. Those above horizontal mode sensor equations were derived by considering 

displacement in the x- and y-axis. The effects (when the positioner has a rotational angle about 

the z-axis, the reading of both Xl and Yl1 will be changed.) to those displacements generated by 

the rotation about the z-axis are trivial compared since the angle is less than 10-4 radian. 

In the vertical mode, sensor equations are also necessary to convert the sensors’ readings 

into the coordinates for the mass center point o. Those laser distance sensors can only give the 

displacement information, so only displacement sensor equations are needed. The main idea to 
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derive those sensor equations is considering any contribution from the motion to the 

displacement. Fig. 4-9 showed the position of each laser sensors in the platen.  
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Fig. 4-9  Position of laser distance sensors (top view) 

  

The relationship between the reading of each sensor and the displacement in the vertical 

mode is developed as follows. 
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Table 4.2 presented the values of geometric parameters in Fig. 4-9. After plugging those 

values into the Eq. (4.76) and inversing the coefficient matrix, it can be got the sensor 

transformation equations: 
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The above equation is the sensor equation in the vertical mode. Equations (4.75) and (4.77) make 

it possible to extract the velocity and displacement information about the mass center of the 

positioner from the six laser sensors.  

 
Table 4.2 Values of length variables in Fig. 4-9 

Variable Value (mm) Variable Value (mm) 

zy1  58.9 zx1  141.1 

zy2  155.1 zx2  18.3 

zy3  66.0 zx3  116.7 
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CHAPTER V 

CONTROL SYSTEM DESIGN AND IMPLEMENTATION 

 

In Chapter IV, both the decoupled (six different models in all directions) and state-space 

models of the system were developed. Based on those two models, there are two different 

methodologies to design the control system. One is classical SISO controller design. The other is 

MIMO controller design. In this chapter, SISO control design approache is discussed. The 

objective of the controller design is to make the positioning resolution as high as possible and to 

achieve high acceleration in motion. Experimental results are presented in this chapter to 

evaluate the designed controllers. 

 

5.1  Initial Working Position of the System 

The positoner can not start to work from anywhere in the base plate. There are some 

restrictions for the initial working position of the system. From the electromagnetic analysis 

discussed in previous chapters, it can be seen that the selection of initial working position is 

based on the stability in that position. The force Eq. (4.9) presented in Chapter IV is also 

developed based on the initial position. As a result, choosing the right initial working position is 

the first step to make the positioner to be under control. 

The diagram (Fig. 4-2) of DQ decomposition presented in the last chapter illustrated the 

way to set the initial working position for the positioner. The detailed initial position is presented 

in Fig. 5-1. 
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Fig. 5-1  Diagram of initial working position of the positioner 

  

Since the magnet matrix and planar motor have a pitch of 2 inches, each possible initial 

position is 2 inches away in the x-y plane. The initial position is chosen to make the positioner 

have the full travel range in the horizontal mode. Since the distance of all the three planar motors 

is fixed, one of the planar motors (motor B) is marked with an identification point for the 

positioner. Then the position determined in the base plate is also marked. Each time, the 

positioner will begin to work from where the two points matched. With all the three laser 

interferometers in their measuring range, this matching points method can guarantee that each 

time the positioner work from the right initial position. 
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If all the three air bearings are on from the beginning, it will be very difficult to hold the 

positioner in the initial position because of the non-friction between the positioner and the base 

plate. As a result, to maintain the positioner in the initial working point at the beginning, the air 

bearings are off. When the controller is enabled, those air bearings will be on manually by the 

operator. Since when the air bearings are off, there is friction between the positioner and the base 

plate, the model developed in Chapter IV is incorrect for this case. However, if the controller is 

designed to have enough robustness, it should handle both the two cases. Next section, the 

controller design process will be discussed. 

 

5.2 Sampling Rate and Discretization 

Since the whole system is controlled by the DSP, the continuous signal has to be 

converted into discrete signal by sampling the original signal. The sampling rate is an important 

parameter in digital-signal-processing and digital-control-system design. There are many 

references [84−86] discussing on how to determine the sampling rate in digital control system 

design.  The Nyquist frequency criterion is widely used in digital signal processing to avoid 

aliasing in frequency domain. However, in digital control system design, the sampling frequency 

is set to be as high as possible. There are several reasons to do that. 

(1) Reduce phase lag due to the time-delay effect of the sample-and-holder. The average 

delay by the sample-and-holder is Ts/2 on average. 

(2) If the sampling rate is fast enough, the dynamics of the discrete-time system can be 

emulated the continuous-time counterpart. 

A sampling rate of at least 20 times greater than the system bandwidth is a rule of thumb 

in digital control system design [86]. Based on the hardware setup, the sampling frequency is 

determined to be 5 kHz. It is a challenge for the real-time control design since it has only 200 µs 
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to go through all its routine. All the time-consuming operations such as snapping data, displaying, 

and so on must be out of the real-time control routine which can be seen from the program flow 

chart in Fig. 2-23 of Chapter II.       

There are a few ways to convert a continuous time system into a discrete time system by 

choosing different numerical approximation methods. Methods such as zero order hold (ZOH), 

pole-zero matching, and bilinear approximation (Tustin) are widely used in discretizing 

continuous time system [86]. Here the matched pole-zero (MPZ) method is selected as the 

discretize method. The function “c2d” in MATLAB is used to get the digital controller from the 

continuous one. The drawback of the MPZ method is that the bandwidth of the discrete-time 

system would be a slightly different from the original one. The trial-and-error adjustments of the 

gain in the discrete-time controller are necessary to make the digital system have the same 

design specifications as the continuous one.  

    

5.3 SISO Controller Design 

5.3.1 Lateral Mode Control 

Eqs. (5.1), (5.2), and (5.3) showed three detailed models in the x-, y-, and ψ -direction 

respectively by plugging m and Izz in the transfer functions developed in Chapter IV (Eqs. 

(4.37)−(4.39)).  
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Based on the model, three individual SISO controllers can be designed for each axis. In 

this design approach, the nonlinearity of magnet force equation can be properly eliminated by 

directly considering the transfer function from input magnet force to output displacement. In 

each sampling period, when the controller calculated a desired value of controlling force, Eq. 

(4.9) will immediately be applied to calculate the physical phase current for each planar motor.   

A continuous time lead-lag compensator is first designed in the x-direction by using 

MATLAB root-locus routines. The closed-loop control structure is shown in Fig. 5-2. The 

controller D (s) is designed as shown in Eq. (5.4). 

 

 
Fig. 5-2  Continuous time lead-lag compensator in the x-direction 
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++

×=
ss

sssD ,                                     (5.4) 

From Eq. (5.4), it can be noticed there is a pure integrator in the controller. Since the 

positioner is modeled as a pure mass in the horizontal mode, there are already two poles in the 

origin which should have enough power to eliminate the steady-state error due to the step input. 

It seems it is redundant to add another integrator in the controller to eliminate the steady-state 

error. However, experimental results proved that adding a pure integrator in the controller is 

extremely important to eliminate the steady-state error. The reason is that the positioner may not 
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behave completely modeled as a pure mass due to the inevitable disturbances brought by the stiff 

air pipe and the umbilical signal cable attached on the positioner. Fig. 5-3 showed the phase 

margin of 57.7˚ at a crossover frequency of 21 Hz.  
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Fig. 5-3  Loop transmission in the x-direction 
 

 

The model in the y-direction is exactly the same as that in the x-direction. So the same 

controller can be also used in the y-direction. The same design methodology can be used in the 

ψ -direction. The continuous time lead-lag compensator is designed as Eq. (5.5).  

  
)2247.1134(

)10)(6904.55(104481.1)( 4

+
++

×=
ss

sssD ,                                    (5.5) 

The phase margin is designed to be 62.7˚ at a crossover frequency of 38 Hz, which can be seen 

from loop transfer function bode plot in the Fig. 5-4. 
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Fig. 5-4  Loop transmission in the ψ -direction 
 

The corresponding digital controllers in the horizontal mode can be obtained from the 

MATLAB as following. It can be seen that the poles and zeros in the digital controller all have 5 

digits. The purpose of that is to reduce the error from the discretization as small as possible. 

 
)1)(7970.0(

)9979.0)(9903.0(104.7)( 5
, −−

−−
×=

zz
zzzD yx ,                              (5.6) 
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−−

=
zz

zzzDφ ,                               (5.7) 

Since the three air bearings will suspend the positioner in the vertical mode, the three 

controllers in the horizontal mode will first be functional to control the position in the lateral 

plane. Then the vertical mode controllers will work to control the motion in that plane. The 

following subsection discusses the design process of controllers in the vertical mode. 
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5.3.2 Vertical Mode Control 

The models in the vertical mode are presented in the following equations with the 

parameters obtained previously.  

100000091.5
1

)(
)(

2 +
=

ssf
sz

z
,                                             (5.8) 

11152033.0
1

)(
)(

2 +
=

ssM
s

ox

θ ,                                            (5.9) 

11653025.0
1

)(
)(

2 +
=

ssM
s

oy

ϕ ,                                          (5.10) 

Since the existence of large spring constants in the models, it can be expected that there 

will be significant resonance. For example, the resonance frequency of about 100 Hz in the φ-

axis can be clearly seen in the Fig. 5-5. 

In this case, since the resonant frequency is as high as 100 Hz, if the bandwidth of the 

controller is higher than 100 Hz, the system will go unstable due to the saturation of the actuators. 

But if the bandwidth of the loop transfer function is less than 100 Hz, the resonant dynamics will 

make the dynamics of the closed-loop system very slow. In order to control the system well in 

the vertical mode with the resonance at 100 Hz, a minor-loop control system was developed as 

shown in Fig. 5-6. 

In the minor loop, a controller D (s) is designed in the feedback path. It is used to modify 

the dynamics of the original plant. The D (s) is designed in such a way that the closed-loop 

modified system (inside the dashed box) has better dynamic properties mitigating the air-bearing 
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Fig. 5-5  Bode plot of dynamics in the φ-axis 
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Fig. 5-6  Control structure in the vertical mode 

    

resonance. After that, an integrator in the outer loop is designed to control the new modified 

system. 
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The controller D (s) in the φ-direction is designed as shown in Eq. (5.11). And the 

transfer function of the modified system is presented in the Eq. (5.12). It can be seen that the 

controller D (s) brought some damping into the new modified system. The Bode plot of the 

modified system G2(s) is shown in the Fig. 5-7. 
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Fig. 5-7  Bode plot of the modified system in the φ-direction 

 

It can be seen from the Fig. 5-7 that there is no resonant peak near 100 Hz any more. 

Based on this new system, the gain of the integrator in the outer loop can be determined by 

designing appropriate phase and gain margins for the system. 

Kφ = 5 × 105 N/rad-s,                                                               (5.13) 
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With the gain K and controller Dφ (s) determined, the bode plot of the loop transfer 

function can be got. Fig. 5-8 shows the phase margin is 87.06˚ with a crossover frequency of 6.8 

Hz. The controller design of controllers in the φ-direction is completed. 
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Fig. 5-8  Bode plot of loop transmission in the φ-direction 

  

Since the transfer function in the θ-direction is almost the same as that in the φ-direction, 

the controller developed above can be also used in the θ-direction too. The crossover frequency 

and phase margin in the θ-direction should be similar to those parameters in the φ-direction. 

