We present a derivation of a stochastic model of Navier Stokes equations that
relies on a decomposition of the velocity fields into a differentiable drift
component and a time uncorrelated uncertainty random term. This type of
decomposition is reminiscent in spirit to the classical Reynolds decomposition.
However, the random velocity fluctuations considered here are not
differentiable with respect to time, and they must be handled through
stochastic calculus. The dynamics associated with the differentiable drift
component is derived from a stochastic version of the Reynolds transport
theorem. It includes in its general form an uncertainty dependent "subgrid"
bulk formula that cannot be immediately related to the usual Boussinesq eddy
viscosity assumption constructed from thermal molecular agitation analogy. This
formulation, emerging from uncertainties on the fluid parcels location,
explains with another viewpoint some subgrid eddy diffusion models currently
used in computational fluid dynamics or in geophysical sciences and paves the
way for new large-scales flow modelling. We finally describe an applications of
our formalism to the derivation of stochastic versions of the Shallow water
equations or to the definition of reduced order dynamical systems