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ABSTRACT 

 

Video deinterlacing is a key technique in digital video processing, particularly 

with the widespread usage of LCD and plasma TVs. This thesis proposes a novel 

spatio-temporal, non-linear video deinterlacing technique that adaptively chooses 

between the results from one dimensional control grid interpolation (1DCGI), 

vertical temporal filter (VTF) and temporal line averaging (LA). The proposed 

method performs better than several popular benchmarking methods in terms of 

both visual quality and peak signal to noise ratio (PSNR). The algorithm performs 

better than existing approaches like edge-based line averaging (ELA) and spatio-

temporal edge-based median filtering (STELA) on fine moving edges and semi-

static regions of videos, which are recognized as particularly challenging 

deinterlacing cases. The proposed approach also performs better than the state-of-

the-art content adaptive vertical temporal filtering (CAVTF) approach. Along 

with the main approach several spin-off approaches are also proposed each with 

its own characteristics. 
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Chapter 1:   INTRODUCTION 

 

 As early as 1935, it was well known that the human visual system is more 

sensitive to large-area flicker than flickering detail [1]. Television broadcasters in 

the early years of media boom used this idea to their advantage by transmitting 

interlaced videos that reduced bandwidth usage. Interlaced videos are videos (that 

are rectangularly sampled) scanned in such a way that on any given frame of ‘N’ 

rows, only ‘N/2’ alternate rows are scanned. The remaining rows are scanned on 

the next frame. Such a video (as shown in Figure 1-1) due to persistence of human 

vision appears as if the video were progressive.  Interlaced videos are generally 

preferred in video broadcast and transmission systems as they reduce the amount 

of data to be broadcast.  

 

 

Figure 1-1: Interlaced video frame 1 followed by frame 2 

  

 Transmission of interlaced videos was widely popular in various television 

broadcasting systems such as NTSC [2], PAL [3], SECAM. Many broadcasting 

agencies made huge profits with interlaced videos. Video acquiring systems on 

many occasions naturally acquire interlaced video and since this also proved to be 

an efficient way, the popularity of interlaced videos escalated.  

 



2 
 

 Interlaced video however, complicates many tasks pertaining to image 

processing. It has its advantages as well as disadvantages [4]. As scanning-format 

conversion was necessary for international TV broadcasting, the first proposals of 

deinterlacing were considered only for international programme exchange. With 

the advent of modern technology such as high-definition television (HDTV), 

video streaming, and DTH the need for a stable and a standard conversion 

between formats is increasing.  

 Modern display systems like LED and plasma displays work on 

progressive video. Progressive video unlike interlaced video contains the frames 

in their entirety in the videos’ original resolution. The widespread usage of 

displays that require progressive videos has made deinterlacing an important 

process in the video processing arena.  

 With the advent of the PC era, Haan and Bellers raised the question of 

whether to interlace or not to interlace [5]. While the PC community believes that 

the present-day technologies are powerful enough to produce, transmit and 

display progressive video, the television community believes that it is 

advantageous to have interlaced videos in service. The main argument put forth 

by the PC community is that interlacing a video introduces a trade-off between 

vertical resolution and the time resolution. In the 1997 WinHec conference the co-

founder of Microsoft Corporation, Bill Gates put forth a proposal to stabilize the 

picture rate of PCs to 60 Hertz progressive where it stands till date [6]. 

 In [5], the authors studied alternate options to deinterlacing. Most 

importantly the question of whether present day technologies are powerful enough 
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to deinterlace satisfactorily. The support towards an all progressive system is 

increasing as experiments show that an all progressive systems produces at least 

as good an image quality as an all interlaced system does [7]. This means that an 

interlaced system cannot produce any increase in quality but only an increase in 

performance. With the reasoning that the modern day technologies can support 

powerful deinterlacers, a combination of interlaced and deinterlaced systems are 

currently in use. In such systems, for broadcasting and transmission purposes, an 

interlaced system in used. The receiver has an in-built deinterlacer pre-display 

unit that deinterlaces the interlaced video. This also satisfied the TV community 

by removing the requirement for a new broadcast protocol for progressive video. 

However, this now applies additional pressure on the video processing 

community to come up with deinterlacing systems that are not only 

computationally efficient to support real-time video deinterlacing but are also 

powerful enough in terms of deinterlacing performance. 

