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Neural Network Model-Based Control for
Manipulator: An Autoencoder Perspective

Zhan Li and Shuai Li , Senior Member, IEEE

Abstract— Recently, neural network model-based control has
received wide interests in kinematics control of manipulators.
To enhance learning ability of neural network models, the autoen-
coder method is used as a powerful tool to achieve deep learning
and has gained success in recent years. However, the performance
of existing autoencoder approaches for manipulator control may
be still largely dependent on the quality of data, and for extreme
cases with noisy data it may even fail. How to incorporate
the model knowledge into the autoencoder controller design
with an aim to increase the robustness and reliability remains
a challenging problem. In this work, a sparse autoencoder
controller for kinematic control of manipulators with weights
obtained directly from the robot model rather than training
data is proposed for the first time. By encoding and decoding
the control target though a new dynamic recurrent neural
network architecture, the control input can be solved through
a new sparse optimization formulation. In this work, input
saturation, which holds for almost all practical systems but
usually is ignored for analysis simplicity, is also considered in
the controller construction. Theoretical analysis and extensive
simulations demonstrate that the proposed sparse autoencoder
controller with input saturation can make the end-effector of the
manipulator system track the desired path efficiently. Further
performance comparison and evaluation against the additive
noise and parameter uncertainty substantiate robustness of the
proposed sparse autoencoder manipulator controller.

Index Terms— Autoencoder, manipulator, neural network
control.

I. INTRODUCTION

NOWADAYS, various manipulators have been widely
applied in numerous industrial applications by fulfilling

heavy labors that people cannot afford to sustain [1]–[3].
By taking advantage of flexibility and redundancy of industrial
manipulators, multi-level and large-scale industrial operations
can be accomplished efficiently. In past decades, accurate
control of manipulators toward various manipulation tasks
have attracted intensive interests from research and engineer-
ing [4]–[7]. No matter what kinds of applications encountered,
a manipulator always has to map its joint space into a Cartesian
workspace through forward kinematics modeling and actuate
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its end-effector to follow the desired path through inverse
kinematics resolution. Generally, the goal of kinematic control
for the manipulator is to seek for a suitable control input in
the joint space that can generate a motion in the workspace
as desired with satisfying accuracy [8].

However, the coupled nonlinearity of the kinematic map-
ping exerts obstacles and burdens for kinematic control of
manipulators from aspect of joint space level, and complete
analytical solution for producing feasible control actions is
difficult or even impossible to obtain. Some early works
tried to find the joint controller solution by directly comput-
ing pseudoinverse of the Jacobian matrix of a manipulator.
However, such way of solving for the suitable control input
might suffer from local instability problems and unnecessary
excessive computation [9], [10]. To remedy such issue, some
researchers made attempts to model the nonlinear mapping
for the manipulator system by constructing various efficient
dynamic models to solve for suitable control actions [11]–[16],
or by developing different efficient optimization paradigms
and additional criteria to handle with secondary performance
indices or novel convergence properties [17]–[22].

In order to approximate the highly nonlinear coupled kine-
matics relationship between the joint space and the Carte-
sian workspace for computing the suitable control input,
dynamic neural network model-based control approaches
can be regarded as an efficient alternative to accomplish
motion modeling and perform accurate control so as to
overcome shortcomings of previous conventional methods.
In [23], a neural-learning-based method was proposed to
control the constrained flexible manipulator with uncertainties
and improved its security. In [12], dead zone issues for
manipulators were well tackled adaptively by neural network.
In [6], an adaptive projection neural network was utilized
to control the manipulator with unknown physical parame-
ters and shown promising tracking performance. In [24],
discrete zeroing neural network models were reformulated
as an equality-constrained quadratic programming to perform
kinematic control of manipulators with O(h3) approximation
errors. In [25], neural networks were applied to enhance adap-
tivity for admittance control of manipulator with environment
interaction capability. In [26], the mobile manipulator’s time-
varying disturbances could be elegantly suppressed by a robust
zeroing neural dynamics. All of these aforementioned works
have shown that neural networks or their variants possess
strong ability for control of robotic manipulators.

Although neural networks can promisingly deal with
nonlinear relationship existing in the motion generation of
manipulators, the learning ability is still needed to be enhanced
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if such nonlinear relationship tends to be more complicated.
As a powerful tool to achieve nonlinearity approximation
toward deep learning, the autoencoder-based method can be
an efficient tool and has gained success in data-based learning
areas [27]–[33]. The autoencoder-based methods can let the
actual output to learn the reference input by taking advantages
of the natural feature reconstruction ability of multiple-layer
neural networks, making the errors between the input and
output as small as possible. As the autoencoder uses the input
layer as the encoder and the output layer as the decoder,
the autoencoders can keep the main features of the manipulator
kinematic relation with constraints and thus possess promising
anti-noise ability. It can be as a sparse modeling to reduce
dimensions. Specifically for redundant robot/manipulators,
it can compress information by letting some units of the hidden
layers being inactive. The performance of existing autoencoder
approaches may be still largely dependent on the quality of
data when applied to manipulator control, and for extreme
cases with noisy data it may even fail. How to incorporate
the model knowledge for the autoencoder controller design
with a goal to increase the robustness and reliability remains
a challenging issue. As a result, autoencoder control of a
manipulator is still unexplored. Inspired by the learning
capability of autoencoder in a neural network model, this
work makes breakthrough by proposing a sparse autoencoder
controller for kinematic control of the manipulator system.
Moreover, as input saturation holds for almost all operations
of manipulators but usually is ignored for analysis simplicity,
it is also considered in constructing the sparse autoencoder
controller. The contributions of this article are summarized as
follows.

1) To the best of our knowledge, this is the first work
on a unified sparse and non-sparse autoencoder frame-
work associated with the dynamic neural network
model-based method for manipulator control with and
without input saturation considered.

2) This work proposes to transform the sparse autoencoder
control problem and the non-sparse autoencoder control
problem to an L1 and an L2 optimization-based control
paradigm, respectively, and a resultant new primal–dual
neural network solver for the sparse optimization is
developed.

3) As demonstrated by the kinematic control results,
the proposed sparse autoencoder controller is efficient
for manipulator control and is robust even in noisy and
uncertain parameter circumstances.

The remainder of this article is organized as follows.
In Section II, preliminaries on the general neural network
model for mapping nonlinearity is introduced, and the corre-
sponding sparse autoencoder is formulated based on the neural
network model. In Section III, a specific dynamic recurrent
neural network model for autoencoding the manipulator con-
trol problem is proposed, and the dynamic optimization solver
for the autoencoder controller is addressed. In Section IV,
an autoencoder controller without input saturation based on
the dynamic recurrent neural network model is proposed for
manipulator control, including both non-sparse and sparse

Fig. 1. Neural network model-based control for the autoencoder of nonlinear
systems.

cases. In Section V, an autoencoder controller with saturation
input based on the dynamic recurrent neural network model is
proposed for manipulator control, including both non-sparse
and sparse cases as well. In Section VI, simulations with
comparisons are performed to validate the effectiveness of
the proposed method and its robust performance. Section VII
finally concludes this article.