Similar methodology can be used to design the controller for the z-direction. The continuous 

time controller designed for the z-direction is shown in the Eqs. (5.14) and (5.15). Fig. 5-9 shows 

the controller achieved a phase margin of 80.65˚ with a crossover frequency of 7.90 Hz. 

Kz = 5 × 107 N/rad-s,                                                       (5.14) 
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Fig. 5-9  Bode plot of loop transmission in the z-direction 

 

The corresponding digital controllers in the vertical mode are shown in the following 

equations. 
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×=⋅=
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zzDsmNzK zz ,                                (5.16) 
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zzDsradNzK zϕθ ,                       (5.17) 

The controllers in all the six axes have been designed. The positioner is first placed in 

the initial position. Then the three horizontal controllers are enabled with all the three bearings 

off. After that, the air bearings are turned on manually. Since the positioner is levitated by the air, 

the distance of the positioner and the base plate would change. After resetting the three laser 

distance sensors in the vertical mode, the three vertical controllers are enabled. Then, the 

positioner is fully controlled in all six axes. 
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5.4 Experimental Results 

After the digital controllers were implemented, the positioner was tested for its 

positioning capability in all six axes. For a stage to satisfy the requirements of precision 

manufacturing, the positioner should have a nanoscale positioning resolution, fast response, and 

an extended travel range. In addition, the capability of generating any two-dimensional trajectory 

is also necessary for such a positioner to be used in wafer inspection. The multi-DOF positioner 

presented herein has the potential to satisfy all these requirements. Several experimental results 

are presented in this section to demonstrate its applicability in future semiconductor 

manufacturing and factory automation. Those experiments include basic microscale and 

nanoscale step response, nano-positioning capabilities, acceleration capabilities, and generation 

of typical wafer-stage movement in semiconductor manufacturing. In this section, the 

experimental results are presented and analyzed. 

     

5.4.1 Step Responses 

10-µm step responses were taken in the x- and y-directions. At the same time, the 

perturbation to the other five axes were also recorded and shown in Fig. 5-10 and Fig. 5-11. The 

rise time is less than 3 ms, and the settling time is less than 150 ms without steady-state error in x 

and y. The more oscillatory behavior in the x-direction is believed to originate from the fact that 

motor C generates a perturbation torque. Although motors A and B would compensate for this 

torque, it might not have been completely canceled due to modeling errors. The perturbations to 

other axes demonstrated that there is dynamics coupling in all the axes. To show the dynamic 

performances in other axes, the step responses of 5 µm in z, 10 µrad in θ, φ, and ψ  are also 

shown in Figs. 5-12, 5-13, 5-14, and 5-15, respectively.  
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The rise times of vertical step responses are a little longer than those in horizontal step 

responses because of the damped dynamics of the three aerostatic bearings. The low-frequency 

(at about 10 Hz) disturbance in ψ is believed to be generated by the umbilical cables and air 

pipes connected to the positioner.  

Fig. 5-16 demonstrated the capability of nano positioning in the x-direction. There exists 

a 60-nm peak-to-peak (10 nm rms) position noise in the system. The fast Fourier transform (FFT) 

shows the dominant noise frequency is about 100 Hz. Both the noise generated by the three 

aerostatic bearings and the external disturbance transmitted through the umbilical cables are 

believed to contribute to the position noise. Fig. 5-17 presented sub-micron positioning 

capability of the positioner in the z-, θ-, φ-, and ψ -axis, respectively. These experimental results 

demonstrate the integrated positoner presented herein possesses the potential to satisfy the 

requirement of semiconductor manufacturing.   
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Fig. 5-10  10-µm step response in x with perturbation in other axes 
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Fig. 5-11  10-µm step response in y with perturbation in other axes 
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Fig. 5-12  5-µm step response in z with perturbation in other axes 
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Fig. 5-13  10-µrad in θ with perturbation in other axes 
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Fig. 5-14  10-µrad in φ with perturbation in other axes 
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Fig. 5-15  10-µrad in ψ  with perturbation in other axes 
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Fig. 5-16  50-µm step responses and FFT in x 
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Fig. 5-17  1-µm in z and 1-µrad in ψ , θ, and φ respectively 
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5.4.2 Planar Scanning Motion 

Planar scanning motion is a typical motion used in precision engineering such as 

microlithography, inspection, and optical machinery [87−89]. Several experimental results are 

presented to demonstrate the scanning capability of the positioner both in centimeter scale and in 

micrometer scale. 

Fig. 5-18 (a) and (b) showed the positoner have a planar travel range of 16 cm both in x 

and y. And the scanning velocity is 5 mm/s. The travel range is limited by the length of stick 

mirrors and number of pitches in the magnet matrix. As a result, the travel range can be easily 

extended by adding more magnets in the base plate and using longer stick mirrors. Fig. 5-18 (c) 

and (d) demonstrated that the positioner has the capability of following both curved and straight-

line long-range trajectories in the x-y plane. The angular velocity is 0.5 rad/s in the circle and the 

linear velocity was 5 mm/s in the double triangle.  

Figs. 5-19, 5-20, and 5-21 show that the positioner can precisely follow any micro-scale 

trajectory in the x-y plane. From the tracking errors shown in Fig. 5-19 (b) and Fig. 5-21 (a) and 

(b), it can be seen that the position errors in following those trajectories are less than 30 nm rms. 

Fig. 5-20 (b) showed the frequency domain analysis of the positioning noise in the system. These 

experimental results demonstrated that the positioner has the capability of 1D and 2D precision 

positioning.  
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Fig. 5-18  160-mm travel range in both (a) x and (b) y. Capability of following planar 

trajectories of (c) a circle of 8-cm in diameter and (d) a circle and double-triangle combination. 
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Fig. 5-19  (a) 1-µm amplitude sinusoidal motion and (b) the tracking error in y 
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Fig. 5-20  500-nm stair case in y  
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(c) 

Fig. 5-21  (a) 5-µm radius circle in the x-y plane with the positioning error in (b) x and (c) y. 

 

5.4.3 High-Speed Motion 

This 6-DOF positioner is currently capable of generating the maximum velocity of 0.5 

m/s with the maximum 5-m/s2 acceleration in the y-direction. Fig. 5-22 (a) shows the stage 
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moved back and forth with a range of 140 mm in y. The platen first moved in the positive y-

direction at the maximum acceleration of about ½ g (5 m/s2). When the velocity reached 0.5 m/s, 

the platen stopped accelerating and moved at this constant velocity. After 0.18 s, the platen 

started to decelerate at 5 m/s2 until its velocity reached zero. After resting at the position of 140 

mm for a while, the stage moved back to its original position in the same way as it moved forth. 

Fig. 5-22 (b) shows the corresponding velocity profile. A 10% overshoot in velocity is visible at 

the end of abrupt velocity changes. The 0.5 m/s maximum velocity is limited by the laser 

interferometers not by the technology. 

In the photolithographic process of chip fabrication, a wafer stage carries a silicon wafer 

from one die sit to another to repeat the exposure to the laser beam. These step-and-repeat 

aligners (steppers) have dominated in IC fabrication since late 1980s [90−91]. The positioner 

herein can simulate the similar step-and-repeat motion, which is used in semiconductor 

manufacturing. Fig. 5-23 presents a sample step-and-repeat motion profile both in position and 

velocity. Here, 2 cm was chosen as a typical die size. 

Fig. 5-23 (a) is the displacement trajectory of the whole process in the x-y plane. The 

positioner started from point A at the origin of its coordinate system with an acceleration of 4 

m/s2 in the positive y-direction. After its velocity reached 0.2 m/s, it moved for 50 ms at this 

velocity. Then it decelerated at the acceleration of −4 m/s2. After 50 ms the velocity was reduced 

to 0 m/s. Then one 2-cm step was completed. This 2-cm step was repeated three times in the 

positive y-direction until the positioner reached point B. Then the positioner moved with a 

constant velocity of −5 mm/s (This can be seen in Fig. 5-23 (b)) in the x-direction until it reached 

point C. After that, the positioner moved back from C to D at the same way as that from A to B, 

yet in the opposite direction. The same motion was repeated in the rest of the trajectory from D 

to H. When the positioner reached point H, it began to move back to the origin point A in the x-
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direction. In parts (b), (c) and (d), only the first typical 12 s experimental results was presented to 

enhance the resolution of the subplots. The rest of the trajectories are similar to those plots. 

Those experimental results demonstrated that the positioner can generate any similar 

typical motions to those generated by the wafer stage used in semiconductor manufacturing, such 

as step-and-scan, step-repeat-and-scan, and so on [92]. Therefore, the positioner presented herein 

has the potential to be used in the high precision manufacturing industry. All the demonstrations 

codes are attached in the Appendix B. 
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Fig. 5-22  (a) Displacement and (b) velocity profiles in y with 0.5-m/s maximum velocity and 5-

m/s2 maximum acceleration. 
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Fig. 5-23  (a) Experimental motion profile of a 2-cm step-and-repeat motion in the y-direction 

traversed by the platen. Position trajectory in (b) the x-direction and (c) the y-direction. (d) 

velocity profile in the y-direction. 
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Fig. 5-23  continued 
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CHAPTER VI 

MULTIVARIABLE CONTROL SYSTEM DESIGN AND 

IMPLEMENTATION 

 

This multi-dimensional positioner is a multi-inputs and multi-outputs (MIMO) system. 

The model of this system was developed in Chapter V. Compared with the SISO control system 

design, the MIMO one will focus on the dynamics of the whole system instead of the dynamics 

in each axis [93]. In this chapter, several multivariable controllers are designed and implemented. 

The design process of integrator augmented linear quadratic regulation (LQR), and integrator 

augmented linear quadratic Gaussian (LQG) control methodologies are discussed. Experimental 

results are also presented in this chapter. 

 

6.1 Linear Quadratic Regulation (LQR) Control in the Horizontal Mode  

By plugging corresponding values into the Eqs. (5.60) and (5.61), the state space model 

of the system in the horizontal mode can be represented in Eqs. (6.1) and (6.2). 
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The above horizontal dynamic system can be presented as Eq. (6.3), where x is the state 

vector and u is the input vector.   

)()()( tButAxtx += ,                                               (6.3) 

The LQR problem, where all the sates were known, was the deterministic initial value problem: 

with non-zero initial state x (0), find the input signal u (t) which took the system to the zero state 

(x = 0) in an optimal manner, i.e. by minimizing the deterministic cost [94] 

∫
∞

+=
0

))()()()(( dttRututQxtxJ TT
r ,                                  (6.4) 

The optimal solution (for any initial state) is u (t) = − Kr x (t), where 

PBRK T
r

1−= ,                                                    (6.5) 

And P = PT ≥ 0 was the unique positive semi-definite solution of the algebraic Riccati equation 

01 =+−+ − QPBPBRPAPA TT ,                                   (6.6) 

Where Q and R are constant weighting matrix needed to be designed to penalize some state 

variables (or inputs) more than others to meet dynamic requirements. It is necessary that Q be 

positive semidefinite, and R be positive definite [95]. LQR is an optimal full state-feedback pole 

placement approach. It provides an optimal way to place the eigenvalues of the multivariable 

system by designing appropriate Q and R matrix in Eqs. (6.5) and (6.6). 
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Since the LQ controller is a regulator, it will regulate the output of the system to be zero. 

