7,228 research outputs found

    Human Requirements Validation for Complex Systems Design

    Get PDF
    AbstractOne of the most critical phases in complex systems design is the requirements engineering process. During this phase, system designers need to accurately elicit, model and validate the desired system based on user requirements. Smart driver assistive technologies (SDAT) belong to a class of complex systems that are used to alleviate accident risk by improving situation awareness, reducing driver workload or enhancing driver attentiveness. Such systems aim to draw drivers’ attention on critical information cues that improve decision making. Discovering the requirements for such systems necessitates a holistic approach that addresses not only functional and non-functional aspects but also the human requirements such as drivers’ situation awareness and workload. This work describes a simulation-based user requirements discovery method. It utilizes the benefits of a modular virtual reality simulator to model driving conditions to discover user needs that subsequently inform the design of prototype SDATs that exploit the augmented reality method. Herein, we illustrate the development of the simulator, the elicitation of user needs through an experiment and the prototype SDAT designs using UNITY game engine

    Simulator Development - Annual Report Year 2

    Get PDF
    In this paper the simulation environment for the CATNETS project is defined further. The chosen simulator is adopted in terms of new features an architecture changes in order to provide a valid simulation environment for Application Layer Network scenarios. Furthermore the requirements for a scenario generator and the needed configuration mechanisms for the actual simulation runs are introduced. --Grid Computing

    Deep Reinforcement Learning on a Budget: 3D Control and Reasoning Without a Supercomputer

    Get PDF
    An important goal of research in Deep Reinforcement Learning in mobile robotics is to train agents capable of solving complex tasks, which require a high level of scene understanding and reasoning from an egocentric perspective. When trained from simulations, optimal environments should satisfy a currently unobtainable combination of high-fidelity photographic observations, massive amounts of different environment configurations and fast simulation speeds. In this paper we argue that research on training agents capable of complex reasoning can be simplified by decoupling from the requirement of high fidelity photographic observations. We present a suite of tasks requiring complex reasoning and exploration in continuous, partially observable 3D environments. The objective is to provide challenging scenarios and a robust baseline agent architecture that can be trained on mid-range consumer hardware in under 24h. Our scenarios combine two key advantages: (i) they are based on a simple but highly efficient 3D environment (ViZDoom) which allows high speed simulation (12000fps); (ii) the scenarios provide the user with a range of difficulty settings, in order to identify the limitations of current state of the art algorithms and network architectures. We aim to increase accessibility to the field of Deep-RL by providing baselines for challenging scenarios where new ideas can be iterated on quickly. We argue that the community should be able to address challenging problems in reasoning of mobile agents without the need for a large compute infrastructure

    SUSTAINABLE LIFETIME VALUE CREATION THROUGH INNOVATIVE PRODUCT DESIGN: A PRODUCT ASSURANCE MODEL

    Get PDF
    In the field of product development, many organizations struggle to create a value proposition that can overcome the headwinds of technology change, regulatory requirements, and intense competition, in an effort to satisfy the long-term goals of sustainability. Today, organizations are realizing that they have lost portfolio value due to poor reliability, early product retirement, and abandoned design platforms. Beyond Lean and Green Manufacturing, shareholder value can be enhanced by taking a broader perspective, and integrating sustainability innovation elements into product designs in order to improve the delivery process and extend the life of product platforms. This research is divided into two parts that lead to closing the loop towards Sustainable Value Creation in product development. The first section presents a framework for achieving Sustainable Lifetime Value through a toolset that bridges the gap between financial success and sustainable product design. Focus is placed on the analysis of the sustainable value proposition between producers, consumers, society, and the environment and the half-life of product platforms. The Half-Life Return Model is presented, designed to provide feedback to producers in the pursuit of improving the return on investment for the primary stakeholders. The second part applies the driving aspects of the framework with the development of an Adaptive Genetic Search Algorithm. The algorithm is designed to improve fault detection and mitigation during the product delivery process. A computer simulation is used to study the effectiveness of primary aspects introduced in the search algorithm, in order to attempt to improve the reliability growth of the system during the development life-cycle. The results of the analysis draw attention to the sensitivity of the driving aspects identified in the product development lifecycle, which affect the long term goals of sustainable product development. With the use of the techniques identified in this research, cost effective test case generation can be improved without a major degradation in the diversity of the search patterns required to insure a high level of fault detection. This in turn can lead to improvements in the driving aspects of the Half-Life Return Model, and ultimately the goal of designing sustainable products and processes

