1,466 research outputs found

    A Double Loop Continuous-Time Adaptive Equalizer

    Get PDF
    This paper presents an adaptive equalizer for shorthaul gigabit optical communications. It includes two adaptation loops to compensate the changes in level and spectrum of the input signal. It consumes 29.3 mW for a 1.25 Gb/s signal, transmitted through a 50-m length 1-mm core SI-POF

    A fast-initializing digital equalizer with on-line tracking for data communications

    Get PDF
    A theory is developed for a digital equalizer for use in reducing intersymbol interference (ISI) on high speed data communications channels. The equalizer is initialized with a single isolated transmitter pulse, provided the signal-to-noise ratio (SNR) is not unusually low, then switches to a decision directed, on-line mode of operation that allows tracking of channel variations. Conditions for optimal tap-gain settings are obtained first for a transversal equalizer structure by using a mean squared error (MSE) criterion, a first order gradient algorithm to determine the adjustable equalizer tap-gains, and a sequence of isolated initializing pulses. Since the rate of tap-gain convergence depends on the eigenvalues of a channel output correlation matrix, convergence can be improved by making a linear transformation on to obtain a new correlation matrix

    Waveletโ€”Artificial Neural Network Receiver for Indoor Optical Wireless Communications

    Get PDF
    The multipath induced intersymbol interference (ISI) and fluorescent light interference (FLI) are the two most important system impairments that affect the performance of indoor optical wireless communication (OWC) systems. The presence of either incurs a high optical power penalty (OPP) and hence the interferences should be mitigated with suitable techniques to ensure optimum system performance. The discrete wavelet transform (DWT) and the artificial neural network (ANN) based receiver to mitigate the effect of FLI and ISI has been proposed in the previous study for the one-off keying (OOK) modulation scheme. It offers performance improvement compared to the traditional methods of employing a high pass filter (HPF) and a finite impulse response (FIR) equalizer. In this paper, the investigation of the DWT-ANN based receiver for baseband modulation techniques including OOK, pulse position modulation (PPM) and digital pulse interval modulation (DPIM) are reported. The proposed system is implemented using digital signal processing (DSP) board and results are verified by comparison with simulation data

    A 90 nm CMOS 16 Gb/s Transceiver for Optical Interconnects

    Get PDF
    Interconnect architectures which leverage high-bandwidth optical channels offer a promising solution to address the increasing chip-to-chip I/O bandwidth demands. This paper describes a dense, high-speed, and low-power CMOS optical interconnect transceiver architecture. Vertical-cavity surface-emitting laser (VCSEL) data rate is extended for a given average current and corresponding reliability level with a four-tap current summing FIR transmitter. A low-voltage integrating and double-sampling optical receiver front-end provides adequate sensitivity in a power efficient manner by avoiding linear high-gain elements common in conventional transimpedance-amplifier (TIA) receivers. Clock recovery is performed with a dual-loop architecture which employs baud-rate phase detection and feedback interpolation to achieve reduced power consumption, while high-precision phase spacing is ensured at both the transmitter and receiver through adjustable delay clock buffers. A prototype chip fabricated in 1 V 90 nm CMOS achieves 16 Gb/s operation while consuming 129 mW and occupying 0.105 mm^2

    Analysis and equalization of data-dependent jitter

    Get PDF
    Data-dependent jitter limits the bit-error rate (BER) performance of broadband communication systems and aggravates synchronization in phase- and delay-locked loops used for data recovery. A method for calculating the data-dependent jitter in broadband systems from the pulse response is discussed. The impact of jitter on conventional clock and data recovery circuits is studied in the time and frequency domain. The deterministic nature of data-dependent jitter suggests equalization techniques suitable for high-speed circuits. Two equalizer circuit implementations are presented. The first is a SiGe clock and data recovery circuit modified to incorporate a deterministic jitter equalizer. This circuit demonstrates the reduction of jitter in the recovered clock. The second circuit is a MOS implementation of a jitter equalizer with independent control of the rising and falling edge timing. This equalizer demonstrates improvement of the timing margins that achieve 10/sup -12/ BER from 30 to 52 ps at 10 Gb/s

    Contributions to adaptive equalization and timing recovery for optical storage systems

    Get PDF
    no abstrac

    ์˜คํ”„์…‹ ์ œ๊ฑฐ๊ธฐ์˜ ์ ์‘ ์ œ์–ด ๋“ฑํ™”๊ธฐ์™€ ๋ณด์šฐ-๋ ˆ์ดํŠธ ์œ„์ƒ ๊ฒ€์ถœ๊ธฐ๋ฅผ ํ™œ์šฉํ•œ ์ˆ˜์‹ ๊ธฐ ์„ค๊ณ„