 Deinterlacing is the task of converting a naturally or an artificially 

interlaced video into a progressive video. Simply put, deinterlacing is the task of 

converting fields into frames. This process of deinterlacing is shown in Figure 

1-2.  The methodology discussed in Figure 1-2 is the general process of 

deinterlacing, though the process of deinterlacing depends on the type of 

interlacing. 

 It is reasonable to assume from deinterlacing literature that a video is 

interlaced during acquisition, owing to the virtue of the data acquisition system. 

Under this assumption, videos can be considered to be interlaced in two ways. 
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1. Field     and   must belong to the same frame. One frame is split 

into two fields. Post-deinterlacing, the frame-rate of the deinterlaced 

video is double. 

2. Field     and   come from different frames and the deinterlaced 

frames     and   are to be reconstructed into full resolution from 

the interlaced fields. One frame maps to only one field. 

 The second method of deinterlacing is usually followed as this maintains 

the frame rate and the number of frames. This also implies that for the purposes of 

experimental verification and testing, the original number of frames is maintained 

and thus, image quality evaluation techniques such as PSNR estimates can still be 

used. For all intentions and purposes in this manuscript unless otherwise specified 

interlacing, will refer to the second method. 

 

(a) Interlaced Video     (b) Non-Interlaced Video 

Figure 1-2: Interlaced video after up-sampling and non-interlaced videos. The 

dashed lines are lines with no data, and the solid lines have data present. 

 

 Deinterlacing can be mathematically written as, 
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                              ( ⃗  )  {
 ( ⃗  )              

   ( ⃗  )                             
 ,                     …(1.1) 

where  ⃗  (   )  are the Cartesian position in the video,   represents the field 

number,  ( ⃗  ) is the original video content,   ( ⃗  ) is the output deinterlaced 

video and    ( ⃗  ) is the deinterlaced data estimate. 

 Interlacing and deinterlacing not only affect the video in the spatial 

domain but also in the frequency domain. Interlacing, halves the sampling density 

of the video in the vertical direction while maintaining the sampling density of the 

video in the horizontal direction. Deinterlacing increases the vertical sampling 

density. This repeats the spectrum of the video during the up-sampling involved. 

When properly interpolated, the first repeat of the spectrum can be removed and 

this completes the task of deinterlacing. It is not though, just a simple up-

conversion problem [8]. This is because most videos don’t fulfill the sampling 

theory.   

 The temporal frequencies at the retina also have a connection with the 

scene content [9]. While the observer is tracking an object, the high frequencies 

due to the object motion are mapped to DC by the retina. But if these high 

frequencies and seemingly less relevant components of an image are suppressed, 

it is seen as blurring for the viewer’s eye. Therefore, purely temporal filtering will 

degrade the picture quality.  
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Figure 1-3: Deinterlaced VS Progressive videos streamed on a Facebook Video 

Stream player. The video on top is an interlaced video, deinterlaced using LA, 

while the one on the bottom is a progressive video. 

 

 This also shows that the salient regions of the image and regions of high 

motion are to be deinterlaced with extra-care. A static scene (or a static region) of 
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the video is a region comprising value of pixels on the same Cartesian location 

that don’t change over time. The sampling lattice of the interlaced video has 

spectral replicas [10]. When not sampled in accordance with the sampling theory 

this leads to aliasing. This shows that the process of deinterlacing is a spatio-

temporal problem and was tackled in a straightforward way by the vertical 

temporal filter (VTF) [11]. VTF approach is surveyed in detail in the literature 

review section. 

 One simple method of deinterlacing is the line average (LA) algorithm or 

the ‘bob’ algorithm. LA algorithm is explained by equation 1.2. 

