303 research outputs found

    Backscatter from the Data Plane --- Threats to Stability and Security in Information-Centric Networking

    Full text link
    Information-centric networking proposals attract much attention in the ongoing search for a future communication paradigm of the Internet. Replacing the host-to-host connectivity by a data-oriented publish/subscribe service eases content distribution and authentication by concept, while eliminating threats from unwanted traffic at an end host as are common in today's Internet. However, current approaches to content routing heavily rely on data-driven protocol events and thereby introduce a strong coupling of the control to the data plane in the underlying routing infrastructure. In this paper, threats to the stability and security of the content distribution system are analyzed in theory and practical experiments. We derive relations between state resources and the performance of routers and demonstrate how this coupling can be misused in practice. We discuss new attack vectors present in its current state of development, as well as possibilities and limitations to mitigate them.Comment: 15 page

    HoPP: Robust and Resilient Publish-Subscribe for an Information-Centric Internet of Things

    Full text link
    This paper revisits NDN deployment in the IoT with a special focus on the interaction of sensors and actuators. Such scenarios require high responsiveness and limited control state at the constrained nodes. We argue that the NDN request-response pattern which prevents data push is vital for IoT networks. We contribute HoP-and-Pull (HoPP), a robust publish-subscribe scheme for typical IoT scenarios that targets IoT networks consisting of hundreds of resource constrained devices at intermittent connectivity. Our approach limits the FIB tables to a minimum and naturally supports mobility, temporary network partitioning, data aggregation and near real-time reactivity. We experimentally evaluate the protocol in a real-world deployment using the IoT-Lab testbed with varying numbers of constrained devices, each wirelessly interconnected via IEEE 802.15.4 LowPANs. Implementations are built on CCN-lite with RIOT and support experiments using various single- and multi-hop scenarios

    Performance evaluation of information-centric networking for multimedia services

    Get PDF
    This is the author accepted manuscript. The final version is available from the publisher via the DOI in this record.The rapid development in multimedia services has shifted the major function of the current Internet from host-centric communication to service-oriented content dissemination. Motivated by this significant change, Information-Centric Networking (ICN) has emerged as a new networking paradigm, which aims at providing natural support for efficient information retrieval over the Internet. As a crucial characteristic of ICN, in-network caching enables users to efficiently access popular content from ubiquitous caches to improve the Quality-of-Experience (QoE). Therefore, in-network caching for ICN has received considerable attention in recent years and many cache schemes and models have been proposed. However, there is a lack of research into ICN cache models under practical environments such as arbitrary topology and multimedia services exhibiting bursty nature. To bridge the gap, this paper proposes a new analytical model to gain valuable insight into the caching performance of ICN with arbitrary topology and bursty content requests. The accuracy of the proposed model is validated by comparing the analytical results with those obtained from simulation experiments. The analytical model is then used as a cost-efficient tool to investigate the impact of key network and content parameters on the performance of caching in ICN

    Bluetooth Mesh under the Microscope: How much ICN is Inside?

    Full text link
    Bluetooth (BT) mesh is a new mode of BT operation for low-energy devices that offers group-based publish-subscribe as a network service with additional caching capabilities. These features resemble concepts of information-centric networking (ICN), and the analogy to ICN has been repeatedly drawn in the BT community. In this paper, we compare BT mesh with ICN both conceptually and in real-world experiments. We contrast both architectures and their design decisions in detail. Experiments are performed on an IoT testbed using NDN/CCNx and BT mesh on constrained RIOT nodes. Our findings indicate significant differences both in concepts and in real-world performance. Supported by new insights, we identify synergies and sketch a design of a BT-ICN that benefits from both worlds

