880 research outputs found

    A domain-specific language for task handlers generation, applying discrete controller synthesis

    Get PDF
    We propose a simple programming language, called Nemo, specific to the domain of multi-task real-time embedded systems, such as in robotic, automotive or avionics systems. It can be used to specify a set of resources with usage constraints, a set of tasks that consume them according to various modes, and applications sequencing the tasks. We obtain automatically an application-specific task handler that correctly manages the constraints (if there exists one), through a compilation-like process including a phase of discrete controller synthesis. This way, this formal technique contributes to the safety of the designed systems, while being encapsulated in a tool that makes it usable by end-users and application experts. Our approach is based on the synchronous modelling techniques, languages and tools

    A Domain-Specific Language for Multitask Systems, Applying Discrete Controller Synthesis

    Get PDF
    International audienceWe propose a simple programming language, called Nemo, specific to the domain of multitask real-time control systems, such as in robotic, automotive, or avionics systems. It can be used to specify a set of resources with usage constraints, a set of tasks that consume them according to various modes, and applications sequencing the tasks. We automatically obtain an application-specific task handler that correctly manages the constraints (if there exists one), through a compilation-like process including a phase of discrete controller synthesis. This way, this formal technique contributes to the safety of the designed systems, while being encapsulated in a tool that makes it usable by application experts. Our approach is based on the synchronous modelling techniques, languages, and tools

    Working Notes from the 1992 AAAI Workshop on Automating Software Design. Theme: Domain Specific Software Design

    Get PDF
    The goal of this workshop is to identify different architectural approaches to building domain-specific software design systems and to explore issues unique to domain-specific (vs. general-purpose) software design. Some general issues that cut across the particular software design domain include: (1) knowledge representation, acquisition, and maintenance; (2) specialized software design techniques; and (3) user interaction and user interface

    Automatic generation of safe handlers for multi-task systems

    Get PDF
    International audienceWe are interested in the programming of real-time embedded control systems, such as in robotic, automotive or avionic systems. They are designed with multiple tasks, each with multiple modes. It is complex to design task handlers that control the switching of activities in order to insure safety properties of the global system. We propose a model of tasks in terms of transition systems, designed especially with the purpose of applying existing discrete controller synthesis techniques. This provides us with a systematic methodology, for the automatic generation of safe task handlers, with the support of synchronous languages and associated tools

    Automatic generation of discrete handlers of real-time continuous control tasks

    Get PDF
    International audienceWe present a novel technique for designing discrete, logical control loops, on top of continuous control tasks, ensuring logical safety properties of the tasks sequencings and mode changes. We define this new handler on top of the real-time executives built with the ORCCAD design environment for control systems, which is applied, e.g. to robotics and real-time networked control. It features structures of control tasks, each equipped with a local automaton, used for the reactive, event-based management of its activity and modes. The additional discrete handler manages the interactions between tasks, concerning, e.g., mutual exclusions, forbidden or imposed sequences. We use a new reactive programming language, with constructs for finite-state machines and data-flow nodes, and a mechanism of behavioral contracts, which involves discrete controller synthesis. The result is a discrete control loop, on top of the continuous control loops, all integrated in a coherent real-time architecture. Our approach is illustrated and validated experimentally with the case study of a robot arm

    Motion control and synchronisation of multi-axis drive systems

    Get PDF
    Motion control and synchronisation of multi-axis drive system

    Safe-guarded multi-agent control for mechatronic systems: implementation framework and design patterns

    Get PDF
    This thesis addresses two issues: (i) developing an implementation framework for Multi-Agent Control Systems (MACS); and (ii) developing a pattern-based safe-guarded MACS design method.\ud \ud The Multi-Agent Controller Implementation Framework (MACIF), developed by Van Breemen (2001), is selected as the starting point because of its capability to produce MACS for solving complex control problems with two useful features:\ud • MACS is hierarchically structured in terms of a coordinated group of elementary and/or composite controller-agents;\ud • MACS has an open architecture such that controller-agents can be added, modified or removed without redesigning and/or reprogramming the remaining part of the MACS

    Reconfigurable microarchitectures at the programmable logic interface

    Get PDF

    Intelligent Agent Architectures: Reactive Planning Testbed

    Get PDF
    An Integrated Agent Architecture (IAA) is a framework or paradigm for constructing intelligent agents. Intelligent agents are collections of sensors, computers, and effectors that interact with their environments in real time in goal-directed ways. Because of the complexity involved in designing intelligent agents, it has been found useful to approach the construction of agents with some organizing principle, theory, or paradigm that gives shape to the agent's components and structures their relationships. Given the wide variety of approaches being taken in the field, the question naturally arises: Is there a way to compare and evaluate these approaches? The purpose of the present work is to develop common benchmark tasks and evaluation metrics to which intelligent agents, including complex robotic agents, constructed using various architectural approaches can be subjected
    corecore