13,502 research outputs found

    Spectral/hp element methods: recent developments, applications, and perspectives

    Get PDF
    The spectral/hp element method combines the geometric flexibility of the classical h-type finite element technique with the desirable numerical properties of spectral methods, employing high-degree piecewise polynomial basis functions on coarse finite element-type meshes. The spatial approximation is based upon orthogonal polynomials, such as Legendre or Chebychev polynomials, modified to accommodate C0-continuous expansions. Computationally and theoretically, by increasing the polynomial order p, high-precision solutions and fast convergence can be obtained and, in particular, under certain regularity assumptions an exponential reduction in approximation error between numerical and exact solutions can be achieved. This method has now been applied in many simulation studies of both fundamental and practical engineering flows. This paper briefly describes the formulation of the spectral/hp element method and provides an overview of its application to computational fluid dynamics. In particular, it focuses on the use the spectral/hp element method in transitional flows and ocean engineering. Finally, some of the major challenges to be overcome in order to use the spectral/hp element method in more complex science and engineering applications are discussed

    Fluid flow dynamics under location uncertainty

    Get PDF
    We present a derivation of a stochastic model of Navier Stokes equations that relies on a decomposition of the velocity fields into a differentiable drift component and a time uncorrelated uncertainty random term. This type of decomposition is reminiscent in spirit to the classical Reynolds decomposition. However, the random velocity fluctuations considered here are not differentiable with respect to time, and they must be handled through stochastic calculus. The dynamics associated with the differentiable drift component is derived from a stochastic version of the Reynolds transport theorem. It includes in its general form an uncertainty dependent "subgrid" bulk formula that cannot be immediately related to the usual Boussinesq eddy viscosity assumption constructed from thermal molecular agitation analogy. This formulation, emerging from uncertainties on the fluid parcels location, explains with another viewpoint some subgrid eddy diffusion models currently used in computational fluid dynamics or in geophysical sciences and paves the way for new large-scales flow modelling. We finally describe an applications of our formalism to the derivation of stochastic versions of the Shallow water equations or to the definition of reduced order dynamical systems

    Optimized Schwarz waveform relaxation for Primitive Equations of the ocean

    Get PDF
    In this article we are interested in the derivation of efficient domain decomposition methods for the viscous primitive equations of the ocean. We consider the rotating 3d incompressible hydrostatic Navier-Stokes equations with free surface. Performing an asymptotic analysis of the system with respect to the Rossby number, we compute an approximated Dirichlet to Neumann operator and build an optimized Schwarz waveform relaxation algorithm. We establish the well-posedness of this algorithm and present some numerical results to illustrate the method

    Numerical wave propagation for the triangular P1DGP1_{DG}-P2P2 finite element pair

    Full text link
    Inertia-gravity mode and Rossby mode dispersion properties are examined for discretisations of the linearized rotating shallow-water equations using the P1DGP1_{DG}-P2P2 finite element pair on arbitrary triangulations in planar geometry. A discrete Helmholtz decomposition of the functions in the velocity space based on potentials taken from the pressure space is used to provide a complete description of the numerical wave propagation for the discretised equations. In the ff-plane case, this decomposition is used to obtain decoupled equations for the geostrophic modes, the inertia-gravity modes, and the inertial oscillations. As has been noticed previously, the geostrophic modes are steady. The Helmholtz decomposition is used to show that the resulting inertia-gravity wave equation is third-order accurate in space. In general the \pdgp finite element pair is second-order accurate, so this leads to very accurate wave propagation. It is further shown that the only spurious modes supported by this discretisation are spurious inertial oscillations which have frequency ff, and which do not propagate. The Helmholtz decomposition also allows a simple derivation of the quasi-geostrophic limit of the discretised P1DGP1_{DG}-P2P2 equations in the β\beta-plane case, resulting in a Rossby wave equation which is also third-order accurate.Comment: Revised version prior to final journal submissio
    corecore