1,173 research outputs found

    Man-machine cooperation in advanced teleoperation

    Get PDF
    Teleoperation experiments at JPL have shown that advanced features in a telerobotic system are a necessary condition for good results, but that they are not sufficient to assure consistently good performance by the operators. Two or three operators are normally used during training and experiments to maintain the desired performance. An alternative to this multi-operator control station is a man-machine interface embedding computer programs that can perform some of the operator's functions. In this paper we present our first experiments with these concepts, in which we focused on the areas of real-time task monitoring and interactive path planning. In the first case, when performing a known task, the operator has an automatic aid for setting control parameters and camera views. In the second case, an interactive path planner will rank different path alternatives so that the operator will make the correct control decision. The monitoring function has been implemented with a neural network doing the real-time task segmentation. The interactive path planner was implemented for redundant manipulators to specify arm configurations across the desired path and satisfy geometric, task, and performance constraints

    Cooperative Kinematic Control for Multiple Redundant Manipulators Under Partially Known Information Using Recurrent Neural Network

    Get PDF
    In this study, we investigate the problem of cooperative kinematic control for multiple redundant manipulators under partially known information using recurrent neural network (RNN). The communication among manipulators is modeled as a graph topology network with the information exchange that only occurs at the neighbouring robot nodes. Under partially known information, four objectives are simultaneously achieved, i.e, global cooperation and synchronization among manipulators, joint physical limits compliance, neighbor-to-neighbor communication among robots, and optimality of cost function. We develop a velocity observer for each individual manipulator to help them to obtain the desired motion velocity information. Moreover, a negative feedback term is introduced with a higher tracking precision. Minimizing the joint velocity norm as cost function, the considered cooperative kinematic control is built as a quadratic programming (QP) optimization problem integrating with both joint angle and joint speed limitations, and is solved online by constructing a dynamic RNN. Moreover, global convergence of the developed velocity observer, RNN controller and cooperative tracking error are theoretically derived. Finally, under a fixed and variable communication topology, respectively, application in using a group of iiwa R800 redundant manipulators to transport a payload and comparison with the existing method are conducted. Among the simulative results, the robot group synchronously achieves the desired circle and rhodonea trajectory tracking, with higher tracking precision reaching to zero. When joint angles and joint velocities tend to exceed the setting constraints, respectively, they are constrained into the upper and lower bounds owing to the designed RNN controller

    Model-based recurrent neural network for redundancy resolution of manipulator with remote centre of motion constraints

    Get PDF
    Redundancy resolution is a critical issue to achieve accurate kinematic control for manipulators. End-effectors of manipulators can track desired paths well with suitable resolved joint variables. In some manipulation applications such as selecting insertion paths to thrill through a set of points, it requires the distal link of a manipulator to translate along such fixed point and then perform manipulation tasks. The point is known as remote centre of motion (RCM) to constrain motion planning and kinematic control of manipulators. Together with its end-effector finishing path tracking tasks, the redundancy resolution of a manipulators has to maintain RCM to produce reliable resolved joint angles. However, current existing redundancy resolution schemes on manipulators based on recurrent neural networks (RNNs) mainly are focusing on unrestricted motion without RCM constraints considered. In this paper, an RNN-based approach is proposed to solve the redundancy resolution issue with RCM constraints, developing a new general dynamic optimisation formulation containing the RCM constraints. Theoretical analysis shows the theoretical derivation and convergence of the proposed RNN for redundancy resolution of manipulators with RCM constraints. Simulation results further demonstrate the efficiency of the proposed method in end-effector path tracking control under RCM constraints based on an industrial redundant manipulator system

    AI based Robot Safe Learning and Control

    Get PDF
    Introduction This open access book mainly focuses on the safe control of robot manipulators. The control schemes are mainly developed based on dynamic neural network, which is an important theoretical branch of deep reinforcement learning. In order to enhance the safety performance of robot systems, the control strategies include adaptive tracking control for robots with model uncertainties, compliance control in uncertain environments, obstacle avoidance in dynamic workspace. The idea for this book on solving safe control of robot arms was conceived during the industrial applications and the research discussion in the laboratory. Most of the materials in this book are derived from the authors’ papers published in journals, such as IEEE Transactions on Industrial Electronics, neurocomputing, etc. This book can be used as a reference book for researcher and designer of the robotic systems and AI based controllers, and can also be used as a reference book for senior undergraduate and graduate students in colleges and universities