II. PRELIMINARIES

In this section, preliminaries on the neural network model
with an autoencoder paradigm for control of the general
nonlinear system is introduced.

A. Neural Network Model for Autoencoder

Generally, a three-layer feedforward neural network model
is used for dealing with control of the nonlinear system that the
manipulator system falls into, and the architecture of the neural
network is shown in Fig. 1. The discipline of information flow
of the neural network model is governed by{

u = f (w1, x)

y = g(w2, u)
(1)

where x ∈ Rm is the model input vector of the neural network,
u ∈ Rn is the intermediate variable vector of the hidden layer
of the neural network that stores the nonlinear-mapping infor-
mation from the input layer, y ∈ Rl is the model output vector
of the neural network that presents the nonlinear-mapping
information from the hidden layer, f (·):Rm → Rn denotes the
nonlinear mapping function array between the input layer and
the hidden layer of the neural network, g(·):Rn → Rl denotes
the nonlinear mapping function array between the hidden layer
and the output layer of the neural network, w1 ∈ Rn×m denotes
the weight matrix for linking the model input vector x ∈ Rm

and the hidden layer variable vector u ∈ Rn , and w2 ∈ Rl×n

denotes the weight matrix for linking the hidden layer variable
vector u ∈ Rn and the model output vector y ∈ Rl . The
neural network in Fig. 1 makes the error function associated
with y, x , and u as small as possible by adjusting weight
matrices w1 and w2 through model learning/training. As an
autoencoder paradigm is utilized for the aforementioned neural
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network model, the weights w1 and w2 of the neural network
are trained such that y ≈ x with m = l. The first and second
layers (i.e., the input layer and the hidden layer) encode the
model input variable vector x ∈ Rm into the hidden layer
variable vector u ∈ Rn and then the second and the third layers
(i.e., the hidden layer and the output layer) decode the hidden
layer variable vector u ∈ Rn into the model output variable
vector y ∈ Rl . Especially, when m > n, we can use u ∈ Rn

in low dimensions to represent x ∈ Rm in high dimensions,
and x ∈ Rm can be reconstructed through the trained neural
network model’s output y ∈ Rl . In this way, the autoencoder
can be regarded as a compressed sensing model which can be
further formulated in a sparse manner.

B. Sparse Autoencoder

For the general three-layer neural network model (1) to
encode and decode the nonlinear system for manipulator
control in a sparse manner, in this article, a sparse autoencoder
with an additional constraint to make the hidden layer variable
u sparse is proposed, which can be formulated as the following
optimization problem:

arg min
w1,w2

m∑
i=1

‖yi − xi‖2
2 +

n∑
j=1

k0‖ui‖1 (2)

where yi and xi , respectively, denote the i th model output
and input of the neural network, ui ∈ � denotes the i th
control action constrained from the solution set �, k0 > 0
denotes the scaling parameter, ‖ · ‖2 denotes the L2 norm of
a vector, and ‖ · ‖1 denotes the L1 norm of a vector. It can be
evidently seen here that the neural network variables xi , u, and
yi for constructing nonlinear mapping are static without their
time-derivative information of some orders involved (i.e., ẏi ,
ẋi , and u̇ are not appearing in the neural network model),
which means that the neural network model (1) may lack
sufficient dynamic information of the manipulator system. So,
the sparse autoencoder for time sequence of nonlinear system
modeling and control is still not clear. In Section III, a dynamic
autoencoder neural network model for kinematic control of the
manipulator system is presented.

III. DYNAMIC AUTOENCODER NEURAL NETWORK

MODEL FOR MANIPULATOR CONTROL AND OPTIMIZATION

SOLVER

A. Dynamic Neural Network Model for Autoencoder
Controller

In order to remedy the static autoencoder based on the
aforementioned neural network for control of manipulator
system, in this article, we propose a dynamic autoencoder
recurrent neural network for manipulator system control as
follows: {

u̇ = f (u, x, w1)

ẏ = g(y, u, w2).
(3)

Different from the neural network model (1), the neural
network model (3) is of a recurrent type and contains
time-derivative information u̇ and ẏ that have additional

recursive information for the hidden and output layers, which
enables (3) can describe the dynamic process of the manip-
ulator system and it is different from the feedforward neural
network model in topology [34].

In this work, our goal is to perform kinematic control of the
manipulator system whose motion is depicted by the following
velocity kinematics equation:

ṙ = J θ̇ (4)

where J ∈ R3×n denotes the Jacobian matrix of the manip-
ulator, r ∈ R3 denotes the Cartesian space variable of the
end-effector, and θ ∈ Rn denotes the joint angle variable.
The forward kinematics relation is governed by r = f (θ)
where the mapping function f (·) is coupled nonlinear, and
the Jacobian matrix J is derived from ∂ f/∂θ . The modeling
of such forward kinematics of the manipulator is given by the
transformation matrix between the base coordinate and the
end-effector coordinate

T (θ) = T1(θ1), . . . , Ti(θi), . . . , Tn(θn) (5)

where the homogeneous transformation matrix is

Ti(θi) =

⎡⎢⎢⎣
cos θi − sin θi cos αi sin θi sin αi ai cos θi

sin θi cos θi cos αi − cos θi sin αi ai sin θi

0 sin αi cos αi di

0 0 0 1

⎤⎥⎥⎦
where αi , ai , di , and θi are the Denavit–Hartenberg (D–H)
parameters for the manipulator.

The dynamic model (4) for kinematic control can be
described by the autoencoder recurrent neural network (3)
such that the desired path variable x := rd can approximate
y := r with control input u := θ̇ . The proposed autoencoder
based on the recurrent neural network (3) for control of
the manipulator is shown by Fig. 2. Under this situation,
the reference path variable rd is encoded as the control
input u, and the control input u is decoded to the path
variable r . Through the learning process of the dynamic
recurrent neural network (3), the control input u is optimally
obtained. For the autoencoder controller based on the recurrent
neural network model for the manipulator system, we consider
the four autoencoder control paradigms in both non-sparse
and sparse cases in the ensuing sections as follows: 1) a
non-sparse autoencoder controller without saturation control
input; 2) a sparse autoencoder controller without saturation
control input; 3) a non-sparse autoencoder controller with
saturation control input; and 4) a sparse autoencoder con-
troller with saturation control input. These autoencoder con-
trollers are obtained by solving the corresponding optimization
problems.

