오프셋 제거기의 적응 제어 등화기와 보우-레이트 위상 검출기를 활용한 수신기 설계

Abstract

학위논문(박사) -- 서울대학교대학원 : 공과대학 전기·정보공학부, 2021.8. 염제완.In this thesis, designs of high-speed, low-power wireline receivers (RX) are explained. To be specific, the circuit techniques of DC offset cancellation, merged-summer DFE, stochastic Baud-rate CDR, and the phase detector (PD) for multi-level signal are proposed. At first, an RX with adaptive offset cancellation (AOC) and merged summer decision-feedback equalizer (DFE) is proposed. The proposed AOC engine removes the random DC offset of the data path by examining the random data stream's sampled data and edge outputs. In addition, the proposed RX incorporates a shared-summer DFE in a half-rate structure to reduce power dissipation and hardware complexity of the adaptive equalizer. A prototype chip fabricated in 40 nm CMOS technology occupies an active area of 0.083 mm2. Thanks to the AOC engine, the proposed RX achieves the BER of less than 10-12 in a wide range of data rates: 1.62-10 Gb/s. The proposed RX consumes 18.6 mW at 10 Gb/s over a channel with a 27 dB loss at 5 GHz, exhibiting a figure-of-merit of 0.068 pJ/b/dB. Secondly, a 40 nm CMOS RX with Baud-rate phase-detector (BRPD) is proposed. The RX includes two PDs: the BRPD employing the stochastic technique and the BRPD suitable for multi-level signals. Thanks to the Baud-rate CDR’s advantage, by not using an edge-sampling clock, the proposed CDR can reduce the power consumption by lowering the hardware complexity. Besides, the proposed stochastic phase detector (SPD) tracks an optimal phase-locking point that maximizes the vertical eye opening. Furthermore, despite residual inter-symbol interference, proposed BRPD for multi-level signal secures vertical eye margin, which is especially vulnerable in the multi-level signal. Besides, the proposed BRPD has a unique lock point with an adaptive DFE, unlike conventional Mueller-Muller PD. A prototype chip fabricated in 40 nm CMOS technology occupies an active area of 0.24 mm2. The proposed PAM-4 RX achieves the bit-error-rate less than 10-11 in 48 Gb/s and the power efficiency of 2.42 pJ/b.본 논문은 고속, 저전력으로 동작하는 유선 수신기의 설계에 대해 설명하고 있다. 구체적으로 말하면, 오프셋 상쇄, 병합된 서머를 사용하는 결정 피드백 등화기 기술, 확률적 보우 레이트 클럭과 데이터 복원기, 그리고 다중 레벨 신호에 적합한 위상 검출기를 제안한다. 첫째로, 적응 오프셋 제거 및 병합된 서머를 사용하는 결정 피드백 등화기를 갖춘 수신기를 제안한다. 