      ( ⃗  )  {
    ( ⃗  )                        

(  ( ⃗  (   )⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗  )    ( ⃗  (   )⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗  ))                
 .      …(1.2) 

This is an intra-frame deinterlacing algorithm that averages between the line 

previous, and the next to the one to be interpolated, in the same frame. LA is one 

of the methods that is used traditionally in PC video deinterlacing. Videos on PC 

ever since WinHec’97 [6] are progressive. Figure 1-3 shows the comparison 

between a LA deinterlaced and a pre-interlaced video. It can clearly be observed 

that the deinterlaced video has jagged edge artifacts called ‘mouse teeth’ effect or 

‘line-crawling effect’. As was discussed earlier, LA is a purely spatial 

deinterlacing system and doesn’t tackle the vertical temporal problem of 

deinterlacing. LA assumes that the video to be deinterlaced has very little high 

frequency components and thereby neglects the temporal information that is 

available.  
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 Most sports broadcasters while broadcasting HD sport videos use 

progressive videos and broadcast using a 720p (a progressive video) format and 

not using a 1080i (an interlaced video) format, while they broadcast other regular 

television in the 1080i format. This is because sports in general consists of a lot of 

motion and thus leads to irregularities in video, when interlaced. Sports 

broadcasters including ESPN3, Sky Sports and BBC sport all stream videos at 

720p or 1080p rather than 720i or 1080i formats that save them a lot of 

bandwidth. It’s a trade-off between quality and bandwidth. The most used video 

streaming website, YouTube also uses a 720p and 1080p versions for their HD 

streaming.   

 There have been several proposals made to convert the television media 

into an all progressive system, but such an implementation is not supported by the 

TV community [12]. Though a great deal of research has been done, the absence 

of a unified solution shows the complexity and the difficulty of the problem. The 

rest of this thesis will deal with tackling the deinterlacing problem using novel 

image processing techniques. 

 

Summary of Introduction 

 In this chapter the concepts of interlaced videos and deinterlacing were 

introduced. The challenges put forth by the PC and the TV communities were 

studied. The LA method of deinterlacing was surveyed and through it, the 

potential problems of a typical deinterlacer were analyzed. 
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Chapter 2:   HYPOTHESIS AND SPECIFIC AIMS 

 

 In this thesis, the following hypothesis will be tested. 

 

2.1 Hypothesis 

 Using novel method switching techniques that select different 

deinterlacing methods for specifically targeted regions of an interlaced video, a 

high quality progressive video can be reconstructed.  

 

2.2 Specific Aims 

 In order to accomplish the above mentioned hypothesis, the following 

detailed aims will have to be accomplished. 

 

2.2.1 Specific Aim 1. 

 To develop an intra-frame deinterlacing method that can interpolate the 

video field by field independently in the vertical direction and can thus produce 

an intra-frame deinterlaced video. This is accomplished using one-dimensional 

control grid interpolation (1DCGI).  

 

2.2.2 Specific Aim 2. 

 To develop a method to distinguish in a video: regions of visual 

importance, static regions and regions of relatively high motion. This enables us 

to develop methods, targeted directly at those regions independently. A decision 
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making process can be built to choose the method of interpolation to be used on 

each region. This, along with the 1DCGI methods mentioned in the previous 

section tackles the spatio-temporal problem that is deinterlacing. 
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Chapter 3:   BACKGROUND 

 

 This section will discuss the optical flow problem and its control grid 

formulations. 

 

3.1 Optical Flow 

 Motion estimation between frames of a video using optical flow is a well-

studied problem [13, 14]. The concept of optical flow was first studied by James 

J. Gibson, as part of a psychology study [15]. Optical flow refers to the apparent 

motion of brightness patterns in an image sequence [16]. Instantaneous image 

velocities or discrete image displacements are ways of measuring or estimating 

motion in ordered sequences of images.  

 Optical flow is a gradient-based motion estimation method. It is the 

perceived 2D motion based on changes in image patterns. It depends on 

illumination and object surface textures. Though 2D motion and optical flow are 

used interchangeably, they are not the same as shown in Figure 3-1. It can be seen 

here that under certain illumination conditions though the object is rotating the 

motion cannot be detected. On the other hand, if the illumination source was 

moved, this may still be perceived as object motion. 

 Motion estimation and video compression typically use optical flow. 

While optical flow is similar to the estimation of a dense motion field, it is also a 

study of the structure of the scene. It has a lot of applications in object tracking 
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[17], movement detection [18], robot navigation and is even used as features for 

learning based systems [19].  

 

Figure 3-1: 2D motion ≠ Optical flow [20]. 

 In case of the two-dimensional optical flow that is mostly used for videos, 

3D motion is modeled as a 2D projection This can be observed in Figure 3-2 

where the three dimensional motion of the mountains are outward due to the 

camera zooming in the Yosemite sequence, the optical flow is a 2D projection. 