B. Dynamic Optimization Solver

As the autoencoder controller is established based on
the dynamic recurrent neural network (3), the optimiza-
tion solver should also be dynamic to compute the con-
troller. Now, we present the dynamic optimization solver as
follows.
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Fig. 2. Proposed autoencoder based on the recurrent neural network for
kinematic control of the manipulator system.

1) Model Description: For the convex objective function
F(u) that is associated with the dynamic autoencoder neural
network for manipulator control, the optimization can be
formulated as follows:

min F(u)

s.t. G(u) ≤ 0 (6)

where F(·):Rn → R and G(·):Rn → Rn denote the mapping
functions for the control input u.

To solve this convex optimization, according to the Karush–
Kuhn–Tucker (KKT) condition [35] and letting the partial
derivatives of the Lagrange function L(u, λ) being zero,
we equivalently obtain the following dynamic equations as
the optimization solver:⎧⎨⎩ �u̇ = u − P�

(
u − ∂L(u, λ)

∂u

)
�λ̇ = G(u)

(7)

where � > 0 is the parameter to scale the convergence to
the solution, and P�(·) denotes linear projection to a normal
cone �, that is, P�(u > u+) = u+, P�(u ≤ u−) = u−,
and P�(u− < u < u+) = u, where u− and u+, respectively,
denote the lower and upper bounds for the input of the linear
projection operator. As the objective function F(u) is strictly
convex, existence and uniqueness of the optimal solutions
can be guaranteed. Since the differential kinematics of the
manipulator can be established through the corresponding
D–H parameters, it is not necessary for the autoencoder
controller based on the primal–dual neural network solver to
satisfy persistent conditions, because the system identification
of the solution process is not necessary when the convergence
parameter � > 0 is configured already and the bounds for the
projection operator are known. The parameter � > 0 is the
only parameter for tuning to scale the convergence rate. The
autoencoder-based control loop for the manipulator based on
the dynamic optimization solver is shown by Fig. 3.

Especially, when the objective function F(u) is a quadratic
function with respect to u, that is, F(u) = uT Qu/2 + qTu,

Fig. 3. Control loop for the manipulator based on the dynamic optimization
solver for the autoencoder controller.

the dynamic optimization solver can further become{
�u̇ = u − P�(u − Qu − q)

�λ̇ = G(u)
(8)

where Q is a positive-definite matrix.
By letting ż = g(t, z), where z := [u λ]T, the corresponding

ordinary-differential-equation (ODE) updating law (the fourth-
order Runge–Kutta method) is

zk+1 = zk + h

6
(k1 + 2k2 + 2k3 + k4) (9)

with ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

k1 = g(tk, yk)

k2 = g

(
tk + h

2
, yk + k1

2

)
k3 = g

(
tk + h

2
, yk + k2

2

)
k4 = g(tk + h, yk + k3)

where h > 0 denotes the step size of the ODE iterative
updating equations, and tk denotes the kth time sampling.
Algorithm 1 shows the data-driven version of the autoencoder
controller for manipulator control based on the aforementioned
ODE updating law.

2) Theoretical Analysis: Due to its convexity of the opti-
mization problem, the aforementioned expression ∂L/∂u ∈ �
includes the normal cone operator on u. Recall the property
on the linear projection to a normal cone, the solution of
optimization problem is equivalent to the solution of the linear
projection equations P�(·). The dynamic optimization solver
based on the primal–dual neural network model solve the
linear projection equations when the equilibrium point u is
reached [36], [37]. Therefore, one can define a Lyapunov
function V (u) = uTu/2 ≥ 0 and obtain its time derivative
V̇ = −uT[u − P�(u − (∂L(u, λ)/∂u))]/� ≤ −uTu/� ≤ 0, thus
the convergence to the equilibrium point u can be achieved.

Remark 1: In order to approximate the highly nonlinear
coupled kinematics relationship between the joint space and
the Cartesian workspace for computing the suitable control
input, the inverse kinematic resolution is performed in the joint
velocity level based on inverse control synthesized by solv-
ing the pseudoinverse of Jacobian matrix. Such model-based
approach may neglect the physical limits on joint control
action (e.g., joint velocity limits) and cannot produce sparse
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Algorithm 1 Data-Driven Autoencoder Control Algorithm
for Kinematic Control of Manipulator

Input : Forward kinematic equation f (θ(tk), tk);
Jacobian matrix J (θ(tk), tk); desired path
rd(tk); convergence parameter � > 0, joint
velocity boundaries θ̇+ and θ̇−; initial joint
angle θ(0); step size h; tolerance error ε

Output: Resolved/updated joint angular velocity
θ̇ (tk+1)

1 while |r(tk) − rd(tk)| > ε do
2 if Non-sparse autoencoder is used then
3 � := �1

4 end
5 if Sparse autoencoder is used then
6 � := �2

7 end

8 �g(tk,

[
θ̇ (tk)
λ(tk)

]
) =[

θ̇ (tk) − P�(θ̇(tk) − ∂L(θ̇(tk ),λ(tk ))
∂θ̇(tk )

)

G(θ̇ (tk))

]
9 k1 = g(tk,

[
θ̇ (tk)
λ(tk)

]
)

10 k2 = g(tk + h
2 ,

[
θ̇ (tk)
λ(tk)

]
+ k1

2 )

11 k3 = g(tk + h
2 ,

[
θ̇ (tk)
λ(tk)

]
+ k2

2 )

12 k4 = g(tk + h,

[
θ̇ (tk)
λ(tk)

]
+ k3)

13

[
θ̇ (tk+1)
λ(tk+1)

]
=

[
θ̇ (tk)
λ(tk)

]
+ h

6 (k1 + 2k2 + 2k3 + k4)

14 ṙ(tk+1) = J (θ(tk+1), tk+1)θ̇ (tk+1)
15 end

solutions by compressing redundant information of manipula-
tors. Under these considerations, the autoencoder controller
with physical constraints on joints in both non-sparse and
sparse cases is proposed in this work. Model-based methods
usually lack adaptive learning ability. Compared with model-
based methods, the autoencoder controller can let the actual
output to learn the reference input by taking advantages of the
natural feature reconstruction ability of multiple-layer neural
networks, making the errors between the input and output as
less as possible. As it uses the input layer as the encoder, it also
uses the output layer as the decoder. The autoencoders can
keep the main features of the manipulator kinematic relation
with constraints and thus possess promising anti-noise ability.
Table I shows the comparison between the proposed method
and other methods.

IV. AUTOENCODER CONTROLLER WITHOUT

INPUT SATURATION

In this section, the autoencoder controller without input
saturation is introduced. Both non-sparse and sparse types of
autoencoder controllers are exploited, and the corresponding
optimization solvers are presented as well.

