9,002 research outputs found

    A Distributed Dendritic Cell Algorithm for Big Data

    Get PDF
    In this work, we focus on the Dendritic Cell Algorithm (DCA), a bio-inspired classifier, and its limitation when coping with very large datasets. To overcome this limitation, we propose a novel distributed DCA version for data classification based on the MapReduce framework to distribute the functioning of this algorithm through a cluster of computing elements. Our experimental results show that our proposed distributed solution is suitable to enhance the performance of the DCA enabling the algorithm to be applied over big data classification problems.authorsversio

    KInNeSS: A Modular Framework for Computational Neuroscience

    Full text link
    Making use of very detailed neurophysiological, anatomical, and behavioral data to build biological-realistic computational models of animal behavior is often a difficult task. Until recently, many software packages have tried to resolve this mismatched granularity with different approaches. This paper presents KInNeSS, the KDE Integrated NeuroSimulation Software environment, as an alternative solution to bridge the gap between data and model behavior. This open source neural simulation software package provides an expandable framework incorporating features such as ease of use, scalabiltiy, an XML based schema, and multiple levels of granularity within a modern object oriented programming design. KInNeSS is best suited to simulate networks of hundreds to thousands of branched multu-compartmental neurons with biophysical properties such as membrane potential, voltage-gated and ligand-gated channels, the presence of gap junctions of ionic diffusion, neuromodulation channel gating, the mechanism for habituative or depressive synapses, axonal delays, and synaptic plasticity. KInNeSS outputs include compartment membrane voltage, spikes, local-field potentials, and current source densities, as well as visualization of the behavior of a simulated agent. An explanation of the modeling philosophy and plug-in development is also presented. Further developement of KInNeSS is ongoing with the ultimate goal of creating a modular framework that will help researchers across different disciplines to effecitively collaborate using a modern neural simulation platform.Center for Excellence for Learning Education, Science, and Technology (SBE-0354378); Air Force Office of Scientific Research (F49620-01-1-0397); Office of Naval Research (N00014-01-1-0624

    Perspective: Organic electronic materials and devices for neuromorphic engineering

    Full text link
    Neuromorphic computing and engineering has been the focus of intense research efforts that have been intensified recently by the mutation of Information and Communication Technologies (ICT). In fact, new computing solutions and new hardware platforms are expected to emerge to answer to the new needs and challenges of our societies. In this revolution, lots of candidates technologies are explored and will require leveraging of the pro and cons. In this perspective paper belonging to the special issue on neuromorphic engineering of Journal of Applied Physics, we focus on the current achievements in the field of organic electronics and the potentialities and specificities of this research field. We highlight how unique material features available through organic materials can be used to engineer useful and promising bioinspired devices and circuits. We also discuss about the opportunities that organic electronic are offering for future research directions in the neuromorphic engineering field

    The effects of polydispersity and metastability on crystal growth kinetics

    Full text link
    We investigate the effect of metastable gas-liquid (G-L) separation on crystal growth in a system of either monodisperse or slightly size-polydisperse square well particles, using a simulation setup that allows us to focus on the growth of a single crystal. Our system parameters are such that, inside the metastable G-L binodal, a macroscopic layer of the gas phase "coats" the crystal as it grows, consistent with experiment and theoretical free energy considerations. Crucially, the effect of this metastable G-L separation on the crystal growth rate depends qualitatively on whether the system is polydisperse. We measure reduced polydispersity and qualitatively different local size ordering in the crystal relative to the fluid, proposing that the required fractionation is dynamically facilitated by the gas layer. Our results show that polydispersity and metastability, both ubiquitous in soft matter, must be considered in tandem if their dynamical effects are to be understood.Comment: Published in Soft Matter. DOI: 10.1039/C3SM27627

    Neuro-memristive Circuits for Edge Computing: A review

    Full text link
    The volume, veracity, variability, and velocity of data produced from the ever-increasing network of sensors connected to Internet pose challenges for power management, scalability, and sustainability of cloud computing infrastructure. Increasing the data processing capability of edge computing devices at lower power requirements can reduce several overheads for cloud computing solutions. This paper provides the review of neuromorphic CMOS-memristive architectures that can be integrated into edge computing devices. We discuss why the neuromorphic architectures are useful for edge devices and show the advantages, drawbacks and open problems in the field of neuro-memristive circuits for edge computing
    corecore