This shows that the optical flow is not a true estimator of motion. Since in many 

cases, illumination and object/scene models are unknown, optical flow is the best 

possible way of estimation of motion. 

 Optical flow is represented in many forms; Global motion, pixel-based 

motion, block-based motion and region-based motion (Figure 3-3). Global motion 

based representations of optical flow describe motion for a frame globally. Pixel-

based representations of optical flow, represents motion by using one motion 

vector at each pixel often with some kind of a smoothness constraint between 

adjacent motion vectors. Block-based optical flow representations involve 
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dividing a frame into block and characterizing the motion of each block by a 

motion vector. Region-based representations of optical flow associate a motion 

vector with semantically segmented regions of video [21, 22]. Other 

representations include mesh-based pixel representations where control grids are 

used and for each control grid, a constraint is applied, though motion vectors are 

given for every pixel location. 

 

Figure 3-2: Optical flow between two frames of the Yosemite sequence. The top 

two images are two consecutive frames and the bottom row shows the optical 

flow [20]. 

 Let  (     ) be a video where,   and   are the pixel locations on a 

rectangularly sampled frame and let   ,    and    be displacements in  ,   and 

time difference respectively. The optical flow now calculates the motion between 

the two frames taken at t and      for every pixel location as, 
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                                     (     )   (              )                      … (3.1) 

 

 

Figure 3-3: Optical flow representations. The top-left is Global representation, 

top-right is pixel-based representation, bottom-left is block-based representation 

and the bottom right is object based representation [20]. 

 

 Usually     , where   is the inverse of frame rate (this means frame  , 

usually called the target frame and frame      , usually called the anchor frame 

are adjacent frames), though this need not be the case in all applications.  These 

types of optical flow estimation techniques are called differential techniques since 

they work using the differentials and the Taylor series approximations of the 

image signals. For a 2D+   case (frame is 2 dimensional with a time axis), 

 (     )  is expected to have moved by   ,    and   . This means at time   

  , the pixels at   and   are expected to have moved to locations      and 

y    repectively. It is to be noted that   ,    and    need not necessarily be 
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integers and can also represent sub-pixel and sub-frame offsets respectively. This 

assumption represented by Equation 3.1 is called the constant intensity 

assumption. 

 With an assumption that      is just one frame away from  , in which 

case the motion is relatively small, Equation 3.1 can be expanded using the Taylor 

series as, 

 (              )    (     )   
  

  
    

  

  
     

  

  
           

… (3.2) 

The higher order terms can be neglected. The brightness constraint equates  

 (              ) to  (     ). This implies that,  

                                            
  

  
    

  

  
     

  

  
                                  …(3.3) 

This equation can be further simplified by dividing the entire equation by    to 

get, 

                                               
  

  

  

  
  

  

  

  

  
   

  

  
  .                                 …(3.4) 

The terms 
  

  
 and 

  

  
 are the components of velocities of motion of pixels in   and 

  directions respectively. These can be represented using    and    respectively. 

Equation 3.4 can now be written as, 

                                                                                                        …(3.5) 

or in vector form, 
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                                                               ⃗⃗                                              …(3.6) 

 Equation 3.6 is a linear equation with two unknowns and cannot be solved 

directly. This problem is known as the aperture problem of optical flow 

algorithms. To solve for velocities in two directions    and  , if both the 

differentials  
  

  
 and 

  

  
 are non-zero, then we require more equations. There are 

many solutions to this conundrum and each serves as a method to solve the optical 

flow problem. Some of the motion estimation methods are listed below. 

1. Phase Correlation  

2. Block-based methods 

3. Differential methods (optical flow based methods) 

i. Lucas-Kanade method [23] 

ii. Horn-Schunck method [24] 

iii. Buxton-Buxton method [25] 

iv. Black-Jepson [26, 27]  

4. Discrete optimization methods [28] 

For the sake of clarity, Lucas-Kanade method is elucidated in reasonable detail. 