TABLE I

COMPARISON WITH OTHER METHODS ON MANIPULATOR CONTROL

A. Non-Sparse Autoencoder Controller Without Input
Saturation

First, the non-sparse autoencoder controller without input
saturation is proposed to be solved by the following optimiza-
tion formulation:

min ‖u‖2
2/2 (10)

s.t. Ju + k(r − rd) − ṙd = 0 (11)

where k > 0 denotes the scaling parameter for converge of
solution. To solve the optimization problem above, one can
construct the Lagrange function as follows:

L(u, λ) = ‖u‖2
2/2 + λT[Ju + k(r − rd) − ṙd ] (12)

where λ ∈ Rn denotes the Lagrange multiplier. According to
the aforementioned design principle of primal–dual neural net-
work in Section III-B, the corresponding optimization solver is⎧⎨⎩ �u̇ = −u + P�

(
u − ∂L(u, λ)

∂u

)
�λ̇ = Ju + k(r − rd) − ṙd

(13)

where P�(·) denotes the linear projection operator. Here, as the
control input u is without saturation, the lower bound and
the upper bound can be set, respectively, as u− = −∞ and
u+ = +∞. Practically, it is commonly configured that
u− = −N and u+ = N , where N > 0 is a very large
real-valued constant.

As the partial derivative of L(u, λ) with respect to u is

∂L(u, λ)

∂u
= u + J Tλ. (14)

The primal–dual neural network as the optimization solver
of the control input u without saturation further becomes{

�u̇ = −u + P�

(−J Tλ
)

�λ̇ = Ju + k(r − rd) − ṙd
(15)

where the convergence of the solution r → rd can be
modulated by parameters � and k, and the solution set � can
be seen without solution boundary for the linear projection.
The number of neurons of such network is n + 3.

B. Sparse Autoencoder Controller Without Input Saturation

To solve for the control input u without input saturation
based on the sparse autoencoder recurrent neural network,
we have to satisfy the following two conditions: 1) the solved
control input u is sparse and 2) the convergence of the solution
limt→+∞ r = rd . In this article, we propose to transform the
unsaturation control problem in a sparse perspective into the
following constrained L1 sparse optimization problem:

min ‖u‖1 (16)

s.t. Ju = −k(r − rd) + ṙd . (17)
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As the sparse optimization formulation is without saturation
bounds [u−, u+], thus the sparse optimization problem further
becomes

min
n∑

i=1

αi

s.t. Ju = −k(r − rd) + ṙd (18)

where αi denotes the newly involved variable to be optimized,
and the optimization above can be reformulated as

min hTα

s.t. Ju = −k(r − rd) + ṙd (19)

where h = [1, 1, . . . , 1]T ∈ Rn denotes the coefficient vector,
and α = [α1, α2, . . . , αn] denotes the variable vector to be
optimized.

In order to solve the sparse optimization problem with-
out input saturation, similarly, it is needed to construct the
primal–dual neural network solver, and the following Lagrange
function is defined:

L = hTα + λT(Ju + k(r − rd) − ṙd).

Differentiate the Lagrange function above with respect to
the control input u, α, and λ, one can get the following
equations: ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂L

∂u
= J Tλ

∂L

∂α
= h

∂L

∂λ
= Ju + k(r − rd) − ṙd .

(20)

Based on the design principle of the primal–dual neural
network in Section III-B, we have⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

�

[
u̇

α̇

]
= −

[
u

α

]
+ P�̃

⎧⎪⎨⎪⎩
[

u

α

]
−

⎡⎢⎣
∂L

∂u
∂L

∂α

⎤⎥⎦
⎫⎪⎬⎪⎭

�λ̇ = Ju + k(r − rd) − ṙd

(21)

with its number of neurons being 2n + 3.
For the primal–dual neural network solver (21) for sparse

optimization with unsaturated control input u, the correspond-
ing linear piecewise projection function for the solution set
cone �̃ = ⋃n

i=1 �̃i is constructed by

P�̃i

([
ui

αi

])
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
ui

αi

]
, |ui | ≤ αi[

(ui + αi )/2

(ui + αi )/2

]
, ui ≥ |αi |[

0

0

]
, |ui | ≤ −αi[

(ui − αi )/2

(−ui + αi )/2

]
, ui ≤ −|αi |.

(22)

The solution set �̃ is divided into four sub-parts with a
variable α, and the no saturation bounds [u−, u+] associated

with the control input u are involved in the solution set cone �̃.
As compared with the original solution set � in the non-sparse
case, the solution set �̃ brings in a new variable α to limit the
control input u to preserve sparsity.

V. AUTOENCODER CONTROLLER WITH INPUT

SATURATION

In this section, the input saturation, which may be more
practical for actuators in servo control modes [14], [41]–[43],
is investigated in the autoencoder controller establishment.
Both non-sparse and sparse controllers are proposed with
input saturation and the corresponding optimization solvers
are presented.

A. Non-Sparse Autoencoder Controller With Input Saturation

In most of the applications, the control input u has to fall
into the saturation bounds [u−, u+] for kinematic control of
manipulator systems, due to the power limitations of joint actu-
ators and physical limitations of joint/link mechanisms. Under
these considerations, the non-sparse autoencoder controller
can be solved through the following saturation-constrained
optimization formulation:

min ‖u‖2
2/2

s.t. Ju = −k(r − rd) + ṙd

u− ≤ u ≤ u+. (23)

Its equivalent form for optimization can be

min ‖u‖2
2/2 + ‖Ju + k(r − rd) − ṙd‖2

2/2

s.t. Ju + k(r − rd) − ṙd = 0

u− ≤ u ≤ u+. (24)

To solve the optimization problem above, we construct the
following Lagrange function:
L(u, λ) = ‖u‖2

2/2 + ‖Ju + k(r − rd) − ṙd‖2
2/2

+λT(Ju + k(r − rd) − ṙd) (25)

where λ ∈ Rn denotes the Lagrange multiplier. Therefore,
similarly, according to the design principle of primal–dual
neural network, we construct the following optimization solver
model: ⎧⎨⎩ ll�u̇ = −u + P�

(
u − ∂L(u, λ)

∂u

)
�λ̇ = Ju + k(r − rd) − ṙd .

