255 research outputs found

    Video Deinterlacing using Control Grid Interpolation Frameworks

    Get PDF
    abstract: Video deinterlacing is a key technique in digital video processing, particularly with the widespread usage of LCD and plasma TVs. This thesis proposes a novel spatio-temporal, non-linear video deinterlacing technique that adaptively chooses between the results from one dimensional control grid interpolation (1DCGI), vertical temporal filter (VTF) and temporal line averaging (LA). The proposed method performs better than several popular benchmarking methods in terms of both visual quality and peak signal to noise ratio (PSNR). The algorithm performs better than existing approaches like edge-based line averaging (ELA) and spatio-temporal edge-based median filtering (STELA) on fine moving edges and semi-static regions of videos, which are recognized as particularly challenging deinterlacing cases. The proposed approach also performs better than the state-of-the-art content adaptive vertical temporal filtering (CAVTF) approach. Along with the main approach several spin-off approaches are also proposed each with its own characteristics.Dissertation/ThesisM.S. Electrical Engineering 201

    Building the big picture : enhanced resolution from coding

    Get PDF
    Thesis (M.S.)--Massachusetts Institute of Technology, Program in Media Arts & Sciences, 1994.Includes bibliographical references (leaves 105-107).by Roger George Kermode.M.S

    MSDESIS: Multi-task stereo disparity estimation and surgical instrument segmentation

    Get PDF
    Reconstructing the 3D geometry of the surgical site and detecting instruments within it are important tasks for surgical navigation systems and robotic surgery automation. Traditional approaches treat each problem in isolation and do not account for the intrinsic relationship between segmentation and stereo matching. In this paper, we present a learning-based framework that jointly estimates disparity and binary tool segmentation masks. The core component of our architecture is a shared feature encoder which allows strong interaction between the aforementioned tasks. Experimentally, we train two variants of our network with different capacities and explore different training schemes including both multi-task and single-task learning. Our results show that supervising the segmentation task improves our network's disparity estimation accuracy. We demonstrate a domain adaptation scheme where we supervise the segmentation task with monocular data and achieve domain adaptation of the adjacent disparity task, reducing disparity End-Point-Error and depth mean absolute error by 77.73% and 61.73% respectively compared to the pre-trained baseline model. Our best overall multi-task model, trained with both disparity and segmentation data in subsequent phases, achieves 89.15% mean Intersection-over-Union in RIS and 3.18 millimetre depth mean absolute error in SCARED test sets. Our proposed multi-task architecture is real-time, able to process (1280x1024) stereo input and simultaneously estimate disparity maps and segmentation masks at 22 frames per second. The model code and pre-trained models are made available: https://github.com/dimitrisPs/msdesis

    Novel source coding methods for optimising real time video codecs.

    Get PDF
    The quality of the decoded video is affected by errors occurring in the various layers of the protocol stack. In this thesis, disjoint errors occurring in different layers of the protocol stack are investigated with the primary objective of demonstrating the flexibility of the source coding layer. In the first part of the thesis, the errors occurring in the editing layer, due to the coexistence of different video standards in the broadcast market, are addressed. The problems investigated are ‘Field Reversal’ and ‘Mixed Pulldown’. Field Reversal is caused when the interlaced video fields are not shown in the same order as they were captured. This results in a shaky video display, as the fields are not displayed in chronological order. Additionally, Mixed Pulldown occurs when the video frame-rate is up-sampled and down-sampled, when digitised film material is being standardised to suit standard televisions. Novel image processing algorithms are proposed to solve these problems from the source coding layer. In the second part of the thesis, the errors occurring in the transmission layer due to data corruption are addressed. The usage of block level source error-resilient methods over bit level channel coding methods are investigated and improvements are suggested. The secondary objective of the thesis is to optimise the proposed algorithm’s architecture for real-time implementation, since the problems are of a commercial nature. The Field Reversal and Mixed Pulldown algorithms were tested in real time at MTV (Music Television) and are made available commercially through ‘Cerify’, a Linux-based media testing box manufactured by Tektronix Plc. The channel error-resilient algorithms were tested in a laboratory environment using Matlab and performance improvements are obtained

    Intelligent image cropping and scaling

    Get PDF
    Nowadays, there exist a huge number of end devices with different screen properties for watching television content, which is either broadcasted or transmitted over the internet. To allow best viewing conditions on each of these devices, different image formats have to be provided by the broadcaster. Producing content for every single format is, however, not applicable by the broadcaster as it is much too laborious and costly. The most obvious solution for providing multiple image formats is to produce one high resolution format and prepare formats of lower resolution from this. One possibility to do this is to simply scale video images to the resolution of the target image format. Two significant drawbacks are the loss of image details through ownscaling and possibly unused image areas due to letter- or pillarboxes. A preferable solution is to find the contextual most important region in the high-resolution format at first and crop this area with an aspect ratio of the target image format afterwards. On the other hand, defining the contextual most important region manually is very time consuming. Trying to apply that to live productions would be nearly impossible. Therefore, some approaches exist that automatically define cropping areas. To do so, they extract visual features, like moving reas in a video, and define regions of interest (ROIs) based on those. ROIs are finally used to define an enclosing cropping area. The extraction of features is done without any knowledge about the type of content. Hence, these approaches are not able to distinguish between features that might be important in a given context and those that are not. The work presented within this thesis tackles the problem of extracting visual features based on prior knowledge about the content. Such knowledge is fed into the system in form of metadata that is available from TV production environments. Based on the extracted features, ROIs are then defined and filtered dependent on the analysed content. As proof-of-concept, this application finally adapts SDTV (Standard Definition Television) sports productions automatically to image formats with lower resolution through intelligent cropping and scaling. If no content information is available, the system can still be applied on any type of content through a default mode. The presented approach is based on the principle of a plug-in system. Each plug-in represents a method for analysing video content information, either on a low level by extracting image features or on a higher level by processing extracted ROIs. The combination of plug-ins is determined by the incoming descriptive production metadata and hence can be adapted to each type of sport individually. The application has been comprehensively evaluated by comparing the results of the system against alternative cropping methods. This evaluation utilised videos which were manually cropped by a professional video editor, statically cropped videos and simply scaled, non-cropped videos. In addition to and apart from purely subjective evaluations, the gaze positions of subjects watching sports videos have been measured and compared to the regions of interest positions extracted by the system.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Video object tracking : contributions to object description and performance assessment

    Get PDF
    Tese de doutoramento. Engenharia Electrotécnica e de Computadores. Universidade do Porto. Faculdade de Engenharia. 201

    Design of a digital compression technique for shuttle television

    Get PDF
    The determination of the performance and hardware complexity of data compression algorithms applicable to color television signals, were studied to assess the feasibility of digital compression techniques for shuttle communications applications. For return link communications, it is shown that a nonadaptive two dimensional DPCM technique compresses the bandwidth of field-sequential color TV to about 13 MBPS and requires less than 60 watts of secondary power. For forward link communications, a facsimile coding technique is recommended which provides high resolution slow scan television on a 144 KBPS channel. The onboard decoder requires about 19 watts of secondary power

    Modeling the television process

    Get PDF
    Also issued as Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1986.Includes bibliographical references.Supported in part by members of the Center for Advanced Television Studies.Michael Anthony Isnardi
    • …
    corecore