In order to make the postioner track non-zero command, the error dynamical model of the 

system is needed for the LQ servo design. The error can be defined as following    

∗−=∆ xxx ,                                                        (6.7) 

∗−=∆ yyy ,                                                        (6.8) 

∗−=∆ rrr ,                                                        (6.9) 

∗−=∆ uuu ,                                                      (6.10) 

Where the variables with an asterisk denoted are the final values of the corresponding 

state. Since the final values of the state are constant values, the derivative of those values will be 

zero. As a result, the following equations can be got. 

         )()()( tuBtxAtx ∆+∆=∆ ,                                             (6.11)  

)()( txCty ∆=∆ ,                                                  (6.12)   

Here the A, B, and C matrix are the same as the original system. As a result, if the LQR 

controller is designed based on the error dynamics in Eqs. (6.11) and (6.12), the positioning 

system can track the input reference. So the control law will be 

∆u (t) = − Kr ∆x (t),                                               (6.13) 

where Kr is the optimal solution for the Riccati Eq. (6.6) by designing Q and R matrix. Since the 

input to the system is u not ∆u, from Eq. (6.10) it can be known that input to the system should 

be 

∗+∆= uuu ,                                                   (6.14) 

Once the system is in steady state, the steady-state input u* will be zero, which can be seen from 

Eq. (6.1) by letting left hand side of the equation to be zero. Therefore, the Eq. (6.14) can be 

simplified as 
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)(txKu r ∆−= ,                                                  (6.15) 

Now it is ready to design the LQR servo for the system. Q = diag ([10000, 10000, 10000, 

1, 1, 1]), R = diag ([1, 1, 1]) were found to be the most appropriate matrices for the system. In 

order to get better positioning performance, the Q matrices is selected in such a way that 

penalizes displacement states x, y, and r much more than the velocity states. The gain matrix is 

computed as shown in Eq. (6.16). The corresponding closed-loop system dynamics 

)()()( txBKAtx r ∆−=∆ is presented in Eq. (6.17). 
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(6.17) 

The closed-loop poles are placed at –13.167 ± 12.945i, –39.182 ± 34.198i, and –15.710 

± 15.335i. So the system is stabilized by the controller. Since the controller is to be implemented 

digitally in a 320C40 digital signal processor, the control gain matrix should be in a discrete time 

domain. The function ‘lqrd’ is found in Matlab to get the discrete time domain gain matrix as 

shown in Eq. (6.18).  
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The continuous time state-space form model of the system can be converted into discrete- 

time form by the function ‘c2d’ in Matlab. Then in each sampling time period, the control current 

output to the system can be calculated by Eq. (6.16) with Krd as the gain matrix. The experimental 

results are shown in Fig. 6-1 after implementing the controller into the system in the horizontal 

mode. 
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Fig. 6-1  10-µm step response in (a) x, (b) y. 10-µrad step response in (c) r. (d) FFT of  (c) 
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From those experimental results, it is noticed with interest that there are steady-state 

errors in those step responses: about 2 µm steady state error in x, 6 µm in y, and 2 µrad in r. It 

was because the traditional LQR regulator does not have integrator which also can be seen from 

the closed-loop poles of the system. Thus, it is necessary to augment plant with integrator before 

applying the LQR method. The augmented control structure is shown as follows: 

        

 
Fig. 6-2  Integrator augmented LQR servo 

 

The methodology is to isolate the plant output vector ∆yp as the top component of plant 

state vector xp, such that 

ppp

ppppp

xCy
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,                                          (6.19) 

Then add new state vector zp, which is the integrators states. The dynamics of these new states 

are: 

pppp xCyz ∆=∆= ,                                             (6.20) 

Now with Eqs. (6.19) and (6.20), the dynamics of the augmented system can be obtained 

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡∆
0
0

p

p

p

p

C
A

z
x

 ⎥
⎦

⎤
⎢
⎣

⎡∆

p

p

z
x

+ ⎥
⎦

⎤
⎢
⎣

⎡
0

pB
pu∆ ,                             (6.21) 

[ ] ⎥
⎦

⎤
⎢
⎣

⎡∆
=∆

p

p
pp z

x
Cy 0 ,                                         (6.22) 



136 

 

Because in a precision positioning system, usually the positioning resolution is the most 

important specification, in order to reduce the steady-state errors in position, it is necessary to 

add only three pure integrators in those outputs. As a result, the augmented system should have 

nine states altogether. The elements of the A, B, and C matrix are calculated as follows: 
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It can be expected that in the steady state 1z , 2z , and 3z  will be zero, so ∆x, ∆y, and ∆r 

will become zero in the steady state. This will eliminate the steady state error in the previous 

LQR design. To emphasize the effect of integrators, the Q matrix is chosen as Q = diag ([104, 104, 

105, 1, 1, 1, 108, 108, 1010]). It is a fact from experiment that if the weight of integrators is not 

significant enough, the effect of integrator will be so small or even trivial that they cannot 

eliminate the steady-state errors. The R matrix is a 3 by 3 identity matrix. The corresponding 

gain matrix Kr is computed by Matlab as shown in Eq. (6.25). 
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The closed-loop poles are placed at −74.556 ± 119.95i, −16.808 ± 28.034i, and −19.047 

± 31.430i, 135.60, 31.912, and 35.685. The corresponding discrete-time gain matrix is shown in 

Eq. (6.26). After the implementation, the experiment results are presented in Fig. 6-3.  
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Compared with the experimental results shown in Fig. 6-1, the results with integrators 

augmented LQR controller have successfully eliminated the steady-state errors in the horizontal 

mode. Furthermore, the positioning noise is much lower than that in Fig. 6-1. Experimental 

experience shows that the more weights given to those displacement states, the smoother the 

steady state. However, if the weights are too large, the actuator may get saturated and the system 

may go unstable. Fig. 6-3 (d) shows the FFT of the system when it is under LQR control. It 

shows that there is no dominant noise frequency existing in the system. 
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Fig. 6-3  10-µm step response in (a) x, (b) y. 10-µrad step response in (c) r. (d) FFT of  (c) 
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6.2 Observer/State-Feedback Control in the Vertical Mode 

Eqs. (6.27) and (6.28) are the state-space model of the system in the vertical mode. 

Unlike the outputs in the horizontal mode, the outputs in the vertical mode are only 

displacements. In other words, the states in the vertical mode are not completely available. The 

implementation of state feedback requires the complete states. As a result, an observer is needed 

to reconstruct the unknown state variables. It is well known, if (A, B) is controllable and (A, C) is 

observable, it is possible to design an observer/state-feedback controller for the system.  An 

observer is itself a linear system whose task is to accept as inputs the original system’s (i. e., the 

plant’s) input and output signals, and produce as its output an estimate of the plant’s state vector. 

This state estimates asymptotically track the actual states.  In this way, the output of the observer, 

rather than the true state, can be used to compute state feedback. 
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Fig. 6-4 shows that the observer tracks the output of the plant and the output error drives 

the observer. It is possible to regard the observer as having the same basic structure as the plant, 

but with the additional input yy − : 
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,                                              (6.29) 

The dynamics of error between x and x̂ by estimating can be written as the following 

xxe ˆ−= ,                                                          (6.30) 

eLCAxxe )(ˆ −=−= ,                                               (6.31) 

 

BuAxx +=

)ˆ(ˆˆ yyLBuxAx −++= x̂ ŷ

 

Fig. 6-4  Structure of observer/state-feedback controller [96] 

 

Since (A, C) is observable, it is possible to design the gain matrix L in such a way that 

the eigenvalues of Eq. (6.31) can be placed in the left half plane. Therefore, the estimated states 

x̂ will asymptotically converge to the original states x. Thus x can be replaced by x̂ in the state 

feedback methodology xKu ˆ−= . The closed-loop dynamics of the system can be shown as 

following. 
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Matrices in (6.34) show the matrix manipulation process of the closed-loop A matrix in 

Eq. (6.32). The last matrix in (6.34) indicates that the eigenvalues of the composite system are 

the union of the eigenvalues of a system with matrix LCA − and those of a system with matrix. 

It means the control system can be designed by using the separation principle. It can be seen that 

if (A, B) is controllable and (A, C) is observable, by designing appropriate control gain matrix K 

and observer gain matrix L, the close-loop poles (eigenvalues) can be placed anywhere in the s 

plane such that some desired dynamic performance of the system is satisfied. Fortunately, the 

system is both controllable and observable, so it is possible to use above observer/state-feedback 

controller in the system. However, because the sensors can directly provide the value of 

displacement in the vertical direction to the controller, it will be inefficient to implement the full 

order (all states) observer into the system. Instead, if only the unknown states are estimated, it 

will make the structure of controller more compact and save much more computing time for the 

DSP.  The reduced-order observer can be derived as follows. 
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Here, the system states are divided into measurable states x1 and unknown states x2.  

Since the value of measurable states can be got directly from the outputs of the system, these 

states can be treated as known signals. So the Eq. (6.35) can be rewritten as: 
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Then, by defining those known signals as shown in Eq. (6.38), Eq. (6.37) can be rewritten in a 

form as shown in Eq. (6.39). 
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Eq. (6.39) can be regarded as a new system consisting of the unknown states. An 

observer for the unknown states then can be designed based on this new system. 

yLuxLAAxAyLuxAyyLuxAx ++−=−++=−++= 212222122222222 ˆ)()ˆ(ˆ)ˆ(ˆˆ ,   (6.40) 

It can be seen that y  is dependent on 1x  (which can be seen from Eq. (6.38)), and the value of 

1x cannot be directly obtained from the sensor. As a result, a change of variable 12ˆ Lxxz −=  is 

necessary to be introduced. If the state vector z instead of 2x̂  is used, the state equation for the 

observer in (6.39) will be simplified as: 

)(ˆ)(ˆ)(ˆ 11112122212122212 uBxALuxLAAxLyLuxLAAxLxz +−+−=−++−=−=  

     = uLBBxLAALLAAzLAA )()])[()( 121112112221222 −+−+−+− ,            (6.41) 

The state-feedback control law u = – k1x1 – k2 2x̂ , will be changed into: 

zkxLkkLxkzkxku 212112211 )( −+−=−−−= ,                          (6.42) 
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So the closed-loop dynamics of the new introduced system is presented in Eq. (6.43) and 

(6.44). It can be seen from Eq. (6.43) that the ordinary differential equation (ODE) of introduced 

state z consists of only x1 and z itself. Here, x1 is known (directly measured from sensors) and the 

coefficient constant matrix is also known, so z can be calculated by integration during each 

sampling time if the initial value of z is given. Once z is available, by applying the control law 

presented in Eq. (6.42), the dynamics of the system can be controlled to satisfy the desired 

requirements. By some mathematical manipulations, the A matrix in Eq. (6.43) can be changed 

into the following format: 
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B , and [ ]21 kkK = . The Eq. (6.45) demonstrated that 

the separation principle can be also used in the design of reduced order observer control system. 