(26)

Since the partial derivative of L(u, λ) with respect to u is

∂L(u, λ)

∂u
= u + J T[Ju + k(r − rd) − ṙd] + J Tλ (27)

which can further produce{
�u̇ = −u + P�

(−J T(Ju + k(r − rd) − ṙd) − J Tλ
)

�λ̇ = Ju + k(r − rd) − ṙd .
(28)

Here, the solution set � is with the saturation bound
[u−, u+] involved, and one can regard that the input into the
linear projection function P�(·) is with restrictions explicitly.
As the optimization solver is not for sparse case, the solution
set � is not be divided by the newly added variables. The
number of neurons of such network is n + 3.
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B. Sparse Autoencoder Controller With Input Saturation

To solve for the control input u by the sparse autoencoder
with input saturation based on the recurrent neural network
model, the following constrained L1 sparse optimization is
proposed:

min ‖u‖1

s.t. Ju = −k(r − rd) + ṙd

u− ≤ u ≤ u+. (29)

To make the optimization problem solved by the
primal–dual neural network well, we propose a new equivalent
optimization formulation as follows:

min
n∑

i=1

βi

s.t. Ju + k(r − rd) − ṙd = 0

− βi ≤ ui ≤ βi

u− ≤ u ≤ u+ (30)

where βi denotes the newly added variable to be optimized.
The optimization problem above can be further equivalently

rewritten as the following optimization formulation:
min hTβ

s.t. Ju + k(r − rd) − ṙd = 0

− β ≤ u ≤ β

u− ≤ u ≤ u+ (31)

where β = [β1, β2, . . . , βn]T ∈ Rn denote the variable vector
to be optimized. The aforementioned sparse optimization
formulation can be rewritten as follows:

min hTβ

s.t. Ju + k(r − rd) − ṙd = 0

u ∈ � (32)

where we define the new solution set � = �
⋂{u− ≤ u ≤

u+} ⋂{−β ≤ u ≤ β}. Optimization formulation (32) is
ready to solve the L1-norm-based sparse optimization problem
with saturation considered, through additionally introducing
the variable β to restrict the control input u simultaneously.

In order to solve the optimization problem (32) by con-
structing primal–dual neural networks, we have to define the
following Lagrange function:

L = hTβ + λT(Ju + k(r − rd) − ṙd).

Differentiate the Lagrange function above with respect to
the unknown variables u, β, and λ, we would get the following
equations: ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂L

∂u
= J Tλ

∂L

∂β
= h

∂L

∂λ
= Ju + k(r − rd) − ṙd .

(33)

According to the aforementioned design procedure of the
primal–dual neural network for solving optimization problems,

we can have the following new primal–dual neural network
solver for the sparse optimization of saturated control input:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

�

[
u̇

β̇

]
= −

[
u

β

]
+ P �

⎧⎪⎪⎨⎪⎪⎩
[

u

β

]
−

⎡⎢⎢⎣
∂L

∂u
∂L

∂β

⎤⎥⎥⎦
⎫⎪⎪⎬⎪⎪⎭

�λ̇ = Ju − k(r − rd) + ṙd

(34)

where the solution set cone � = ⋃n
i=1 �i with �i =

[
ui

βi

]
with boundaries u−,i ≤ ui ≤ u+,i and −βi ≤ ui ≤ βi . For
simplicity, we can let u−,i +u+,i = 0. The number of neurons
of such network is 2n + 3.

For the properties of the newly proposed linear piecewise
projection function P �(·) with the new divided solution set
�, we have

P �

([
u
β

])
=

n⋃
i=1

P �i

([
ui

βi

])
(35)

and its subparts can be expanded as follows:

P �i

([
ui

βi

])

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
ui

βi

]
, |ui | ≤ u+,i and |ui | ≤ βi[

u+,i

βi

]
, ui ≥ u+,i and βi ≥ u+,i[

−u+,i

βi

]
, ui ≤ −u+,i and βi ≥ u+,i[

u+,i

u+,i

]
, αi ≤ u+,i and ui ≥ −βi + 2u+,i[

−u+,i

u+,i

]
, αi ≤ u+,i and ui ≤ βi − 2u+,i[

(ui + βi)/2

(ui + βi)/2

]
, |βi | ≤ ui ≤ −βi + 2u+,i[

(ui − βi )/2

(−ui + βi)/2

]
, βi − 2u+,i ≤ ui ≤ −|βi |[

0

0

]
, |ui | ≤ −βi .

(36)

The newly proposed linear projection function P �(·) con-
siders both the saturation bounds [u−, u+] and the optimization
variable βi to form a new combined solution set cone �
which divides the solution plane into eight subparts. Different
from the non-sparse case, we can see that the final number of
variables to be optimized doubles in the sparse case to preserve
sparsity and saturation for optimization solution.

VI. RESULTS

In this section, the manipulator control results based on
the proposed autoencoder controller in non-sparse and sparse
cases are presented. The normal, noisy, and parameter uncer-
tainty situations are considered to validate the efficiency and
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the robustness of the authoencoder controllers for manipulator
control.

A. Simulation Setup and Parameter Configuration

For kinematic control of the manipulator system for tracking
the desired paths, according to the aforementioned theoretical
results on the autoencoder controller based on the recurrent
neural network model, the following three representative eval-
uation scenarios are investigated: 1) evaluation of tracking
control performance in normal situation; 2) evaluation of
robustness of the tracking control performance against additive
noise; and 3) evaluation of robustness of the tracking control
performance against parameter uncertainty.

For the first evaluation scenario, the following four cases
are considered: 1) non-sparse solution without saturation
control input; 2) non-sparse solution with saturation control
input; 3) sparse solution without saturation control input; and
4) sparse solution with saturation control input. The forward
kinematic modeling of the manipulator system is established
by using the kinematic chains based on the D–H parameter
table in [3]. The reference paths of the end-effector of the
manipulator are, respectively, planned as a circular path with
its radius being 0.15 m and a square path with its side
length being 0.20 m. For each of the cases, both circular
type and square type path tracking tasks are performed. The
convergence parameter � of the primal–dual neural network
solver for the proposed autoencoder controller is set as 0.001,
and the scaling parameter of the autoencoder controller is set
as k = 10. The initial joint angles θ(0) of the manipulator
are randomly generated within range [−π/2, π/2]. For cases
1) and 3), the saturation bounds are set as very large values
[>200 (rad/s)] to indicate the magnitudes of the control
input unlimited. For case 2), the saturation bounds are set
as [−0.2, 0.2] (rad/s), and for case 4), the configuration
of the saturation bounds for the control input is shown
in Table II. ODE-45 solver with time interval 0.1 s for
updating the dynamic equations of the proposed method is
used.

B. Normal Situation

In the normal situation, as no noise and parameter uncer-
tainty appear in the kinematic modeling and control of the
manipulator, all the control inputs in the recurrent neural
network-based autoencoder are not contaminated by noises,
and the parameters in the plant for control are known or
configured precisely.

1) Non-Sparse Solution Without Saturation Control Input:
For the first case, the autoencoder controller is obtained in a
non-sparse encode and decode process based on the recurrent
neural network model, and the corresponding optimization
solver is formulated in an L2-norm paradigm. Therefore,
the non-sparse optimization solver (26) is adopted to compute
the unsaturated control input u. Figs. 4 and 5 show the
unsaturated control inputs u solved by the non-sparse opti-
mization solver for a circular path and a square path tracking,
respectively. One can observe that, the control input u have
oscillations to some extent. With such unsaturation control

TABLE II

SATURATION BOUND [u−,i , u+,i ] THAT THE SPARSE AUTOENCODER CON-
TROLLER WITH INPUT SATURATION HAS TO FALL INTO FOR

KINEMATIC CONTROL OF THE MANIPULATOR SYSTEM

Fig. 4. Control input u without saturation for control of the manipulator
system to track the circular path in non-sparse autoencoder case.