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ •๋ณด๊ณตํ•™๋ถ€, 2021.8. ์—ผ์ œ์™„.In this thesis, designs of high-speed, low-power wireline receivers (RX) are explained. To be specific, the circuit techniques of DC offset cancellation, merged-summer DFE, stochastic Baud-rate CDR, and the phase detector (PD) for multi-level signal are proposed. At first, an RX with adaptive offset cancellation (AOC) and merged summer decision-feedback equalizer (DFE) is proposed. The proposed AOC engine removes the random DC offset of the data path by examining the random data stream's sampled data and edge outputs. In addition, the proposed RX incorporates a shared-summer DFE in a half-rate structure to reduce power dissipation and hardware complexity of the adaptive equalizer. A prototype chip fabricated in 40 nm CMOS technology occupies an active area of 0.083 mm2. Thanks to the AOC engine, the proposed RX achieves the BER of less than 10-12 in a wide range of data rates: 1.62-10 Gb/s. The proposed RX consumes 18.6 mW at 10 Gb/s over a channel with a 27 dB loss at 5 GHz, exhibiting a figure-of-merit of 0.068 pJ/b/dB. Secondly, a 40 nm CMOS RX with Baud-rate phase-detector (BRPD) is proposed. The RX includes two PDs: the BRPD employing the stochastic technique and the BRPD suitable for multi-level signals. Thanks to the Baud-rate CDRโ€™s advantage, by not using an edge-sampling clock, the proposed CDR can reduce the power consumption by lowering the hardware complexity. Besides, the proposed stochastic phase detector (SPD) tracks an optimal phase-locking point that maximizes the vertical eye opening. Furthermore, despite residual inter-symbol interference, proposed BRPD for multi-level signal secures vertical eye margin, which is especially vulnerable in the multi-level signal. Besides, the proposed BRPD has a unique lock point with an adaptive DFE, unlike conventional Mueller-Muller PD. A prototype chip fabricated in 40 nm CMOS technology occupies an active area of 0.24 mm2. The proposed PAM-4 RX achieves the bit-error-rate less than 10-11 in 48 Gb/s and the power efficiency of 2.42 pJ/b.