So the controller gain K can be designed independently of the observer gain L. Furthermore, if 

(A, B) is controllable and (A22, A12) is observable, the eigenvalues of observer and controller can 

be placed anywhere by designing appropriate gain matrices. It can be noticed that there are no 

integrators in the controller and the plant, so there will be steady state error existing in the 

closed-loop system. Using the same methodology as that used in the LQR design, three 

integrators for the displacement can be introduced into the original system. The integrator 

augmented system in the vertical mode is shown in Eqs. (6.46) and (6.47). 



144 

 

 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

∆
∆
∆

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−−

+

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

∆
∆
∆

∆
∆
∆

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−

−

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

∆
∆
∆

∆
∆
∆

CD

BD

AD

i
i
i

w
q
p

z
z
z
t
s
z

w
q
p

z
z
z
t
s
z

0492.42094.40
474.51383.27383.27
410.3410.3410.3
000
000
000
000
000
000

00000046612000
00000003379400
00000000169205
000000100
000000010
000000001
100000000
010000000
001000000

6

5

4

6

5

4

, 

(6.46) 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

∆
∆
∆

∆
∆
∆

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=∆

w
q
p

z
z
z

t
s
z

y p

6

5

4

000000100
000000010
000000001

,                                    (6.47)  

Here, the integrator states (z4, z5, and z6) and the displacement states (∆z, ∆s, and ∆t)  are 

grouped together as the known states x1 and the other velocity states (∆p, ∆q, and ∆w) are 

grouped together as the unknown states x2. Therefore the A matrix in Eq. (6.46) can be divided 

into some sub-matrix as shown in Eqs. (6.48) and (6.49). The corresponding B1 and B2 are shown 

in Eq. (6.50).  
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It can be verified from the above matrices that (A, B) is stabilizable and (A11, A12) is 

detectable. In order to implement the controller into the system, the continuous time model 6.46 

is discretelized at the sampling frequency of 5 kHz using Matlab.  After that, the poles of 

controller are selected in the z domain as: 0.984, 0.97, 0.986, 0.976, 0.988, 0.99, 0.96, 0.962, and 

0.964. And the poles of observer are: 0.851, 0.852, and 0.855. When selecting the locations of 

poles, it would make little sense if the closed-loop plant eigenvalues are “faster” than the 

observer eigenvalues. If that were the case, the plant would “outrun” the observer. In order to 

make the observer states converge to the plant state faster than the plant states converge to zero, 

a workable rule of thumb is to place the observer eigenvalues two to five times farther left on the 

complex plane than the closed-loop plant eigenvalues [94]. That is the reason why the poles of 

observer and controller are selected as those values shown above. Based on those selected poles, 

the corresponding gain matrices are designed to be as follows. 
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Once the gain matrices K and L are available, the control law based on the delta system: 

∆u = – (k1 + k2L) x1 –k2z can be updated in each sampling period. x1 can be obtained from the 

sensors and integrators and z can be calculated from its ODE in Eq. (6.43). So the control inputs 

to the original system can be got from formula (6.14). Here, special attention must be paid to 

calculate control inputs u. The u* is a non-zero value in the vertical direction control which can 

be calculated using the Eq. (6.53). Plugging Eqs. (6.53) and (6.42) into Eq. (6.14), the final 

control law to the system is presented in Eq. (6.54). 

** )pinv( AXBu −= ,                                                     (6.53) 

*
2121 )pinv()( AXBzkxLkku −−+−= ,                                  (6.54) 

Where X* denotes the final values of the states in the vertical mode and “pinv” means 

pseudo-inverse of the B matrix. The initial values for calculating z and integrator states are set to 

be zero. After implementing the control law into the system, the step response of closed-loop 

system is shown in Fig. 6-5. Those step responses have slow rise and settling time. The main 

reason for that is the locations of poles in observer and controller were determined arbitrarily. 

Unlike the LQR method used before, the poles location are only determined to make the system 

stable. The nonlinearity of the dynamics of those air bearings are also counted as another reason 

for the dynamic performance in the vertical mode. 
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(d) 
Fig. 6-5  5-µm step response in (a) z, 10-µrad step response in (b) s, and (c) t. (d) FFT of  (c) 
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6.3 Linear Quadratic Gaussian (LQG) Control in the Vertical Mode  

LQG control methodology is a combined optimal state estimation and optimal state 

feedback control. Compared with the estimator/state feedback algorithm, LQG uses a Kalman 

filter as the state estimator and LQR design for the state feedback. So in the design of LQG 

control, two Riccati equations have to be solved. Due to its optimization in control effort, LQG 

control is widely used in multivariable control industry such as rocket maneuvering.   

There are two assumptions in LQG control design. First is that the plant dynamics is 

linear and known. Second is that the measurement noise and disturbance signals (process noise) 

are stochastic with known statistical properties [97]. That is, the plant model can be presented as 

follows. 

)()()()( tLtButAxtx ζ++= ,                             (6.55) 

)()()( ttCxty θ+= ,                      (6.56) 

Where, the A, B, L, and C are constant matrix. And ζ(t) is assumed to be the stationary, 

white Gaussian disturbance (process noise). It has the following properties. 

}{ 0)( =tE ζ ,                                         (6.57) 

Cov }{ )()(),( τδζζ −Ψ= ttt ,                                            (6.58) 

0>Ψ=Ψ T ,                                        (6.59) 

Similarly, θ(t) is also assumed to be stationary, white Gaussian noise coming from the 

measurement inputs. So its expectation and covariance have the following properties.  

}{ 0)( =tE θ ,                                     (5.60) 

Cov }{ )()(),( τδθθ −Θ= ttt ,                                          (5.61) 

0>Θ=Θ T ,                                                (5.62) 

Where E{·} is the expectation operator and δ (t−τ) is a delta function [98].  
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Furthermore, if (A, L) is controllable and (A, C) is observable, then a Kalman filter can 

be designed as the following equations. And the optimal choice of H, which 

minimizes { }]ˆ[]ˆ[ xxxxE T −− , is given by Eq. (6.64). 

)ˆ(ˆˆ xCyHBuxAx −++= ,                         (6.63) 

1−ΘΣ= TCH ,                                                       (6.64) 

Where Σ = ΣT ≥ 0 is the unique positive-semidefinite solution of a filter algebraic Ricatti 

equation (FARE): 

01 =ΣΘΣ−Ψ+Σ+Σ − CCLLAA TTT ,                       (6.65) 

  Then an LQ state feedback is implemented through the Kalman filter designed above, 

such that an optimal control law )(ˆ)( txKtu −=  (K is optimally determined by the control 

algebraic Ricatti equation) can be derived to minimize 

⎩
⎨
⎧

⎭
⎬
⎫+= ∫∞→

T TT

T
dtRuuQxx

T
EJ

0
][1lim ,          (6.66) 

PBRK T1−= ,                                                          (6.67) 

Similarly, the P is the unique positive-semidefinite solution of the control algebraic 

Riccati equation (CARE): 

01 =+−+ − QPBPBRPAPA TT ,                                          (6.68) 

Those equations further verified that the LQG control methodology is actually the 

combination of a Kalman filter and a LQR control law. The control structure of LQG is shown in 

Fig. 6-6 as following: 
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Fig. 6-6  Control structure of LQG controller [99] 

 

LQG is introduced into the control system design in the vertical direction for the 

expectation that the LQG algorithm can optimize the pole location both for the observer and for 

the controller to get a better dynamic performance in that direction. Because the Kalman filter is 

actually an optimal observer for the system, the same design methodology for reduced order 

observer can be applied to design a reduced order LQG controller as well. To eliminate the 

steady state error, three integrators are also needed to be implemented in the original plant whose 

dynamics are shown in Eqs. (6.46) and (6.47). Based on previous analysis, the LQG controller 

will be designed based on the subsystem which is shown through Eqs. (6.48) to (6.50). 

There are three inputs ∆iAD, ∆iBD, and ∆iCD and three outputs z, s, and t. Covariance of 

the noise in the output is experimentally determined to be on the order of 10-6 m2. Assume the 

noise disturbance came from each inputs is in the same order as that in output channels. So at the 

input and output ends, the input noise disturbance and output measurement noise can be 

characterized as following. 
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With those values, it is ready to design the LQG controller. It can be checked that (A, B) 

is stabilizable and (A11, A12) is detectable. So in the LQR state feedback controller design, the Q 

and R matrix can be selected as:   

Q = diag ([1e4 1e3 1e3 1e10 1e9 1e9 1e2 1e2 1e2]),                      (6.71) 
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R ,                          (6.72) 

From the designed Q matrix, it can be seen that those displacement states z, s, and t and 

integrator states z4, z5, z6 are penalized much more than those velocity states. The positioning 

resolution can be improved and steady-state error can be removed. To emphasize the importance 

of the integrators, their weights are chosen more than 5 times higher order than those of the 

displacement states. That is because the experimental data showed that if the weights of the 

integrators are very small the purpose of integrating will be dramatically reduced or even trivial. 

As a result, steady state error can not be efficiently removed. The gain matrix K of the digital 

LQR controller can be then designed by Matlab which is shown as following. 
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As it is discussed in Eq. (6.42), the sub gain matrix k1 and k2 can be extracted from K 

matrix as following:  
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Because the states of integrator can be obtained by integrating in each sampling period, 

these states are regarded as known states. Thus they are grouped together with these 

displacement states as known states and the dimension of k1 is 3 by 6 as shown in Eq. (6.74). 

With the noise covariance matrics determined in Eqs. (6.69) and (6.70), it is easy to use 

Matlab to design the Kalman filter. Caution must be paid in the design of reduced order Kalman 

filter that similar to the reduced order observer design, A22 and A12 should be used as the A and C 

matrices. The filter gain matrix H of the digital Kalman filter is presented as following: 
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⎡
=

995.0008.99370001.00001.0
0997.000001.09.99540001.0
00998.00001.00001.04.9977

H ,              (6.76) 

The control law to the original plant is shown in Eq. (6.77). Similarly, the introduced 

new states z can be updated by integrating its ODE equation in Eq. (6.43). The A and B matrices 

are the same matrices as shown in Eq. (6.46). And X* is the desired value of the outputs in the 

vertical mode.  

*
2121 )pinv()( AXBzkxHkku −−+−= ,                                     (6.77) 

The LQG implemented experimental step response is shown in Fig. 6-7. From those 

results, it can be seen that there are some vibrations in all the three vertical axes. This was 

because of the modeling error of the disturbance noise. And unlike the minor loop controller 

used in SISO control, the LQG controller can not modify the resonant dynamics of the positioner 

in the vertical mode. Thus those dynamics from the air bearings degraded the dynamic 

performance in the vertical mode. 
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Fig. 6-7  (a) 5-µm step response in z, 10-µrad step response in (b) θ and (c) φ with integrator 

augmented reduced order LQG controller, and (d) FFT of (a). 
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CHAPTER VII 

CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK 

In this final chapter, the contributions and achievements of this thesis are discussed. To 

make this prototype postioner have wider applications in precision engineering, several 

suggestions about the incremental improvements of this positioner are also given in this chapter. 