Fig. 5. Control input u without saturation for control of the manipulator
system to track the square path in non-sparse autoencoder case.

input and non-sparse autoencoder process, the tracking control
performance of the end-effector of the manipulator with posi-
tion errors is shown by Fig. 6. As seen from Fig. 6, the end-
effector of the manipulator can track the circular and square
paths well as expected, and the position errors [ex , ey, ez]
synthesized by the unsaturated non-sparse autoencoder con-
troller can reach to around 8 × 10−4 m. All of these results
first demonstrate the efficiency of the proposed non-sparse
autoencoder controller based on the dynamic recurrent neural
network for kinematic control of the manipulator system with
unsaturated control input.

2) Non-Sparse Solution With Saturation Control Input:
Next, we investigate the non-sparse autoencoder controller
for kinematic control of the manipulator system with input
saturation. In this case, the autoencoder controller is obtained
in a non-sparse encode and decode process based on the
recurrent neural network model, and the corresponding opti-
mization solver is also formulated in the L2-norm paradigm.
Therefore, the non-sparse optimization solver (28) is adopted
to compute the saturated control input u, and the satura-
tion boundary is set as [u−,i , u+,i ] = [−0.2, 0.2] (rad/s).
Figs. 7 and 8 show the unsaturated control inputs u solved by
the non-sparse optimization solver for circular path and square
path tracking respectively. One can obviously observe that,
the control input u have less oscillations, as compared with the
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Fig. 6. Tracking performance and the position errors for the manipulator
system to track the circular and square paths by the non-sparse autoen-
coder controller without input saturation. (a) Circle. (b) Square. (c) Circle.
(d) Square.

Fig. 7. Control input u with saturation for control of the manipulator system
to track the circular path in the non-sparse autoencoder case.

Fig. 8. Control input u with saturation for control of the manipulator system
to track the circular path in the non-sparse autoencoder case.

case of non-sparse solution without saturation control input,
especially for the square path tracking task. It indicates that
the non-sparse autoencoder controller with saturated control
input may have more mild transient process. In the non-sparse
autoencoder controller with input saturation case, the tracking
control performance of the end-effector of the manipulator
with position errors is shown by Fig. 9. As observed from
Fig. 9, the end-effector of the manipulator can track the
circular and square paths well as expected, and the position
errors [ex, ey, ez] synthesized by the unsaturated non-sparse
autoencoder controller can reach to around 10 × 10−4 m or
1.5 × 10−4 m. All of these results demonstrate the efficiency
of the proposed non-sparse autoencoder controller based on
the dynamic recurrent neural network for kinematic control of
the manipulator system with saturated control input.

Fig. 9. Tracking performance and the position errors for the manipulator
system to track the circular and square paths by the non-sparse autoencoder
controller with input saturation. (a) Circle. (b) Square. (c) Circle. (d) Square.

Fig. 10. Control input u without saturation for control of the manipulator
system to track the circular path in sparse autoencoder case.

Fig. 11. Control input u without saturation for control of the manipulator
system to track the square path in the sparse autoencoder case.

3) Sparse Solution Without Saturation Control Input: After
validate the non-sparse autoencoder controller for manipulator
control, now we investigate the sparse autoencoder controller
without input saturation for kinematic control of the manipu-
lator system. In this case, the autoencoder controller without
input saturation is obtained in a sparse encode and decode
process based on the recurrent neural network model, and the
corresponding optimization solver is formulated as an L1-norm
based paradigm rather than an L2-norm based paradigm.
Therefore, the constrained sparse optimization solver (21)
is adopted to compute the unsaturated control input u,
and the corresponding saturation boundary is configured as
Section VI-A. Figs. 10 and 11 show the unsaturated control
inputs u solved by the sparse optimization solver for circular
path and square path tracking tasks, respectively. Evidently,
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Fig. 12. Tracking performance and the position errors for the manipulator
system to track the circular and square paths by the sparse autoencoder con-
troller without input saturation. (a) Circle. (b) Square. (c) Circle. (d) Square.

Fig. 13. Control input u with saturation for control of the manipulator system
to track the circular path in the sparse autoencoder case.

one can observe that the control input u can be within
rather small amplitude range, as compared with the case
of non-sparse controller solution without saturation control
input which is addressed in Section VI-B. It shows that
the sparse autoencoder controller with unsaturated control
input might have more mild control input even no saturation
bounds are configured in the controller design. For the sparse
autoencoder controller without input saturation, additionally,
the tracking control performance of the end-effector of the
manipulator with position errors is shown by Fig. 12. Observed
from Fig. 12, the end-effector of the manipulator can track
the circular and square paths promisingly as expected, and
the position errors [ex, ey, ez] synthesized by the unsaturated
sparse autoencoder controller can reach around 2.5 × 10−3 m.
All the tracking control performance results demonstrate the
efficiency of the proposed sparse autoencoder controller with-
out input saturation based on the dynamic recurrent neural
network for kinematic control of the manipulator system.

4) Sparse Solution With Saturation Control Input: Here,
we investigate the sparse autoencoder controller for kine-
matic control of the manipulator system with input satura-
tion considered. In this case, the autoencoder controller is
solved by a sparse encode and decode process based on
the recurrent neural network model, and the corresponding
constrained sparse optimization solver is formulated in an
L1-norm paradigm with the saturation boundary on the control

Fig. 14. Control input u with saturation for control of the manipulator system
to track the circular path in sparse autoencoder case.

Fig. 15. Tracking performance and the position errors for the manipulator
system to track the circular and square paths by the sparse autoencoder
controller with input saturation. (a) Circle. (b) Square. (c) Circle. (d) Square.

input u. Therefore, the sparse optimization solver (34) is
applied to obtain the saturated control input u, and the
corresponding saturation boundary is configured as shown
in Table II. Figs. 13 and 14 show the saturated autoencoder
control inputs u solved by the sparse optimization solver for
circular path and square path tracking, respectively. One can
evidently observe that the control input u can be within the
saturation boundary provided in Table II. All these results
demonstrate that the sparse autoencoder controller with input
saturation considered can make control input bounded as
expected. In such a sparse autoencoder controller with input
saturation, the tracking control performance of the end-effector
of the manipulator with position errors is further shown by
Fig. 15. Seen from Fig. 15, the end-effector of the manipulator
can track the circular and square paths well as expected, and
the position errors [ex , ey, ez] synthesized by the saturated
sparse autoencoder controller can reach around 3.5 × 10−3

and 6 × 10−4 m. All of these performance results demonstrate
the efficiency of the proposed sparse autoencoder controller
based on the dynamic recurrent neural network for kinematic
control of the manipulator system with saturated control input
considered.