제안된 적응 오프셋 제거 엔진은 임의의 데이터 스트림의 샘플링 데이터, 에지 출력을 검사하여 데이터 경로 상의 오프셋을 제거한다. 또한 하프 레이트 구조의 병합된 서머를 사용하는 결정 피드백 등화기는 전력의 사용과 하드웨어의 복잡성을 줄인다. 40 nm CMOS 기술로 제작된 프로토타입 칩은 0.083 mm2 의 면적을 가진다. 적응 오프셋 제거기 덕분에 제안된 수신기는 10-12 미만의 BER을 달성한다. 또한 제안된 수신기는 5GHz에서 27 dB의 로스를 갖는 채널에서 10 Gb/s의 속도에서 18.6 mW를 소비하며 0.068 pJ/b/dB의 FoM을 달성하였다. 두번째로, 보우 레이트 위상 검출기가 있는 40 nm CMOS 수신기가 제안되었다. 수신기에는 두개의 보우 레이트 위상 검출기를 포함한다. 하나는 확률론적 기법을 사용하는 보우 레이트 위상 검출기이다. 보우 레이트 클럭 데이터 복원기의 장점 덕분에 에지 샘플링 클럭을 사용하지 않음으로서 파워의 소모와 하드웨어의 복잡성을 줄였다. 또한 확률적 위상 검출기는 수직 아이 오프닝을 최대화하는 최적의 위상 지점을 찾을 수 있었다. 다른 위상 검출기는 다중 레벨 신호에 적합한 방식이다. 심볼 간 간섭이 다중 레벨 신호에 매우 취약한 문제가 있더라도 제안된 다중 레벨 신호용 보우 레이트 위상 검출기는 수직 아이 마진을 확보한다. 게다가 제안된 보우 레이트 위상 검출기는 기존의 뮬러-뮐러 위상 검출기와 달리 적응형 결정 피드백 등화기가 있더라도 유일한 락 지점을 갖는다. 프로토타입 칩은 0.24mm2의 면적을 가진다. 제안된 PAM-4 수신기는 48 Gb/s의 속도에서 10-11 미만의 BER을 가지고, 2.42 pJ/b의 FoM을 가진다.CHAPTER 1 INTRODUCTION 1 1.1 MOTIVATION 1 1.2 THESIS ORGANIZATION 5 CHAPTER 2 BACKGROUNDS 6 2.1 BASIC ARCHITECTURE IN SERIAL LINK 6 2.1.1 SERIAL COMMUNICATION 6 2.1.2 CLOCK AND DATA RECOVERY 8 2.1.3 MULTI-LEVEL PULSE-AMPLITUDE MODULATION 10 2.2 EQUALIZER 12 2.2.1 EQUALIZER OVERVIEW 12 2.2.2 DECISION-FEEDBACK EQUALIZER 15 2.2.3 ADAPTIVE EQUALIZER 18 2.3 CLOCK RECOVERY 21 2.3.1 2X OVERSAMPLING PD ALEXANDER PD 22 2.3.2 BAUD-RATE PD MUELLER MULLER PD 25 CHAPTER 3 AN ADAPTIVE OFFSET CANCELLATION SCHEME AND SHARED SUMMER ADAPTIVE DFE 28 3.1 OVERVIEW 28 3.2 AN ADAPTIVE OFFSET CANCELLATION SCHEME AND SHARED-SUMMER ADAPTIVE DFE FOR LOW POWER RECEIVER 31 3.3 SHARED SUMMER DFE 37 3.4 RECEIVER IMPLEMENTATION 42 3.5 MEASUREMENT RESULTS 45 CHAPTER 4 PAM-4 BAUD-RATE DIGITAL CDR 51 4.1 OVERVIEW 51 4.2 OVERALL ARCHITECTURE 53 4.2.1 PROPOSED BAUD-RATE CDR ARCHITECTURE 53 4.2.2 PROPOSED ANALOG FRONT-END STRUCTURE 59 4.3 STOCHASTIC PHASE DETECTION PAM-4 CDR 64 4.3.1 PROPOSED STOCHASTIC PHASE DETECTION 64 4.3.2 COMPARISON OF THE STOCHASTIC PD WITH SS-MMPD 70 4.4 PHASE DETECTION FOR MULTI-LEVEL SIGNALING 73 4.4.1 PROPOSED BAUD-RATE PHASE DETECTOR FOR MULTI-LEVEL SIGNAL 73 4.4.2 DATA LEVEL AND DFE COEFFICIENT ADAPTATION 79 4.4.3 PROPOSED PHASE DETECTOR 84 4.5 MEASUREMENT RESULT 88 4.5.1 MEASUREMENT OF THE PROPOSED STOCHASTIC BAUD-RATE PHASE DETECTION 94 4.5.2 MEASUREMENT OF THE PROPOSED BAUD-RATE PHASE DETECTION FOR MULTI-LEVEL SIGNAL 97 CHAPTER 5 CONCLUSION 103 BIBLIOGRAPHY 105 초 록 109박

    Similar works