๋ณธ ๋…ผ๋ฌธ์€ ๊ณ ์†, ์ €์ „๋ ฅ์œผ๋กœ ๋™์ž‘ํ•˜๋Š” ์œ ์„  ์ˆ˜์‹ ๊ธฐ์˜ ์„ค๊ณ„์— ๋Œ€ํ•ด ์„ค๋ช…ํ•˜๊ณ  ์žˆ๋‹ค. ๊ตฌ์ฒด์ ์œผ๋กœ ๋งํ•˜๋ฉด, ์˜คํ”„์…‹ ์ƒ์‡„, ๋ณ‘ํ•ฉ๋œ ์„œ๋จธ๋ฅผ ์‚ฌ์šฉํ•˜๋Š” ๊ฒฐ์ • ํ”ผ๋“œ๋ฐฑ ๋“ฑํ™”๊ธฐ ๊ธฐ์ˆ , ํ™•๋ฅ ์  ๋ณด์šฐ ๋ ˆ์ดํŠธ ํด๋Ÿญ๊ณผ ๋ฐ์ดํ„ฐ ๋ณต์›๊ธฐ, ๊ทธ๋ฆฌ๊ณ  ๋‹ค์ค‘ ๋ ˆ๋ฒจ ์‹ ํ˜ธ์— ์ ํ•ฉํ•œ ์œ„์ƒ ๊ฒ€์ถœ๊ธฐ๋ฅผ ์ œ์•ˆํ•œ๋‹ค. ์ฒซ์งธ๋กœ, ์ ์‘ ์˜คํ”„์…‹ ์ œ๊ฑฐ ๋ฐ ๋ณ‘ํ•ฉ๋œ ์„œ๋จธ๋ฅผ ์‚ฌ์šฉํ•˜๋Š” ๊ฒฐ์ • ํ”ผ๋“œ๋ฐฑ ๋“ฑํ™”๊ธฐ๋ฅผ ๊ฐ–์ถ˜ ์ˆ˜์‹ ๊ธฐ๋ฅผ ์ œ์•ˆํ•œ๋‹ค. ์ œ์•ˆ๋œ ์ ์‘ ์˜คํ”„์…‹ ์ œ๊ฑฐ ์—”์ง„์€ ์ž„์˜์˜ ๋ฐ์ดํ„ฐ ์ŠคํŠธ๋ฆผ์˜ ์ƒ˜ํ”Œ๋ง ๋ฐ์ดํ„ฐ, ์—์ง€ ์ถœ๋ ฅ์„ ๊ฒ€์‚ฌํ•˜์—ฌ ๋ฐ์ดํ„ฐ ๊ฒฝ๋กœ ์ƒ์˜ ์˜คํ”„์…‹์„ ์ œ๊ฑฐํ•œ๋‹ค. ๋˜ํ•œ ํ•˜ํ”„ ๋ ˆ์ดํŠธ ๊ตฌ์กฐ์˜ ๋ณ‘ํ•ฉ๋œ ์„œ๋จธ๋ฅผ ์‚ฌ์šฉํ•˜๋Š” ๊ฒฐ์ • ํ”ผ๋“œ๋ฐฑ ๋“ฑํ™”๊ธฐ๋Š” ์ „๋ ฅ์˜ ์‚ฌ์šฉ๊ณผ ํ•˜๋“œ์›จ์–ด์˜ ๋ณต์žก์„ฑ์„ ์ค„์ธ๋‹ค. 40 nm CMOS ๊ธฐ์ˆ ๋กœ ์ œ์ž‘๋œ ํ”„๋กœํ† ํƒ€์ž… ์นฉ์€ 0.083 mm2 ์˜ ๋ฉด์ ์„ ๊ฐ€์ง„๋‹ค. ์ ์‘ ์˜คํ”„์…‹ ์ œ๊ฑฐ๊ธฐ ๋•๋ถ„์— ์ œ์•ˆ๋œ ์ˆ˜์‹ ๊ธฐ๋Š” 10-12 ๋ฏธ๋งŒ์˜ BER์„ ๋‹ฌ์„ฑํ•œ๋‹ค. ๋˜ํ•œ ์ œ์•ˆ๋œ ์ˆ˜์‹ ๊ธฐ๋Š” 5GHz์—์„œ 27 dB์˜ ๋กœ์Šค๋ฅผ ๊ฐ–๋Š” ์ฑ„๋„์—์„œ 10 Gb/s์˜ ์†๋„์—์„œ 18.6 mW๋ฅผ ์†Œ๋น„ํ•˜๋ฉฐ 0.068 pJ/b/dB์˜ FoM์„ ๋‹ฌ์„ฑํ•˜์˜€๋‹ค. ๋‘๋ฒˆ์งธ๋กœ, ๋ณด์šฐ ๋ ˆ์ดํŠธ ์œ„์ƒ ๊ฒ€์ถœ๊ธฐ๊ฐ€ ์žˆ๋Š” 40 nm CMOS ์ˆ˜์‹ ๊ธฐ๊ฐ€ ์ œ์•ˆ๋˜์—ˆ๋‹ค. ์ˆ˜์‹ ๊ธฐ์—๋Š” ๋‘๊ฐœ์˜ ๋ณด์šฐ ๋ ˆ์ดํŠธ ์œ„์ƒ ๊ฒ€์ถœ๊ธฐ๋ฅผ ํฌํ•จํ•œ๋‹ค. ํ•˜๋‚˜๋Š” ํ™•๋ฅ ๋ก ์  ๊ธฐ๋ฒ•์„ ์‚ฌ์šฉํ•˜๋Š” ๋ณด์šฐ ๋ ˆ์ดํŠธ ์œ„์ƒ ๊ฒ€์ถœ๊ธฐ์ด๋‹ค. ๋ณด์šฐ ๋ ˆ์ดํŠธ ํด๋Ÿญ ๋ฐ์ดํ„ฐ ๋ณต์›๊ธฐ์˜ ์žฅ์  ๋•๋ถ„์— ์—์ง€ ์ƒ˜ํ”Œ๋ง ํด๋Ÿญ์„ ์‚ฌ์šฉํ•˜์ง€ ์•Š์Œ์œผ๋กœ์„œ ํŒŒ์›Œ์˜ ์†Œ๋ชจ์™€ ํ•˜๋“œ์›จ์–ด์˜ ๋ณต์žก์„ฑ์„ ์ค„์˜€๋‹ค. ๋˜ํ•œ ํ™•๋ฅ ์  ์œ„์ƒ ๊ฒ€์ถœ๊ธฐ๋Š” ์ˆ˜์ง ์•„์ด ์˜คํ”„๋‹์„ ์ตœ๋Œ€ํ™”ํ•˜๋Š” ์ตœ์ ์˜ ์œ„์ƒ ์ง€์ ์„ ์ฐพ์„ ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๋‹ค๋ฅธ ์œ„์ƒ ๊ฒ€์ถœ๊ธฐ๋Š” ๋‹ค์ค‘ ๋ ˆ๋ฒจ ์‹ ํ˜ธ์— ์ ํ•ฉํ•œ ๋ฐฉ์‹์ด๋‹ค. ์‹ฌ๋ณผ ๊ฐ„ ๊ฐ„์„ญ์ด ๋‹ค์ค‘ ๋ ˆ๋ฒจ ์‹ ํ˜ธ์— ๋งค์šฐ ์ทจ์•ฝํ•œ ๋ฌธ์ œ๊ฐ€ ์žˆ๋”๋ผ๋„ ์ œ์•ˆ๋œ ๋‹ค์ค‘ ๋ ˆ๋ฒจ ์‹ ํ˜ธ์šฉ ๋ณด์šฐ ๋ ˆ์ดํŠธ ์œ„์ƒ ๊ฒ€์ถœ๊ธฐ๋Š” ์ˆ˜์ง ์•„์ด ๋งˆ์ง„์„ ํ™•๋ณดํ•œ๋‹ค. ๊ฒŒ๋‹ค๊ฐ€ ์ œ์•ˆ๋œ ๋ณด์šฐ ๋ ˆ์ดํŠธ ์œ„์ƒ ๊ฒ€์ถœ๊ธฐ๋Š” ๊ธฐ์กด์˜ ๋ฎฌ๋Ÿฌ-๋ฎ๋Ÿฌ ์œ„์ƒ ๊ฒ€์ถœ๊ธฐ์™€ ๋‹ฌ๋ฆฌ ์ ์‘ํ˜• ๊ฒฐ์ • ํ”ผ๋“œ๋ฐฑ ๋“ฑํ™”๊ธฐ๊ฐ€ ์žˆ๋”๋ผ๋„ ์œ ์ผํ•œ ๋ฝ ์ง€์ ์„ ๊ฐ–๋Š”๋‹ค. ํ”„๋กœํ† ํƒ€์ž… ์นฉ์€ 0.24mm2์˜ ๋ฉด์ ์„ ๊ฐ€์ง„๋‹ค. ์ œ์•ˆ๋œ PAM-4 ์ˆ˜์‹ ๊ธฐ๋Š” 48 Gb/s์˜ ์†๋„์—์„œ 10-11 ๋ฏธ๋งŒ์˜ BER์„ ๊ฐ€์ง€๊ณ , 2.42 pJ/b์˜ FoM์„ ๊ฐ€์ง„๋‹ค.CHAPTER 1 INTRODUCTION 1 1.1 MOTIVATION 1 1.2 THESIS ORGANIZATION 5 CHAPTER 2 BACKGROUNDS 6 2.1 BASIC ARCHITECTURE IN SERIAL LINK 6 2.1.1 SERIAL COMMUNICATION 6 2.1.2 CLOCK AND DATA RECOVERY 8 2.1.3 MULTI-LEVEL PULSE-AMPLITUDE MODULATION 10 2.2 EQUALIZER 12 2.2.1 EQUALIZER OVERVIEW 12 2.2.2 DECISION-FEEDBACK EQUALIZER 15 2.2.3 ADAPTIVE EQUALIZER 18 2.3 CLOCK RECOVERY 21 2.3.1 2X OVERSAMPLING PD ALEXANDER PD 22 2.3.2 BAUD-RATE PD MUELLER MULLER PD 25 CHAPTER 3 AN ADAPTIVE OFFSET CANCELLATION SCHEME AND SHARED SUMMER ADAPTIVE DFE 28 3.1 OVERVIEW 28 3.2 AN ADAPTIVE OFFSET CANCELLATION SCHEME AND SHARED-SUMMER ADAPTIVE DFE FOR LOW POWER RECEIVER 31 3.3 SHARED SUMMER DFE 37 3.4 RECEIVER IMPLEMENTATION 42 3.5 MEASUREMENT RESULTS 45 CHAPTER 4 PAM-4 BAUD-RATE DIGITAL CDR 51 4.1 OVERVIEW 51 4.2 OVERALL ARCHITECTURE 53 4.2.1 PROPOSED BAUD-RATE CDR ARCHITECTURE 53 4.2.2 PROPOSED ANALOG FRONT-END STRUCTURE 59 4.3 STOCHASTIC PHASE DETECTION PAM-4 CDR 64 4.3.1 PROPOSED STOCHASTIC PHASE DETECTION 64 4.3.2 COMPARISON OF THE STOCHASTIC PD WITH SS-MMPD 70 4.4 PHASE DETECTION FOR MULTI-LEVEL SIGNALING 73 4.4.1 PROPOSED BAUD-RATE PHASE DETECTOR FOR MULTI-LEVEL SIGNAL 73 4.4.2 DATA LEVEL AND DFE COEFFICIENT ADAPTATION 79 4.4.3 PROPOSED PHASE DETECTOR 84 4.5 MEASUREMENT RESULT 88 4.5.1 MEASUREMENT OF THE PROPOSED STOCHASTIC BAUD-RATE PHASE DETECTION 94 4.5.2 MEASUREMENT OF THE PROPOSED BAUD-RATE PHASE DETECTION FOR MULTI-LEVEL SIGNAL 97 CHAPTER 5 CONCLUSION 103 BIBLIOGRAPHY 105 ์ดˆ ๋ก 109๋ฐ•
    • โ€ฆ
    corecore