    BehAVExplor: Behavior Diversity Guided Testing for Autonomous Driving Systems

    Full text link
    Testing Autonomous Driving Systems (ADSs) is a critical task for ensuring the reliability and safety of autonomous vehicles. Existing methods mainly focus on searching for safety violations while the diversity of the generated test cases is ignored, which may generate many redundant test cases and failures. Such redundant failures can reduce testing performance and increase failure analysis costs. In this paper, we present a novel behavior-guided fuzzing technique (BehAVExplor) to explore the different behaviors of the ego vehicle (i.e., the vehicle controlled by the ADS under test) and detect diverse violations. Specifically, we design an efficient unsupervised model, called BehaviorMiner, to characterize the behavior of the ego vehicle. BehaviorMiner extracts the temporal features from the given scenarios and performs a clustering-based abstraction to group behaviors with similar features into abstract states. A new test case will be added to the seed corpus if it triggers new behaviors (e.g., cover new abstract states). Due to the potential conflict between the behavior diversity and the general violation feedback, we further propose an energy mechanism to guide the seed selection and the mutation. The energy of a seed quantifies how good it is. We evaluated BehAVExplor on Apollo, an industrial-level ADS, and LGSVL simulation environment. Empirical evaluation results show that BehAVExplor can effectively find more diverse violations than the state-of-the-art

    21st Century Simulation: Exploiting High Performance Computing and Data Analysis

    Get PDF
    This paper identifies, defines, and analyzes the limitations imposed on Modeling and Simulation by outmoded paradigms in computer utilization and data analysis. The authors then discuss two emerging capabilities to overcome these limitations: High Performance Parallel Computing and Advanced Data Analysis. First, parallel computing, in supercomputers and Linux clusters, has proven effective by providing users an advantage in computing power. This has been characterized as a ten-year lead over the use of single-processor computers. Second, advanced data analysis techniques are both necessitated and enabled by this leap in computing power. JFCOM's JESPP project is one of the few simulation initiatives to effectively embrace these concepts. The challenges facing the defense analyst today have grown to include the need to consider operations among non-combatant populations, to focus on impacts to civilian infrastructure, to differentiate combatants from non-combatants, and to understand non-linear, asymmetric warfare. These requirements stretch both current computational techniques and data analysis methodologies. In this paper, documented examples and potential solutions will be advanced. The authors discuss the paths to successful implementation based on their experience. Reviewed technologies include parallel computing, cluster computing, grid computing, data logging, OpsResearch, database advances, data mining, evolutionary computing, genetic algorithms, and Monte Carlo sensitivity analyses. The modeling and simulation community has significant potential to provide more opportunities for training and analysis. Simulations must include increasingly sophisticated environments, better emulations of foes, and more realistic civilian populations. Overcoming the implementation challenges will produce dramatically better insights, for trainees and analysts. High Performance Parallel Computing and Advanced Data Analysis promise increased understanding of future vulnerabilities to help avoid unneeded mission failures and unacceptable personnel losses. The authors set forth road maps for rapid prototyping and adoption of advanced capabilities. They discuss the beneficial impact of embracing these technologies, as well as risk mitigation required to ensure success

    Adoption of vehicular ad hoc networking protocols by networked robots

    Get PDF
    This paper focuses on the utilization of wireless networking in the robotics domain. Many researchers have already equipped their robots with wireless communication capabilities, stimulated by the observation that multi-robot systems tend to have several advantages over their single-robot counterparts. Typically, this integration of wireless communication is tackled in a quite pragmatic manner, only a few authors presented novel Robotic Ad Hoc Network (RANET) protocols that were designed specifically with robotic use cases in mind. This is in sharp contrast with the domain of vehicular ad hoc networks (VANET). This observation is the starting point of this paper. If the results of previous efforts focusing on VANET protocols could be reused in the RANET domain, this could lead to rapid progress in the field of networked robots. To investigate this possibility, this paper provides a thorough overview of the related work in the domain of robotic and vehicular ad hoc networks. Based on this information, an exhaustive list of requirements is defined for both types. It is concluded that the most significant difference lies in the fact that VANET protocols are oriented towards low throughput messaging, while RANET protocols have to support high throughput media streaming as well. Although not always with equal importance, all other defined requirements are valid for both protocols. This leads to the conclusion that cross-fertilization between them is an appealing approach for future RANET research. To support such developments, this paper concludes with the definition of an appropriate working plan

    EYE MOVEMENTS BEHAVIORS IN A DRIVING SIMULATOR DURING SIMPLE AND COMPLEX DISTRACTIONS

    Get PDF
    Road accidents occur frequently due to driving distractions all around the world. A driving simulator has been created to explore the cognitive effects of distractions while driving in order to address this problem. The purpose of this study is to discover the distraction-causing elements and how they affect driving performance. The simulator offers a secure and regulated setting for carrying out tests while being distracted by different visual distractions, such as solving mathematical equations and number memorizations. Several trials have been conducted in the studies, which were carried out under varied circumstances like varying driving sceneries and by displaying different distractions. Using Tobii Pro Fusion eye tracker, which records the participants\u27 eye movements and pupil dilation to detect distraction events, the cognitive load of distractions was assessed. In order to ascertain how distractions affect driving behavior, the simulator also gathered data on driving performance, such as steering wheel movements. It also gathered data on how much attention was being paid to the distractions by recording the user’s responses to the distractions. The preliminary findings of this study will shed light on the cognitive effects of driving distractions as well as the causes of driver distraction. With the help of this information, initiatives and interventions can be created to lower the prevalence of distracted driving and increase road safety. The results of this pilot study may also aid in the creation of safer standards for using electronic devices while driving and better driver training programs
    corecore