Table III summarizes the average position error perfor-
mances of the four aforementioned autoencoder controllers for
the manipulator system. One can see from Table III that the
four autoencoder controllers can make the end-effector of the
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TABLE III

AVERAGE POSITION ERRORS OF THE AFOREMENTIONED FOUR
AUTOENCODER CONTROLLERS FOR THE MANIPULATOR

SYSTEM IN NORMAL SITUATION

manipulator achieve satisfying accuracy around 10−3 m with
the parameters configured as aforementioned. These results
also demonstrate the efficiency of the proposed autoencoder
controllers for manipulation control with input saturation con-
sidered, either in non-sparse case or in sparse case.

C. Evaluation of Robustness Against Additive Noise

After verifying the proposed autoencoder controllers for
kinematic control of the manipulator system in above nor-
mal situations, we evaluate the robustness of the proposed
sparse autoencoder controller against additive noises. The
autoencoder controller may be disturbed by the noises and
have unexpected effects on the manipulator control, thus
novel noise suppression should be incorporated to enhance
the robustness [40], [44]. The saturation bounds are still set
as [−0.2, 0.2], the noise added to the controller is set as the
harmonic noise with the form being A sin(2π f t + φ), where A
denotes the noise amplitude, f denotes the noise frequency,
and φ denotes the noise phase. In the additional simulation
setup for the additive noise to the sparse autoencoder con-
troller, the noise frequency is set as f = 1000, and we consider
three scenarios, that is, case 1: Noise 1 = sin(2π f t + 2.3);
case 2: Noise 2 = 20 sin(2π f t + 2.3); case 3: Noise 3 =
200 sin(2π f t + 2.3). All the amplitudes of these three types of
noises exceed the configured saturation boundary. We evaluate
the position tracking errors e = (e2

x + e2
y + e2

z
1/2 of the

end-effector of the manipulator system. We compare the
position errors e without and with saturation control input for
the same kinematic control tasks such as circular path tracking
and square path tracking of the end-effector.

1) Circular Path: Fig. 16 shows the position errors of the
end-effector of the manipulator system for circular path track-
ing with the aforementioned three noises of different levels
synthesized by the proposed sparse autocoder controller with
unsaturated control input (i.e., without saturation boundary).
From the first subfigure of Fig. 16, we can observe that, when
the first type of noise (i.e., case 1) is added into the controller,
the position error can be within a range between 10−4 and
10−2 m, which is rather small when compared with the radius
of the circle (i.e., 0.15 m). When the additive noise’s amplitude
is enlarged by 20 times (i.e., case 2) as shown in the second
subfigure of Fig. 16, the corresponding position error can
still be within a range between 10−4 and 10−2 m synthesized
by the proposed sparse autoencoder controller without input
saturation, which indicates that the proposed sparse autoen-
coder controller may have tolerance ability of amplified noise.
Moreover, when the additive noise’s amplitude is enlarged by
200 times (i.e., case 3) as shown in the third subfigure of

Fig. 16. Position error in sparse case without saturation input with different
level of noises for circular path tracking.

Fig. 17. Position error in sparse case with saturation input with different
level of noise for circular path tracking.

Fig. 16, the position error rises between 10−3 and 10−2 m but
it is still within a rather small range, which further seals the
robustness of the proposed sparse autoencoder controller with
unsaturated control input for kinematic control of manipulator
system for the circular path tracking task as well.

Fig. 17 shows the position errors of the end-effector of
the manipulator system for circular path tracking with the
aforementioned three noises of different levels synthesized by
the proposed sparse autocoder controller with saturated control
input. From the first subfigure of Fig. 17, we can observe that
when the first type of noise (i.e., case 1) is added into the
controller, the position error can be within a range between
10−4 and 10−2 m, which is rather small when compared with
the radius of the circle (i.e., 0.15 m). When the additive
noise’s amplitude is enlarged by 20 times (i.e., case 2) as
shown in the second subfigure of Fig. 17, the corresponding
position error can still be around a range between 10−4 and
10−2 m synthesized by the proposed sparse autoencoder con-
troller, which indicates that the proposed sparse autoencoder
controller may have tolerance ability of the amplified noise.
Moreover, when the additive noise’s amplitude is enlarged by
200 times (i.e., case 3) as shown in the third subfigure of
Fig. 16, the position error rises around 10−2 m but it is still
within a rather small range, which further seals the robustness
of the proposed sparse autoencoder controller with saturated
control input for kinematic control of manipulator system for
the circular path tracking task.

2) Square Path: Fig. 18 shows the position errors of the
end-effector of the manipulator system for square path track-
ing with the aforementioned three noises of different levels
synthesized by the proposed sparse autocoder controller with
unsaturated control input (i.e., without saturation boundary).
From the first subfigure of Fig. 18, we can observe that when
the first type of noise (i.e., case 1) is added into the controller,
the position error can be within a range between 10−4 and
10−2 m, which is rather small when compared with the radius
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Fig. 18. Position error in sparse case without saturation input with different
level of noises for square path tracking.

Fig. 19. Position error in sparse case with saturation input with different
level of noises for square path tracking.

of the circle (i.e., 0.15 m). When the additive noise’s amplitude
is enlarged by 20 times (i.e., case 2) as shown in the second
subfigure of Fig. 18, the corresponding position error can still
be within a range between 10−4 and 10−2 m synthesized by the
proposed sparse autoencoder controller, which indicates that
the proposed sparse autoencoder controller may have tolerance
ability of the amplified noise. Moreover, when the additive
noise’s amplitude is enlarged by 200 times (i.e., case 3) as
shown in the third subfigure of Fig. 18, the position error
rises between 10−3 and 10−2 m but it is still within a rather
small range, which further seals the robustness of the proposed
sparse autoencoder controller with unsaturated control input
for kinematic control of manipulator system for the square
path tracking task.

Fig. 19 shows the position errors of the end-effector of
the manipulator system for square path tracking with the
aforementioned three noises of different levels synthesized by
the proposed sparse autocoder controller with saturated control
input. From the first subfigure of Fig. 19, we can observe that
when the first type of noise (i.e., case 1) is added into the
controller, the position error can be within a range between
10−4 and 10−2 m, which is rather small when compared with
the radius of the circle (i.e., 0.15 m). When the additive noise’s
amplitude is enlarged by 20 times (i.e., case 2) as shown in
the second subfigure of Fig. 19, the corresponding position
error can still be around a range between 10−4 and 10−2 m syn-
thesized by the proposed sparse autoencoder controller, which
indicates that the proposed sparse autoencoder controller may
have tolerance ability of amplified noise. Moreover, when the
additive noise’s amplitude is enlarged by 200 times (i.e., case
3) as shown in the third subfigure of Fig. 18, the position
error rises around 10−2 m but it is still within a rather small
range, which further seals the robustness of the proposed
sparse autoencoder controller with saturated control input for
kinematic control of manipulator system for the square path
tracking task.