    Recurrent Neural Networks-Based Collision-Free Motion Planning for Dual Manipulators Under Multiple Constraints

    Get PDF
    Dual robotic manipulators are robotic systems that are developed to imitate human arms, which shows great potential in performing complex tasks. Collision-free motion planning in real time is still a challenging problem for controlling a dual robotic manipulator because of the overlap workspace. In this paper, a novel planning strategy under physical constraints of dual manipulators using dynamic neural networks is proposed, which can satisfy the collision avoidance and trajectory tracking. Particularly, the problem of collision avoidance is first formulated into a set of inequality formulas, whereas the robotic trajectory is then transformed into an equality constraint by introducing negative feedback in outer loop. The planning problem subsequently becomes a Quadratic Programming (QP) problem by considering the redundancy, the boundaries of joint angles and velocities of the system. The QP is solved using a convergent provable recurrent neural network that without calculating the pseudo-inversion of the Jacobian. Consequently, numerical experiments on 8-DoF modular robot and 14-DoF Baxter robot are conducted to show the superiority of the proposed strategy

    Neural Network Model-Based Control for Manipulator: An Autoencoder Perspective

    Get PDF
    Recently, neural network model-based control has received wide interests in kinematics control of manipulators. To enhance learning ability of neural network models, the autoencoder method is used as a powerful tool to achieve deep learning and has gained success in recent years. However, the performance of existing autoencoder approaches for manipulator control may be still largely dependent on the quality of data, and for extreme cases with noisy data it may even fail. How to incorporate the model knowledge into the autoencoder controller design with an aim to increase the robustness and reliability remains a challenging problem. In this work, a sparse autoencoder controller for kinematic control of manipulators with weights obtained directly from the robot model rather than training data is proposed for the first time. By encoding and decoding the control target though a new dynamic recurrent neural network architecture, the control input can be solved through a new sparse optimization formulation. In this work, input saturation, which holds for almost all practical systems but usually is ignored for analysis simplicity, is also considered in the controller construction. Theoretical analysis and extensive simulations demonstrate that the proposed sparse autoencoder controller with input saturation can make the end-effector of the manipulator system track the desired path efficiently. Further performance comparison and evaluation against the additive noise and parameter uncertainty substantiate robustness of the proposed sparse autoencoder manipulator controller

    A Discrete Model-Free Scheme for Fault Tolerant Tracking Control of Redundant Manipulators

    Get PDF

    Recursive recurrent neural network: A novel model for manipulator control with different levels of physical constraints

    Get PDF
    Manipulators actuate joints to let end effectors to perform precise path tracking tasks. Recurrent neural network which is described by dynamic models with parallel processing capability, is a powerful tool for kinematic control of manipulators. Due to physical limitations and actuation saturation of manipulator joints, the involvement of joint constraints for kinematic control of manipulators is essential and critical. However, current existing manipulator control methods based on recurrent neural networks mainly handle with limited levels of joint angular constraints, and to the best of our knowledge, methods for kinematic control of manipulators with higher order joint constraints based on recurrent neural networks are not yet reported. In this study, for the first time, a novel recursive recurrent network model is proposed to solve the kinematic control issue for manipulators with different levels of physical constraints, and the proposed recursive recurrent neural network can be formulated as a new manifold system to ensure control solution within all of the joint constraints in different orders. The theoretical analysis shows the stability and the purposed recursive recurrent neural network and its convergence to solution. Simulation results further demonstrate the effectiveness of the proposed method in end-effector path tracking control under different levels of joint constraints based on the Kuka manipulator system. Comparisons with other methods such as the pseudoinverse-based method and conventional recurrent neural network method substantiate the superiority of the proposed method
    • …
    corecore