7.1 Conclusions 

A high-precision multi-dimensional positioning system consisting of a novel 

concentrated-field magnet matrix based on Halbach magnet arrays and a triangular single-

moving platen was designed, fabricated, assembled and tested. The actuators for the positioner 

are three 3-phase planar levitation motors, which exhibit no cogging force. Each of these 

actuators can generate vertical as well as lateral forces. This high precision multi-dimensional 

positioner can generate all the required small motions for optical focusing and alignments as well 

as large planar motions for wafer positioning. Since the positioner is levitated by three aerostatic 

bearings and the mass of the positioner is only 5.91 kg, the power consumption of the system is 

small. Furthermore, no lubrications are required for the system since there is no mechanical 

contact between the moving part and the stationary base plate. The positioning system generates 

zero wear particles, so the system is suitable for clean-room environment. Because no power 

transmission mechanism such as ball screws is used in the system, the positioning system has a 

fast dynamic response without any backlash. The system is controlled by a DSP. Therefore the 

positioning resolution of the system is primarily dependent on the fundamental limits of 

metrology and controls.   
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Compared with other positioning systems which have either crossed-axes structure or 

gantry configuration, this single-moving compact positioner has plenty of advantages for the 

high-precision motion-control applications. This compact moving system has a simpler 

mechanical structure which yields fast and simple dynamics. Thus the positioner developed in 

this thesis is a competitive candidate for the innovation in product throughput in industry.   

This thesis illustrated the whole design process of the high-precision multidimensional 

postioner from the electromagnetic concept to the final advanced control system design. In the 

mechatronics design part of the system, the thesis dealt with the fundamental design and 

fabrication considerations of the concentrated magnet matrix base plate and the novel 3-phase 

planar motors. The working principle of how the positioning system achieves 6-DOF motions 

was also fully illustrated. A comprehensive dynamics analysis of the system was included and 

both the decoupled dynamics model and the coupled dynamics model were derived in the thesis. 

The electrical system design includes anti-aliasing filter design, power amplifier design, and 

driving circuits design. 

This positioning system is controlled by a TMS320C40 DSP. The sampling rate of the 

system is 5 kHz. Digital lead-lag compensators were designed to control the horizontal motions 

with a bandwidth of 38 Hz. By implementing a controller in a minor feedback loop, the 

aerostatic-bearing resonance in the vertical axes was successfully reduced. This high precision 

multidimensional positioner was tested successfully. After being implemented these digital 

feedback controllers, the positioner achieved a position resolution of 20 nm with a position noise 

of 10 nm rms in both x and y, and a submicrometer resolution in other axes. The positioning 

error in tracking a 1-µm sinusoidal wave and a 5-µm radius circle was less than 30 nm rms, 

which demonstrated the positioner’s 1D and 2D nanoscale positioning capabilities. 
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The design process and experimental results of advanced multivariable control were 

fully explored in this thesis. A digital LQR controller was designed and implemented in the 

horizontal mode control. To reduce the steady-state error, integrators were also designed. 

Comparative experimental results demonstrated the LQR controller with integrators could 

achieve good dynamic performance, such as reducing the rise time and settling time, in 

horizontal mode without steady-state error. Both the input disturbance noise and output measure 

noise are analyzed and identified in the thesis.  To save the computation time for the DSP, a 

reduced-order digital LQG controller with integrators was designed and implemented. Compared 

to the traditional observer/state-feedback controller, the LQG controller successfully achieved a 

better dynamic performance and higher positioning resolution in the vertical mode. 

Several experiments were performed to evaluate the potential application of this 

positioner in semiconductor manufacturing. This prototype positioner has a planar travel range 

of 160 × 160 mm, which can be easily extended by adding more magnets to the magnet matrix. It 

currently exhibits 0.5-m/s maximum speed at an acceleration of 5 m/s2. The large arbitrary 

planar-motion generation capability of this positioning stage was demonstrated by following 

large 2D motion profiles such as a 4-cm-radius circle combined with a double triangle. These 

extended-range tracking capabilities make this prototype positioner qualified to be used as a 

wafer inspection stage. The 2-cm step-and-repeat motion with an acceleration of 4 m/s2 

generated by the positioner and the step-and-scan motion indicate that it has the potential to be 

used as a wafer stepper in semiconductor factory automation.    

In conclusion, this thesis presented a novel high precision multidimensional positioning 

system and successfully demonstrated its potential applications in precision engineering. The 

basic idea and control methodology in this thesis hopefully can be applied to any other future 

design and development of high-precision positioning systems.  
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7.2 Suggestions for Future Work 

In order to further improve the positioning resolution and dynamic performance of the 

positioner, several considerations in mechanical and electrical design should be taken in 

developing the next generation positioner. 

• Other materials such as ceramics can be better than Delrin for the platen in terms 

of the structural stiffness, which will have less deformation and can yield higher 

natural resonant frequency. 

• The measuring range of the laser distance sensor in the vertical axis should be 

significantly improved. Laser interferometer can be a good replacement for its 

higher resolution and longer measuring range. 

• The mechanical design of mirror and sensor mounts should be more elaborately 

developed. How to mount the stick mirrors parallel to the edge of the platen and 

to make the vertical sensors strictly perpendicular to the base plate are two of the 

most important issues in assembly. 

• System identification should be performed to be applied to further refine the 

dynamic model of the system due to the umbilical signal and power cables and 

stiff air pipes connected to the platen. 

 

 

 

.      
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APPENDIX B 

REAL-TIME CONTROL C CODES 

Lead-Lag Control Routine: 

#include "dsp.h"  

#include "math.h" 

void c_int01() 

{          

unsigned long D1reading; 

long ADreading; 

float z_mea; 

int i,j; 

tr_low(); 

D1reading=*(unsigned long *) AD_FIFO_D1; 

*(unsigned long int *) 0xb0300003=0x0041; 

     raw_x_pos=(*(long int *)0xb0300048 << 16) & 0xffff0000; 

     raw_y1_pos=(*(long int *)0xb0310048 << 16) & 0xffff0000;   

     raw_y2_pos=(*(long int *)0xb0320048 << 16) & 0xffff0000; 

     raw_x_vel=(*(long int *)0xb030004e << 16) & 0xffff0000; 

     raw_y1_vel=(*(long int *)0xb031004e << 16) & 0xffff0000; 

     raw_y2_vel=(*(long int *)0xb032004e << 16) & 0xffff0000; 

   

     tr_high(); 

     raw_x_pos|=((*(long int *)0xb0300048 >> 16) & 0x0000ffff);     

     raw_y1_pos|=((*(long int *)0xb0310048 >> 16) & 0x0000ffff);   

     raw_y2_pos|=((*(long int *)0xb0320048 >> 16) & 0x0000ffff);  

     raw_x_vel|=((*(long int *)0xb030004e >> 16) & 0x0000ffff); 

     raw_y1_vel|=((*(long int *)0xb031004e >> 16) & 0x0000ffff); 

     raw_y2_vel|=((*(long int *)0xb032004e >> 16) & 0x0000ffff); 

      

    x_pos=raw_x_pos*6.1815119987e-10;      
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    y1_pos=raw_y1_pos*6.1815119987e-10; 

    y2_pos=raw_y2_pos*6.1815119987e-10;   

     

x_vel=raw_x_vel*3.77292037e-7; 

y1_vel=raw_y1_vel*3.77292037e-7; 

y2_vel=raw_y2_vel*3.77292037e-7; 

      

tr_high();      

ADreading=(*(unsigned long int *)AD_FIFO_A1>>16) & 0xffff; 

If (ADreading & 0x8000) 

ADreading = ADreading | 0xffff0000;   

z_pos1=50e-6+ADreading*1.55389559450e-9;      /* 5/0x7fff*1.018e-5=1.55389559450e-9 */ 

z_pos1 = z_pos1-z_pos10; 

v1=ADreading*1.5259254737998596148564104129154e-4;  /*voltage*/ 

 

ADreading=((*(unsigned long int *)AD_FIFO_B1>>16) & 0xffff);     

if(ADreading & 0x8000) 

ADreading = ADreading | 0xffff0000;     

z_pos2=50e-6+ADreading*1.52898344068e-9;      /* 5/0x7fff*1.002e-5=1.52898344068e-9*/ 

z_pos2 = z_pos2-z_pos20; 

v2=ADreading*1.5259254737998596148564104129154e-4; /*voltage*/  

 

ADreading=((*(unsigned long int *)AD_FIFO_C1>>16) & 0xffff);     

if(ADreading & 0x8000) 

ADreading = ADreading | 0xffff0000;  

z_pos3=50e-6+ADreading*1.53823132440e-9;      /* 5/0x7fff*5e-5=? */   

z_pos3 = z_pos3-z_pos30; 

v3=ADreading*1.5259254737998596148564104129154e-4; /*voltage output--+-3.8v out of 

range*/ 

tr_low(); 

   

yr=y1_pos;  
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xr=0.5773502692*y1_pos+1.1547005384*x_pos;  

zr=0.3015*z_pos1+0.2889*z_pos2+0.4097*z_pos3;  

rr=18.532*y2_pos;          /*17.8571 18.532*/ 

sr=z_pos1*-2.4097+z_pos2*4.6+z_pos3*-2.1903;  

tr=z_pos1*-3.9455+z_pos2*0.1274+z_pos3*3.8182; 

 

ur=y1_vel;                                      /*velocity*/ 

hr=0.5773502692*y1_vel+1.1547005384*x_vel; 

vr=18.532*y2_vel; 

cos_x=cos(123.25*xr); 

cos_y=cos(123.25*yr); 

sin_x=sin(123.25*xr); 

sin_y=sin(123.25*yr); 

 

if(demo_enable==1) 

{          

    t+=0.0002; 

    switch(time_count) 

    { 

       case 1:  

       { 

        if(yr>=3e-2) 

         demo_enable=0;  

        if(t>=0.0004) 

         { 

           t=0; 

         /*  yc+=2e-6;*/ 

          yc+=2e-6; 

           xc=0; 

         }   

         break; 

       } 
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       case -1: 

       { 

        if(yr<=-11e-2) 

         demo_enable=0; 

        if(t>=0.0002) 

         { 

           t=0; 

           yc-=1e-6; 

           xc=0.0; /*1.154700538e-6;*/ 

         } 

         break;  

       } 

       case 2: 

       { 

        if(xr<=-11e-2)       /*-11e*/ 

         demo_enable=0; 

        if(t>=0.0004) 

         { 

           t=0; 

         /*  yc-=1e-6;*/ 

           xc-=2e-6; 

         } 

         break;  

       } 

       case -2: 

       { 

        if(xr>=3e-2) 

         demo_enable=0; 

        if(t>=0.0004) 

         { 

           t=0; 

