36,197 research outputs found

    Sensor Search Techniques for Sensing as a Service Architecture for The Internet of Things

    Get PDF
    The Internet of Things (IoT) is part of the Internet of the future and will comprise billions of intelligent communicating "things" or Internet Connected Objects (ICO) which will have sensing, actuating, and data processing capabilities. Each ICO will have one or more embedded sensors that will capture potentially enormous amounts of data. The sensors and related data streams can be clustered physically or virtually, which raises the challenge of searching and selecting the right sensors for a query in an efficient and effective way. This paper proposes a context-aware sensor search, selection and ranking model, called CASSARAM, to address the challenge of efficiently selecting a subset of relevant sensors out of a large set of sensors with similar functionality and capabilities. CASSARAM takes into account user preferences and considers a broad range of sensor characteristics, such as reliability, accuracy, location, battery life, and many more. The paper highlights the importance of sensor search, selection and ranking for the IoT, identifies important characteristics of both sensors and data capture processes, and discusses how semantic and quantitative reasoning can be combined together. This work also addresses challenges such as efficient distributed sensor search and relational-expression based filtering. CASSARAM testing and performance evaluation results are presented and discussed.Comment: IEEE sensors Journal, 2013. arXiv admin note: text overlap with arXiv:1303.244

    A randomised primal-dual algorithm for distributed radio-interferometric imaging

    Get PDF
    Next generation radio telescopes, like the Square Kilometre Array, will acquire an unprecedented amount of data for radio astronomy. The development of fast, parallelisable or distributed algorithms for handling such large-scale data sets is of prime importance. Motivated by this, we investigate herein a convex optimisation algorithmic structure, based on primal-dual forward-backward iterations, for solving the radio interferometric imaging problem. It can encompass any convex prior of interest. It allows for the distributed processing of the measured data and introduces further flexibility by employing a probabilistic approach for the selection of the data blocks used at a given iteration. We study the reconstruction performance with respect to the data distribution and we propose the use of nonuniform probabilities for the randomised updates. Our simulations show the feasibility of the randomisation given a limited computing infrastructure as well as important computational advantages when compared to state-of-the-art algorithmic structures.Comment: 5 pages, 3 figures, Proceedings of the European Signal Processing Conference (EUSIPCO) 2016, Related journal publication available at https://arxiv.org/abs/1601.0402

    Efficient & Effective Selective Query Rewriting with Efficiency Predictions

    Get PDF
    To enhance effectiveness, a user's query can be rewritten internally by the search engine in many ways, for example by applying proximity, or by expanding the query with related terms. However, approaches that benefit effectiveness often have a negative impact on efficiency, which has impacts upon the user satisfaction, if the query is excessively slow. In this paper, we propose a novel framework for using the predicted execution time of various query rewritings to select between alternatives on a per-query basis, in a manner that ensures both effectiveness and efficiency. In particular, we propose the prediction of the execution time of ephemeral (e.g., proximity) posting lists generated from uni-gram inverted index posting lists, which are used in establishing the permissible query rewriting alternatives that may execute in the allowed time. Experiments examining both the effectiveness and efficiency of the proposed approach demonstrate that a 49% decrease in mean response time (and 62% decrease in 95th-percentile response time) can be attained without significantly hindering the effectiveness of the search engine

    Playing with Duality: An Overview of Recent Primal-Dual Approaches for Solving Large-Scale Optimization Problems

    Full text link
    Optimization methods are at the core of many problems in signal/image processing, computer vision, and machine learning. For a long time, it has been recognized that looking at the dual of an optimization problem may drastically simplify its solution. Deriving efficient strategies which jointly brings into play the primal and the dual problems is however a more recent idea which has generated many important new contributions in the last years. These novel developments are grounded on recent advances in convex analysis, discrete optimization, parallel processing, and non-smooth optimization with emphasis on sparsity issues. In this paper, we aim at presenting the principles of primal-dual approaches, while giving an overview of numerical methods which have been proposed in different contexts. We show the benefits which can be drawn from primal-dual algorithms both for solving large-scale convex optimization problems and discrete ones, and we provide various application examples to illustrate their usefulness

    On the evolutionary optimisation of many conflicting objectives

    Get PDF
    This inquiry explores the effectiveness of a class of modern evolutionary algorithms, represented by Non-dominated Sorting Genetic Algorithm (NSGA) components, for solving optimisation tasks with many conflicting objectives. Optimiser behaviour is assessed for a grid of mutation and recombination operator configurations. Performance maps are obtained for the dual aims of proximity to, and distribution across, the optimal trade-off surface. Performance sweet-spots for both variation operators are observed to contract as the number of objectives is increased. Classical settings for recombination are shown to be suitable for small numbers of objectives but correspond to very poor performance for higher numbers of objectives, even when large population sizes are used. Explanations for this behaviour are offered via the concepts of dominance resistance and active diversity promotion
    corecore