    Cost-Aware Optimisation of Cache Allocation for Information-Centric Networking

    Get PDF
    This is the author accepted manuscript. The final version is available from IEEE via the DOI in this record.Information-centric networking (ICN) is an emerging paradigm that decouples content from the host to achieve fast and cost-efficient communication and content distribution in the future Internet. A key feature of ICN is the deployment of ubiquitous in-network caching to speed up service delivery and improve network resource utilisation. ICN caching has been widely studied in terms of caching strategies and caching performance. However, the economic aspect of ICN has received marginal consideration so far, although it is vital to understand the potential cost-efficiency of ICN before its wide deployment in service provider network. To address this issue, we propose a cost-aware caching scheme to study the Quality-of-Service (QoS) and cost of ICN and investigate the inner association between them. Two new models are designed to characterise the cost and QoS of ICN with arbitrary topology under heterogeneous bursty content requests. A multi-objective evolution algorithm is adopted to find the optimal cache resource allocation. Numerical results show the effectiveness of the proposed scheme in achieving cost-efficiency and QoS guarantee in ICN caching

    Caching on Named Data Network: a Survey and Future Research

    Get PDF
    The IP-based system cause inefficient content delivery process. This inefficiency was attempted to be solved with the Content Distribution Network. A replica server is located in a particular location, usually on the edge router that is closest to the user. The user’s request will be served from that replica server. However, caching on Content Distribution Network is inflexible. This system is difficult to support mobility and conditions of dynamic content demand from consumers. We need to shift the paradigm to content-centric. In Named Data Network, data can be placed on the content store on routersthat are closest to the consumer. Caching on Named Data Network must be able to store content dynamically. It should be selectively select content that is eligible to be stored or deleted from the content storage based on certain considerations, e.g. the popularity of content in the local area. This survey paper explains the development of caching techniques on Named Data Network that are classified into main points. The brief explanation of advantages and disadvantages are presented to make it easy to understand. Finally, proposed the open challenge related to the caching mechanism to improve NDN performance

    Proxcache: A new cache deployment strategy in information-centric network for mitigating path and content redundancy

    Get PDF
    One of the promising paradigms for resource sharing with maintaining the basic Internet semantics is the Information-Centric Networking (ICN). ICN distinction with the current Internet is its ability to refer contents by names with partly dissociating the host-to-host practice of Internet Protocol addresses. Moreover, content caching in ICN is the major action of achieving content networking to reduce the amount of server access. The current caching practice in ICN using the Leave Copy Everywhere (LCE) progenerate problems of over deposition of contents known as content redundancy, path redundancy, lesser cache-hit rates in heterogeneous networks and lower content diversity. This study proposes a new cache deployment strategy referred to as ProXcache to acquire node relationships using hyperedge concept of hypergraph for cache positioning. The study formulates the relationships through the path and distance approximation to mitigate content and path redundancy. The study adopted the Design Research Methodology approach to achieve the slated research objectives. ProXcache was investigated using simulation on the Abilene, GEANT and the DTelekom network topologies for LCE and ProbCache caching strategies with the Zipf distribution to differ content categorization. The results show the overall content and path redundancy are minimized with lesser caching operation of six depositions per request as compared to nine and nineteen for ProbCache and LCE respectively. ProXcache yields better content diversity ratio of 80% against 20% and 49% for LCE and ProbCache respectively as the cache sizes varied. ProXcache also improves the cache-hit ratio through proxy positions. These thus, have significant influence in the development of the ICN for better management of contents towards subscribing to the Future Internet

    Unravelling the Impact of Temporal and Geographical Locality in Content Caching Systems

    Get PDF
    To assess the performance of caching systems, the definition of a proper process describing the content requests generated by users is required. Starting from the analysis of traces of YouTube video requests collected inside operational networks, we identify the characteristics of real traffic that need to be represented and those that instead can be safely neglected. Based on our observations, we introduce a simple, parsimonious traffic model, named Shot Noise Model (SNM), that allows us to capture temporal and geographical locality of content popularity. The SNM is sufficiently simple to be effectively employed in both analytical and scalable simulative studies of caching systems. We demonstrate this by analytically characterizing the performance of the LRU caching policy under the SNM, for both a single cache and a network of caches. With respect to the standard Independent Reference Model (IRM), some paradigmatic shifts, concerning the impact of various traffic characteristics on cache performance, clearly emerge from our results.Comment: 14 pages, 11 Figures, 2 Appendice
    • …
    corecore