          /* yc=0;*/ 
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           xc+=2e-6; 

         } 

         break;  

       }   

       case 3: 

       {  

       if(step>6.28) 

        demo_enable=0;           

       if(t>=0.0004) 

        { 

         t=0; 

         step+=2e-4; 

         if(step<6.28) 

         { 

          xc=-3e-2*(1-cos(step)); 

          yc=3e-2*sin(step); 

         }  

        } 

        break;  

       }    

       case 4: 

       { 

        if(xr<=0) 

         demo_enable=0; 

        if(t>=0.0004) 

         { 

           t=0; 

          /* yc=0;*/ 

           xc-=2e-6; 

         } 

         break;  

       } 
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        case -5: 

       { 

        if(t>3) 

         { 

          demo_enable=0; 

         }     

        if(t<=0.1) yc=0.03-2.5*t*t; 

        else if(t>0.1&&t<=0.28) yc=0.005-0.5*(t-0.1); 

        else if(t>0.28&&t<=0.38) yc=-0.085-0.5*(t-0.28)+2.5*(t-0.28)*(t-0.28);   

/*        if(t<=0.1) yc=0.03-3*t*t; 

        else if(t>0.1&&t<=0.22) yc=-0.6*(t-0.1); 

        else if(t>0.22&&t<=0.32) yc=-0.072-0.6*(t-0.22)+3*(t-0.22)*(t-0.22); */   

 /*       if(t<=0.1) yc=0.03-3.5*t*t; 

        else if(t>0.1&&t<=0.2) yc=-0.005-0.7*(t-0.1); 

        else if(t>0.2&&t<=0.3) yc=-0.075-0.7*(t-0.2)+3.5*(t-0.2)*(t-0.2);   

       if(t<=0.2) yc=0.03-1*t*t; 

        else if(t>0.2&&t<=0.35) yc=-0.01-0.4*(t-0.2); 

        else if(t>0.35&&t<=0.55) yc=-0.07-0.4*(t-0.35)+(t-0.35)*(t-0.35);*/  

        break;  

       } 

        case 5: 

       { 

        if(t>3) 

         { 

          demo_enable=0; 

         }  

        if(t<=0.02) yc=0.5*t*t; 

        else if(t>0.02&&t<=1.5) yc=0.0002+0.02*(t-0.02); 

        else if(t>1.5&&t<=1.52) yc=0.0298+0.02*(t-1.5)-0.5*(t-1.5)*(t-1.5); 

       /* if(t<=0.1) yc=1*t*t; 

        if(t>0.1&&t<0.2) yc=0.01+0.3*(t-0.1);*/  

        break;  
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       }  

         case 6: 

       { 

        if(t>3) 

         { 

          demo_enable=0; 

         }  

/*        if(t<=0.1) xc=0.03-t*t; 

        else if(t>0.1&&t<=0.5) xc=0.02-0.2*(t-0.1); 

        else if(t>0.5&&t<=0.6) xc=-0.06-0.2*(t-0.5)+(t-0.5)*(t-0.5);      

        if(t<=0.1) xc=0.03-2*t*t; 

        else if(t>0.1&&t<=0.25) xc=0.01-0.4*(t-0.1); 

        else if(t>0.25&&t<=0.35) xc=-0.05-0.4*(t-0.25)+2*(t-0.25)*(t-0.25); 4 m/s*s */ 

        if(t<=0.1) xc=0.03-1.5*t*t; 

        else if(t>0.1&&t<=0.3) xc=0.015-0.3*(t-0.1); 

        else if(t>0.3&&t<=0.4) xc=-0.045-0.3*(t-0.3)+1.5*(t-0.3)*(t-0.3); 

        break;  

       }  

       case 7:  

       { 

        if(t>0.02&&t<=15) 

         { 

           xc-=1e-6;  

         }     

        if(t>17.02&&t<=32) 

         { 

          xc+=1e-6; 

          yc-=1e-6; 

         }       

        if(t>34.02&&t<=49) 

         { 

          xc-=1e-6; 
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         } 

        if(t>51.02&&t<=66) 

         { 

          xc+=1e-6; 

          yc+=1e-6; 

         }  

        if(t>66) 

         { 

          demo_enable=0;  

          t=0; 

         }  

         break; 

       }    

       case 8:  

       { 

         if(t>5) 

         { 

/*          demo_enable=0; */ 

          t=0; 

         }  

/*        if(t<=0.2) yc=-0.11+0.5*t*t; 

        else if(t>0.2&&t<=0.7) yc=-0.09+0.2*(t-0.2); 

        else if(t>0.7&&t<=0.9) yc=0.01+0.2*(t-0.7)-0.5*(t-0.7)*(t-0.7); 

         

        else if(t>2&&t<=2.2) yc=0.03-0.5*(t-2)*(t-2); 

        else if(t>2.2&&t<=2.7) yc=0.01-0.2*(t-2.2); 

        else if(t>2.7&&t<=2.9) yc=-0.09-0.2*(t-2.7)+0.5*(t-2.7)*(t-2.7); */  

         

        if(t<=0.1) yc=0.03-2.5*t*t; 

        else if(t>0.1&&t<=0.28) yc=0.005-0.5*(t-0.1); 

        else if(t>0.28&&t<=0.38) yc=-0.085-0.5*(t-0.28)+2.5*(t-0.28)*(t-0.28); 
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        else if(t>1&&t<=1.1) yc=-0.11+2.5*(t-1)*(t-1); 

        else if(t>1.1&&t<=1.28) yc=-0.085+0.5*(t-1.1); 

        else if(t>1.28&&t<=1.38) yc=0.005+0.5*(t-1.28)-2.5*(t-1.28)*(t-1.28); 

                   

        break; 

       }          

 }   

} 

                  

/* controller */ 

if (controller_flag == 1) 

{ 

er0x=xc-xr; 

er0y=yc-yr;   

er0r=rc-rr; 

 

/*u0x=1.68592*u1x-0.68592*u2x+2226100*(er0x-1.95924*er1x+0.95938*er2x);*/ 

/*u0x=1.753*u1x-0.753*u2x+2630000*(er0x-1.987*er1x+0.987*er2x);*/  /*good*/  

/*u0x=1.488*u1x-0.488*u2x+4000000*(er0x-1.995*er1x+0.995*er2x);*/ 

/*u0x=1.868*u1x-0.868*u2x+744000*(er0x-1.993*er1x+0.99302*er2x);*/     /*ok 25hz*/  

u0x=1.797*u1x-0.797*u2x+740000*(er0x-1.9882*er1x+0.98822*er2x);   /*21hz,pm=50*/  

/*u0x=1.683*u1x-0.683*u2x+2320000*(er0x-1.993*er1x+0.993*er2x);*/  

/*u0y=1.68592*u1y-0.68592*u2y+2226100*(er0y-1.95924*er1y+0.95938*er2y);*/ 

/*u0y=1.753*u1y-0.753*u2y+2630000*(er0y-1.987*er1y+0.987*er2y);*/ 

/*u0y=1.868*u1y-0.868*u2y+744000*(er0y-1.993*er1y+0.993*er2y);*/    /*ok 25hz*/ 

u0y=1.797*u1y-0.797*u2y+740000*(er0y-1.9882*er1y+0.98822*er2y); /*21hz,pm=50*/ 

/*u0r=1.68592*u1r-0.68592*u2r+39809*(er0r-1.95924*er1r+0.95938*er2r); */ 

/*u0r=1.753*u1r-0.753*u2r+24300*(er0r-1.987*er1r+0.987*er2r);*/         

/*u0r=1.7530*u1r-0.7530*u2r+24200*(er0r-1.986*er1r+0.986024*er2r); /*good 56hz*/ 

/*u0r=1.7977*u1r-0.7977*u2r+18688*(er0r-1.9749*er1r+0.9749*er2r);*/   /*ok*/ 

/*u0r=1.607*u1r-0.607*u2r+58900*(er0r-1.986*er1r+0.9860*er2r);*/ 

u0r=1.797*u1r-0.797*u2r+13062.95*(er0r-1.9882*er1r+0.98822*er2r); /*38hz,pm=62 good!!*/ 
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/*u0r=1.86781*u1r-0.86781*u2r+5910*(er0r-1.99106*er1r+0.99107*er2r); /*26hz,pm=60.4*/ 

/*u0r=1.5156*u1r-0.5156*u2r+15929.83*(er0r-1.9882*er1r+0.9882*er2r); /*21hz,pm=61.8*/ 

/*u0r=1.5156*u1r-0.5156*u2r+13300*(er0r-1.9757*er1r+0.9757*er2r);*/       /*21hz,pm=45*/ 

 

/*fA=-0.8477*u0x+0.5*u0y-10.01*u0r;             /*0.1 -0.8477*u0x 0.7477*/ 

/*fB=0.8477*u0x+0.5*u0y+10.01*u0r;              /*-0.1 0.8477*u0x -0.7477*/ 

/*fC=u0x;*/      

fA=-0.82273*u0x+0.51452*u0y-9.75956*u0r;           /*-0.82273*/   

fB=0.82273*u0x+0.48548*u0y+9.75956*u0r;               

fC=u0x; 

/*fA=0; 

fB=0; 

fC=0;*/ 

 

if(z_control==33) 

{  

er0z=zc-zr; 

er0s=sc-sr; 

er0t=tc-tr;  

z0er=zc-zr; 

z0r=zr; 

z0cer=z1cer+10000*z0er; 

z0cr=0.8187*z1cr+3000000*(z0r-z1r);              /*2.5e6 almost good*/ 

u0z=z0cer-z0cr; 

  

s0er=sc-sr; 

s0r=sr; 

s0cer=s1cer+100*s0er; 

s0cr=0.8465*s1cr+10830*(s0r-s1r);              /*10830 is good*/ 

u0s=s0cer-s0cr-0.022*u0y;     /*-0.022*u0y*/ 

  

t0er=tc-tr; 
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t0r=tr; 

t0cer=t1cer+100*t0er; 

t0cr=0.8465*t1cr+10830*(t0r-t1r);              /*10830 is good*/ 

u0t=t0cer-t0cr+0.022*u0x;     /*+0.022*u0x*/ 

  

/*u0z=1.797*u1z-0.797*u2z+740000*(er0z-1.9882*er1z+0.9882*er2z);*/    /*740000*/ 

/*u0z=1.6827*u1z-0.6827*u2z+650000*(er0z-1.992800*er1z+0.992811*er2z); very slow*/ 

/*u0z=1.6037*u1z-0.6037*u2z+4360000*(er0z-1.9875*er1z+0.98752*er2z);    /*less than 5s*/ 

/*u0z=1.6041*u1z-0.6041*u2z+17400000*(er0z-1.9875*er1z+0.98752*er2z); doesn't work! 

frequency is too high!*/ 

/*u0s=1.6859*u1s-0.6859*u2s+7000*(er0s-1.9654*er1s+0.965517*er2s);   

/*u0s=1.6827*u1s-0.6827*u2s+12300*(er0s-1.9928*er1s+0.99281*er2s); /*bad*/ 

/*u0t=1.6859*u1t-0.6859*u2t+7000*(er0t-1.9654*er1t+0.965517*er2t);   