Fig. 20. Position errors in sparse case without input saturation against
constant Jacobian uncertainties for both circular and square path tracking.
Top: circular path tracking; bottom: square path tracking.

TABLE IV

D–H PARAMETERS OF THE MANIPULATOR CROSS-ROTATIONAL JOINTS

From these results on the position errors with different addi-
tive noises to the sparse autoencoder controller for kinematic
control of the manipulator without and with input saturation,
one can summarize that even if the additive noise is increased
with very large amplitude, the tracking control accuracy can
still be guaranteed in an acceptable level. Such performances
demonstrate the robustness of the proposed sparse autoencoder
controller against additive noises in different amplitude levels.

D. Evaluation of Robustness Against Parameter Uncertainty

After evaluating robustness against additive noise for the
proposed sparse autoencoder controller, now we evaluate the
effect of the parameter uncertainty to the tracking error
accuracy, as parameter uncertainty is quite common when
implementing realistic applications [41], [45], [46]. For the
kinematic control of the manipulator system, the main parame-
ter uncertainty exists in the Jacobian matrix J in the velocity
kinematics equation. We consider the following two cases:
1) constant parameter uncertainty and 2) time-varying para-
meter uncertainty, and evaluate the position error performance
under these two cases.

1) Constant Parameter Uncertainty: First, we evaluate the
control performance with constant parameter uncertainty for
the sparse autoencoder controller without and with saturation
involved, that is, the new Jacobian matrix in the velocity
kinematics model becomes J ′ = J + �J , where J is
the original Jacobian matrix constructed by the mechanism
of the manipulator by D–H parameter table and �J is the
randomly generated constant-valued matrix without input from
the joint angle variable. For the unsaturated and saturated
sparse autoencoder controllers, the tracking targets are set as
the circular path and the square path for both controllers.
Figs. 20 and 21 show the position error performance under the
constant uncertainty in Jacobian matrix, and one can see that
for both circular and square paths tracking, the position errors
e = (e2

x + e2
y + e2

z )
1/2 can be within a quite small range.
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Fig. 21. Position errors in sparse case with input saturation against constant
Jacobian uncertainties for both circular and square path tracking. Top: circular
path tracking; bottom: square path tracking.

Fig. 22. Position error in sparse case without input saturation against
time-varying Jacobian uncertainties for both circular and square path tracking.
Top: circular path tracking; bottom: square path tracking.

Fig. 23. Position error in sparse case with input saturation against
time-varying Jacobian uncertainties for both circular and square path tracking.
Top: circular path tracking; bottom: square path tracking.

Specifically, in the unsaturated input case, the position errors
can reach 10−1 and 10−3 m for both tracking tasks. Moreover,
in the saturated input case, the position errors can reach 10−1

and 10−2 m for circular path tracking and 10−1 and 10−3 for
square path tracking. These position errors are small when
compared with the shape size of the tracked paths. All of these
demonstrate the robustness of the proposed sparse autoencoder
controller without and with input saturation against constant
parameter uncertainty.

2) Time-Varying Parameter Uncertainty: Second, we eval-
uate the control performance with time-varying parameter
uncertainty for the sparse autoencoder controller without and
with input saturation involved, that is, the new Jacobian matrix
in the velocity kinematics model becomes J ′ = J + �J (t)
with time-varying parameter disturbance �J (t), where J is
the original Jacobian matrix constructed by the mechanism
of the manipulator by D–H parameter table and �J (t) is
the time-varying/time-dependent matrix and defined as (1 +
0.5 sin 2t) with parameter  being a randomly generated
matrix. For the unsaturated and saturated sparse autoencoder
controllers, the tracking targets are set as the circular path and
the square path for both controllers as well. Figs. 22 and 23
show the position error performance under the time-varying
uncertainty in the Jacobian matrix, and one can observe that,

Fig. 24. Position error in sparse case with input saturation against noises
and Jacobian uncertainties for both circular and square path tracking in the
manipulator with cross-rotational joints. Top: circular path tracking; bottom:
square path tracking.

TABLE V

AVERAGE POSITION ERRORS OF THE SPARSE AUTOENCODER CON-
TROLLER WITHOUT AND WITH INPUT SATURATION FOR CONTROL

OF THE MANIPULATOR SYSTEM AGAINST ADDITIVE NOISE AND

PARAMETER UNCERTAINTY

for both circular and square path tracking tasks, the position
errors e = (e2

x + e2
y + e2

z )
1/2 can be still within a rather

small range. In more detail, in the unsaturated input case,
the position errors can reach 10−1 and 10−2 m for circular
tracking and 10−2 and 10−3 m for square tracking. In the
saturated input case, the position errors can reach 10−2 m
for circular path tracking and 10−2 and 10−3 m for square
path tracking. Similarly, these position errors are small when
compared with the size of the tracked paths. All of these
demonstrate the robustness of the proposed sparse autoen-
coder controller without and with input saturation against
time-varying parameter uncertainty.

3) Validation on More Complex Manipulator With Cross-
Rotational Joints: We verify the proposed method on more
complex manipulator systems in the noisy and parameter-
uncertain scenario, and the manipulator system’s D–H parame-
ters are shown in Table IV. The proposed sparse autoencoder
controller with input saturation is adopted for the kinematic
control tasks. Fig. 24 shows the position error e for the more
complex manipulator system with n = 8 under aforementioned
noises and Jacobian uncertainties, and we could see that the
position error of the manipulator can still keep the level
around 10−1–10−2 m. This validates the efficiency and robust-
ness of the proposed autoencoder controller for manipulator
control.

To summarize, Table V further presents the average position
errors by the sparse autoencoder controller without and with
input saturation for control of the manipulator system against
additive noise and parameter uncertainty. Clearly seen from the
table, even the additive noise’s amplitude is increased largely
or the constant and time-varying parameter uncertainty exist
along the entire control process, the position errors can be
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rather small up to around 10−2 m. All these results demonstrate
the robustness of the proposed sparse autoencoder controller
for manipulator control from different aspects.

VII. CONCLUSION

In this work, an autoencoder framework based on the recur-
rent neural network model for kinematic control of manipula-
tors is proposed, and both non-sparse and sparse autoencoder
controllers are further developed. Both input unsaturation
and saturation cases are considered to be incorporated into
the proposed non-sparse and sparse autoencoder controllers.
Theoretical analysis and extensive simulations demonstrate
that the proposed sparse autoencoder controller with input
saturation can make the end-effector of the manipulator system
track the desired path efficiently. Additional performance
evaluation against the additive noise and parameter uncertainty
substantiate robustness of the proposed sparse autoencoder
manipulator controller.
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