/*u0t=1.6827*u1t-0.6827*u2t+14860.16*(er0t-1.9928*er1t+0.99281*er2t); bad*/ 

/*u0t=0.1;*/ 

/*u0s=0;  

u0t=0;  */ 

 

/*u0s=-0.022*(fA+fB); 

u0t=-0.022*fC;*/ 

/*u0z=0; */ 

/*u0t=0.022*u0x;*/ 

/*u0z=0;*/  

/*u0z=0;  

u0s=0;*/ 

 

/*fZA=0.32637*u0z-3.87159*u0s+10.01*u0t; 

fZB=0.32637*u0z-3.87159*u0s-10.01*u0t; 

fZC=0.34726*u0z+7.74317*u0s;*/  

 

fZA=0.34024*u0z-3.88602*u0s+9.75956*u0t; 

fZB=0.31251*u0z-3.85715*u0s-9.75956*u0t; 
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fZC=0.34725*u0z+7.74316*u0s; 

/*fZA=-2; 

fZB=-2;*/ 

/*fZC=1;*/      

i_Ad=fZA*f2ih;       /*-2 0.079116*/ 

i_Bd=fZB*f2ih; 

i_Cd=fZC*f2ih; 

} 

if(z_control==0) 

{ 

  

i_Ad=0;       /*-2 0.079116*/ 

i_Bd=0; 

i_Cd=0; 

}      

 

i_Aq=fA*f2ih; 

i_Bq=fB*f2ih; 

i_Cq=fC*f2ih; 

 

i_Aa=cos_y*i_Aq-sin_y*i_Ad; 

i_Ba=cos_y*i_Bq-sin_y*i_Bd; 

i_Ca=cos_x*i_Cq-sin_x*i_Cd; 

i_Ab=sin_y*i_Aq+cos_y*i_Ad; 

i_Bb=sin_y*i_Bq+cos_y*i_Bd; 

i_Cb=sin_x*i_Cq+cos_x*i_Cd;  

 

 

 

current_A[0][0]=i_Aa; 

current_A[1][0]=0.5*i_Aa+0.8660254037844*i_Ab; 

current_A[2][0]=-0.5*i_Aa+0.8660254037844*i_Ab; 
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current_B[0][0]=i_Ba; 

current_B[1][0]=0.5*i_Ba+0.8660254037844*i_Bb; 

current_B[2][0]=-0.5*i_Ba+0.8660254037844*i_Bb; 

current_C[0][0]=i_Ca; 

current_C[1][0]=0.5*i_Ca+0.8660254037844*i_Cb; 

current_C[2][0]=-0.5*i_Ca+0.8660254037844*i_Cb; 

 

for(j=0;j<3;j++) 

{ 

 v[0][j]=0x800+0xfff*current_A[j][0]/(-2.6); /*(20*0.13)*/ 

 v[1][j]=0x800+0xfff*current_B[j][0]/(-2.6); 

 v[2][j]=0x800+0xfff*current_C[j][0]/(-2.6); 

} 

} 

 tr_low();                                    

if(flag_d2a==1) 

{  

for(i=2;i>=0;i--)         /*i=0;i<3;i++*/ 

 for(j=0;j<3;j++) 

  *(unsigned int *) DAC_DATA_Reg=v[i][j]; 

for(i=0;i<7;i++) 

 *(unsigned int *) DAC_DATA_Reg=0x800; 

}         

if ((snap_begin==1)&&(snap_enable=1)) 

{  

int_count++; 

} 

z1cer=z0cer; 

z1r=z0r; 

z1cr=z0cr;  

s1cer=s0cer; 

s1r=s0r; 
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s1cr=s0cr; 

t1cer=t0cer; 

t1r=t0r; 

t1cr=t0cr; 

u2z=u1z; 

u1z=u0z; 

er2z=er1z; 

er1z=er0z; 

u2s=u1s; 

u1s=u0s; 

er2s=er1s; 

er1s=er0s; 

u2t=u1t; 

u1t=u0t; 

er2t=er1t; 

er1t=er0t; 

u2x=u1x; 

u1x=u0x; 

er2x=er1x; 

er1x=er0x; 

u2y=u1y; 

u1y=u0y; 

er2y=er1y; 

er1y=er0y;  

u2r=u1r; 

u1r=u0r; 

er2r=er1r; 

er1r=er0r; 

display=1; 

MX_Int_Clr= 0x20000029; 

*(unsigned int *)MX_Int_Clr=0x0; 

} 
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LQR, LQG Control Routine: 

#include "dsp.h"  

#include "math.h" 

 

void c_int01() 

{          

unsigned long D1reading; 

long ADreading; 

float z_mea; 

int i,j; 

 

tr_low(); 

D1reading=*(unsigned long *)AD_FIFO_D1; 

*(unsigned long int *)0xb0300003=0x0041; 

     raw_x_pos=(*(long int *)0xb0300048 << 16) & 0xffff0000; 

     raw_y1_pos=(*(long int *)0xb0310048 << 16) & 0xffff0000;   

     raw_y2_pos=(*(long int *)0xb0320048 << 16) & 0xffff0000; 

      

     raw_x_vel=(*(long int *)0xb030004e << 16) & 0xffff0000; 

     raw_y1_vel=(*(long int *)0xb031004e << 16) & 0xffff0000; 

     raw_y2_vel=(*(long int *)0xb032004e << 16) & 0xffff0000; 

   

     tr_high(); 

     raw_x_pos|=((*(long int *)0xb0300048 >> 16) & 0x0000ffff);     

     raw_y1_pos|=((*(long int *)0xb0310048 >> 16) & 0x0000ffff);   

     raw_y2_pos|=((*(long int *)0xb0320048 >> 16) & 0x0000ffff);  

      

     raw_x_vel|=((*(long int *)0xb030004e >> 16) & 0x0000ffff); 

     raw_y1_vel|=((*(long int *)0xb031004e >> 16) & 0x0000ffff); 

     raw_y2_vel|=((*(long int *)0xb032004e >> 16) & 0x0000ffff); 

      

    x_pos=raw_x_pos*6.1815119987e-10;      
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    y1_pos=raw_y1_pos*6.1815119987e-10; 

    y2_pos=raw_y2_pos*6.1815119987e-10;   

     

    x_vel=raw_x_vel*3.77292037e-7; 

 y1_vel=raw_y1_vel*3.77292037e-7; 

    y2_vel=raw_y2_vel*3.77292037e-7; 

      

tr_high();      

ADreading=(*(unsigned long int *)AD_FIFO_A1>>16) & 0xffff; 

if(ADreading & 0x8000) 

ADreading = ADreading | 0xffff0000;   

z_pos1=50e-6+ADreading*1.55389559450e-9;      /* 5/0x7fff*1.018e-5=1.55389559450e-9 */ 

                                /*5/0x7fff=1.5259254737998596148564104129154e-4*/   

z_pos1 = z_pos1-z_pos10; 

v1=ADreading*1.5259254737998596148564104129154e-4;  /*voltage*/ 

 

ADreading=((*(unsigned long int *)AD_FIFO_B1>>16) & 0xffff);     

if(ADreading & 0x8000) 

ADreading = ADreading | 0xffff0000;     

z_pos2=50e-6+ADreading*1.52898344068e-9;      /* 5/0x7fff*1.002e-5=1.52898344068e-9*/ 

z_pos2 = z_pos2-z_pos20; 

v2=ADreading*1.5259254737998596148564104129154e-4; /*voltage*/  

 

ADreading=((*(unsigned long int *)AD_FIFO_C1>>16) & 0xffff);     

if(ADreading & 0x8000) 

ADreading = ADreading | 0xffff0000;  

z_pos3=50e-6+ADreading*1.53823132440e-9;      /* 5/0x7fff*5e-5=? */   

z_pos3 = z_pos3-z_pos30; 

v3=ADreading*1.5259254737998596148564104129154e-4; /*voltage output--+-3.8v out of 

range*/ 

tr_low(); 
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yr=y1_pos;  

xr=0.5773502692*y1_pos+1.1547005384*x_pos;  

zr=0.3015*z_pos1+0.2889*z_pos2+0.4097*z_pos3;  

 

 

rr=18.532*y2_pos;          /*17.8571 18.532*/ 

sr=z_pos1*-2.4097+z_pos2*4.6+z_pos3*-2.1903;  

tr=z_pos1*-3.9455+z_pos2*0.1274+z_pos3*3.8182; 

 

 

ur=y1_vel;                                      /*velocity*/ 

hr=0.5773502692*y1_vel+1.1547005384*x_vel; 

vr=18.532*y2_vel; 

 

cos_x=cos(123.25*xr); 

cos_y=cos(123.25*yr); 

sin_x=sin(123.25*xr); 

sin_y=sin(123.25*yr); 

 

/* controller */ 

if (controller_flag == 1) 

 

{ 

er0x=-xc+xr; 

er0y=-yc+yr;   

er0r=-rc+rr;     

u0x=u1x+0.0002*er0x; 

u0y=u1y+0.0002*er0y; 

u0r=u1r+0.0002*er0r; 

 

 

if(z_control==33) 
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{  

er0z=-zc+zr; 

er0s=-sc+sr; 

er0t=-tc+tr;             

ier1z=ier0z+0.0002*er0z; 

ier1s=ier0s+0.0002*er0s; 

ier1t=ier0t+0.0002*er0t;   

 

p1_est=-1.5358e+002*er0z +8.6627e+000*er0s -1.5145e+000*er0t -2.3202e+002*ier0z 

+1.1741e+002*ier0s -9.6360e+000*ier0t +7.9323e-001*p0_est +9.0292e-003*q0_est -1.6885e-

003*w0_est; 

q1_est= 8.5637e+000*er0z -1.5590e+002*er0s +7.2816e-001*er0t +1.1242e+002*ier0z -

2.6866e+002*ier0s +3.2960e+000*ier0t +8.9410e-003*p0_est +7.9061e-001*q0_est +7.8903e-

004*w0_est; 

w1_est=-1.9017e+000*er0z +2.3896e+000*er0s -1.5510e+002*er0t -1.8611e+001*ier0z 

+3.0098e+001*ier0s -2.7013e+002*ier0t -2.0414e-003*p0_est +2.4911e-003*q0_est +7.9005e-

001*w0_est; 

 

i_Ad=-1.0716e+004*er0z +4.3482e+003*er0s +1.5028e+003*er0t -1.2830e+005*ier0z 

+7.3730e+004*ier0s -2.2873e+004*ier0t -3.3231e+001*p0_est +7.1149e+000*q0_est -

4.9051e+000*w0_est; 

i_Bd=-9.8701e+003*er0z +3.7995e+003*er0s -3.1148e+003*er0t -1.1870e+005*ier0z 

+6.5749e+004*ier0s +1.2708e+004*ier0t -3.1097e+001*p0_est +6.3973e+000*q0_est 

+3.1094e+000*w0_est; 

i_Cd=-1.0054e+004*er0z +5.5414e+003*er0s -7.8126e+002*er0t -1.1962e+005*ier0z 

+4.6052e+004*ier0s -5.0623e+003*ier0t -3.3285e+001*p0_est +7.5616e-001*q0_est -8.7256e-

001*w0_est; 

 

i_Ad=i_Ad+1.6667e+004*zc -2.2049e+003*sc +5.6441e+003*tc;   

i_Bd=i_Bd+1.5727e+004*zc -2.0805e+003*sc -5.6441e+003*tc;  

i_Cd=i_Cd+1.7233e+004*zc +4.2854e+003*sc -1.6315e-012*tc;  

} 
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if(z_control==0) 

{ 

  

i_Ad=0;       /*-2 0.079116*/ 

i_Bd=0; 

i_Cd=0; 

}      

 

 

i_Aq=-0.000*er0x-406.615*er0y+999.400*er0r-0.0000*hr-11.092*ur+7.179*vr-0.00026*u0x-

7216.238*u0y+66741.495*u0r; 

i_Bq=0.000*er0x-383.792*er0y-1054.923*er0r+0.0000*hr-10.467*ur-7.494*vr-0.00026*u0x-

6816.245*u0y-70654.791*u0r; 

i_Cq=-624.896*er0x-0.0000*er0y+0.0000*er0r-19.156*hr-0.0000*ur+0.0000*vr-

9934.686*u0x+0.00038*u0y+0.00013*u0r; /*Q=diag(1e4 1e4 1e5 1 1 1 1e8 1e8 1e10)*/ 

                             

i_Aa=cos_y*i_Aq-sin_y*i_Ad; 

i_Ba=cos_y*i_Bq-sin_y*i_Bd; 

i_Ca=cos_x*i_Cq-sin_x*i_Cd; 

i_Ab=sin_y*i_Aq+cos_y*i_Ad; 

i_Bb=sin_y*i_Bq+cos_y*i_Bd; 

i_Cb=sin_x*i_Cq+cos_x*i_Cd;  

 

 

 

current_A[0][0]=i_Aa; 

current_A[1][0]=0.5*i_Aa+0.8660254037844*i_Ab; 

current_A[2][0]=-0.5*i_Aa+0.8660254037844*i_Ab; 

current_B[0][0]=i_Ba; 

current_B[1][0]=0.5*i_Ba+0.8660254037844*i_Bb; 

current_B[2][0]=-0.5*i_Ba+0.8660254037844*i_Bb; 

current_C[0][0]=i_Ca; 
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current_C[1][0]=0.5*i_Ca+0.8660254037844*i_Cb; 

current_C[2][0]=-0.5*i_Ca+0.8660254037844*i_Cb; 

 

for(j=0;j<3;j++) 

{ 

 v[0][j]=0x800+0xfff*current_A[j][0]/(-2.6); /*(20*0.13)*/ 

 v[1][j]=0x800+0xfff*current_B[j][0]/(-2.6); 

 v[2][j]=0x800+0xfff*current_C[j][0]/(-2.6); 

} 

} 

tr_low();                                    

  

if(flag_d2a==1) 

{  

for(i=2;i>=0;i--)         /*i=0;i<3;i++*/ 

 for(j=0;j<3;j++) 

  *(unsigned int *) DAC_DATA_Reg=v[i][j]; 

for(i=0;i<7;i++) 

 *(unsigned int *) DAC_DATA_Reg=0x800; 

}         

 

 

if ((snap_begin==1)&&(snap_enable=1)) 

{  

int_count++; 

} 

   

er0z_est=er1z_est; 

er0s_est=er1s_est; 

er0t_est=er1t_est; 

p0_est=p1_est; 

q0_est=q1_est; 
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w0_est=w1_est;  

ier0z=ier1z; 

ier0s=ier1s; 

ier0t=ier1t; 

   

u2z=u1z; 

u1z=u0z; 

er2z=er1z; 

er1z=er0z; 

u2s=u1s; 

u1s=u0s; 

er2s=er1s; 

er1s=er0s; 

u2t=u1t; 

u1t=u0t; 

er2t=er1t; 

er1t=er0t; 

 

u2x=u1x; 

u1x=u0x; 

er2x=er1x; 

er1x=er0x; 

 

u2y=u1y; 

u1y=u0y; 

er2y=er1y; 

er1y=er0y;  

 

u2r=u1r; 

u1r=u0r; 

er2r=er1r; 

er1r=er0r; 
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display=1; 

MX_Int_Clr= 0x20000029; 

*(unsigned int *)MX_Int_Clr=0x0; 

} 
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APPENDIX C 

MATLAB CODES 

LQR Design: 

%integrator+lqr for horizontal plane 

clear all; 

A=[0 0 0 1 0 0 0 0 0; 

   0 0 0 0 1 0 0 0 0; 

   0 0 0 0 0 1 0 0 0; 

   0 0 0 0 0 0 0 0 0; 

   0 0 0 0 0 0 0 0 0; 

   0 0 0 0 0 0 0 0 0; 

   1 0 0 0 0 0 0 0 0; 

   0 1 0 0 0 0 0 0 0; 

   0 0 1 0 0 0 0 0 0;] 

B=[0 0 0; 

   0 0 0; 

   0 0 0; 

   0 0 3.4095; 

   3.4095 3.4095 0; 

   -18.5621 19.6720 0; 

   0 0 0; 

   0 0 0; 

   0 0 0;] 

C=[1 0 0 0 0 0 0 0 0; 

   0 1 0 0 0 0 0 0 0; 

   0 0 1 0 0 0 0 0 0]; 

co=ctrb(A,B); 

unco=length(A)-rank(co) 

 

Q=diag([1e4,1e4,1e5,1,1,1,1e8,1e8,1e10]); %1e4,1e5 
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R=diag([1,1,1]); 

x0=[-10e-6;-20e-6;-30e-6;0;0;0;0;0;0]; 

yd=[10e-6;20e-6;10e-6]; 

[k,s,e]=LQR(A,B,Q,R); 

k 

[kd,sd,ed]=lqrd(A,B,Q,R,0.0002); 

kd 

A_c=A-B*k; 

sys_c=ss(A_c,[],C,[]); 

[y,t,x]=initial(sys_c,x0); 

y=ones(size(y))*diag(yd)+y; 

figure(1);plot(t,y); 

 

LQG Design: 

clear all; 

m=5.91; 

Ixx=0.033; 

Iyy=0.025; 

kz=1e6; 

ks=11152; 

kt=11653; 

lay=0.0448462; 

lby=0.0448462; 

lcy=0.0843; 

lax=0.0497445; 

lbx=0.0527191; 

lcx=0.0012968; 

lcx=0; 

con=20.15; 

 

A_c=[0      0       0       0       0       0       1       0       0; 
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     0      0       0       0       0       0       0       1       0; 

     0      0       0       0       0       0       0       0       1; 

     1      0       0       0       0       0       0       0       0; 

     0      1       0       0       0       0       0       0       0; 

     0      0       1       0       0       0       0       0       0; 

     -kz/m  0       0       0       0       0       0       0       0; 

     0  -ks/Ixx     0       0       0       0       0       0       0; 

     0       0   -kt/Iyy    0       0       0       0       0       0;]; 

B_c=[0                      0                      0; 

     0                      0                      0; 

     0                      0                      0; 

     0                      0                      0; 

     0                      0                      0; 

     0                      0                      0; 

     con/m               con/m                   con/m; 

    -con*lay/Ixx        -con*lby/Ixx            con*lcy/Ixx; 

     con*lax/Iyy        -con*lbx/Iyy               0]; 

 

C_c=[1 0 0 0 0 0 0 0 0; 

     0 1 0 0 0 0 0 0 0; 

     0 0 1 0 0 0 0 0 0]; 

  

%Q=diag([1e4 1e3 1e3 1e11 1e9 1e9 1e2 1e2 1e2]); %xyz24-*.13 

%Q=diag([1e4 1e3 1e3 1e15 1e8 1e8 1e2 1e2 1e2]); %unstable 

Q=diag([1e4 1e3 1e3 1e10 1e9 1e10 1e2 1e1 2e1]);%IMECE2004 xyz29-*.25 

%Q=diag([1e4 1e3 1e3 1e10 1e9 1e9 1e2 1e2 1e2]); 

R=eye(3); 

 

psi=1e-6; 

thida=1e-6*eye(6); 

L=[1 1 1]'; 
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sys_c=ss(A_c,B_c,C_c,0); 

sys_d=c2d(sys_c,0.0002); 

[A_d,B_d,C_d,D_d,E_d,Ts]=dssdata(sys_d); 

 

A11=A_d(1:6,1:6); A12=A_d(1:6,7:9); A21=A_d(7:9,1:6); A22=A_d(7:9,7:9); 

B1=B_d(1:6,1:3);B2=B_d(7:9,1:3); 

 

ob=obsv(A22,A12); 

unob=length(A22)-rank(ob) 

co=ctrb(A_d,B_d); 

unco=length(A_d)-rank(co) 

 

Kc_d=lqrd(A_c,B_c,Q,R,0.0002); 

kc2=lqr(A_c,B_c,Q,R) 

 

k1=Kc_d(1:3,1:6); k2=Kc_d(1:3,7:9); 

% k=-Kc_d 

sys_temp=ss(A22,L,A12,0); 

[kest,H,P]=kalman(sys_temp,psi,thida); 

H_d=H; 

 

% A_new=[A_d -B_d*Kc_d;H_d*C_d A_d-B_d*Kc_d-H_d*C_d]; 

A_new=[A11-B1*k1 A12    -B1*k2; 

       A21-B2*k1 A22    -B2*k2; 

       A21-B2*k1 H_d*A12 A22-H_d*A12-B2*k2]; 

 

C_new=eye(12); 

sys_new=dss(A_new,[],C_new,[],eye(12),Ts); 

 

conx=(A22-H_d*A12)*H_d+A21-H_d*A11-(B2-H_d*B1)*(k1+k2*H_d); 

conz=(A22-H_d*A12-B2*k2+H_d*B1*k2); 

conxz=[conx conz] 
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outputx=-k1-k2*H_d; 

outputz=-k2; 

outputxz=[outputx outputz] 

ku=-pinv(B_d)*A_d 

 

x0=[5e-6 10e-6 20e-6 0 0 0 0 0 0 0 0 0]'; 

[y,t]=initial(sys_new,x0,[0:0.0002:0.1]); 

figure(22); 

subplot(2,2,1); 

plot(t,y(:,7),'-',t,y(:,10),'--'); 

xlabel('t (s)');ylabel('z-dot direction (m/s)'); 

subplot(2,2,2); 

plot(t,y(:,8),'-',t,y(:,11),'--'); 

xlabel('t (s)');ylabel('s-dot (rad/s)'); 

subplot(2,2,3); 

plot(t,y(:,9),'-',t,y(:,12),'--'); 

xlabel('t (s)');ylabel('t-dot (rad/s)'); 

subplot(2,2,4); 

plot(t,y(:,1),'-',t,y(:,2),'--',t,y(:,3),'+'); 

xlabel('t (s)');ylabel('z, s, t-direction'); 
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