 The Lucas-Kanade method is a very widely used method of optical flow 

estimation. To solve equation 3.5, we need to generate more equations, as it is a 

linear equation with two variables and cannot be solved by itself. To avoid this 

situation, the Lucas-Kanade method assumes that the flow or velocity is constant 

in a local neighborhood of the pixel under consideration. This means that for any 

pixel, the neighboring pixel must also have the same velocities. This is a fairly 



17 
 

reasonable assumption to make in that it generally fits for high resolution videos 

or natural videos. The other way of putting this assumption is that the Lucas-

Kanade method assumes that the displacement of the semantic objects in the 

image between two frames is small and is also constant within a neighborhood of 

the point   under consideration. The velocity vectors    and    should now satisfy 

the equations, 

  (  )     (  )      (  ) 

  (  )     (  )      (  ) 

    .                    …(3.7) 

    . 

    . 

                                          (  )     (  )      (  ), 

where           are the pixels inside the chosen neighborhood,   (  )   (  ) 

and   (  ) are the partial derivatives of the image I with respect to the pixel 

location     at time   evaluated at the point   . This is in effect making an 

assumption that the points           all have same velocity vectors     and   . 

Also, when this process is repeated for all the pixels in the video, each pixel gets 

its own set of velocity vectors; this is also a means of creating an implicitly 

constrained motion model.  

 Equations 3.7   can be formulated   into a   matrix form as     ,   where 

  

[
 
 
 
  (  )   (  )

  (  )   (  )

  
  (  )   (  )]

 
 
 

,      [
  

  
] and      [

   (  )

   (  )
 

   (  )

] . Changing    the    
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unsolvable equation 3.5 to this form where there are more equations than 

unknowns is not optimal as these equations now become over-determined. The 

Lucas-Kanade method tackles this problem by using a least-squares method. The 

least-squares formulation is, 

                                                                                                           …(3.8) 

Solving for velocities, we get 

                                           (    )                                            …(3.9)  

which on expanding gives         

[
  

  
]  [

∑    (  )
 

 ∑    (  )  (  ) 

∑    (  )  (  ) ∑    (  )
 

 

]

  

[
 ∑    (  )  (  ) 

 ∑    (  )  (  ) 
]            …(3.10) 

 There are many ways of choosing the n pixels under consideration, but 

usually it is chosen as a square block where the pixel for which the motion vectors 

are being calculated, will be in the center. This would mean that all the pixels on 

the square get equal weightages.  In practice it is better to give more weight to the 

pixels that are closer to the pixel under consideration. This is accomplished by 

using a weighted formulation of equation 3.7 as  

                               .                                  …(3.11) 

Solving for velocities, we get, 

                      (     )      .                          …(3.12) 

Equation 3.12 can be thus expanded and the solutions of velocities can be arrived 

at as,                   
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∑      (  )
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∑      (  )  (  ) ∑      (  )
 

 

]

  

[
 ∑      (  )  (  ) 

 ∑      (  )  (  ) 
] ...(3.13) 

where,    is usually a Gaussian function. Equation 3.10 can be obtained as a 

special case of Equation 3.13, if the weights are all equal to 1. 

 The optical flow method has many drawbacks in the form discussed 

above. The least-squares approach assumes implicitly, that the error data of the 

image is a Gaussian distribution with zero mean. If the window contains any 

‘outliers’ the velocity vectors will become noisy. The noise in the velocity vectors 

can be removed by using a median filter, though this is a crude method and is not 

usually preferred. On the other hand, one may use statistical analysis to detect 

them and alter the weight matrix W to get the required results. 

 The biggest drawback of optical flow using the prior discussed 

formulation is that the error in velocity vectors increases as the range of the 

velocity vectors expand. In another sense, this method can be used only if the 

optical flow between two frames is small enough, sometimes in the sub-pixel 

range. Particularly in applications like stereo matching, and motion estimation 

with occlusions the use of optical flow is very limited so Lucas-Kandade-Tomasi 

(KLT) feature matching based tracking is preferred [29]. This is because; the 

optical flow assumes that for every pixel in the target frame, there is always 

another pixel in the anchor frame which need not be the case. 

 Another kind of motion tracking algorithm is the block matching 

algorithm (BMA). BMA methods are well-studied in literature [30, 31].  In BMA 
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methods, for every block on the target frame, a distance measure (usually the 

Euclidean or correlation) is calculated with all the blocks on the anchor frame. 

The block on the target frame is considered to have moved to a potential location 

on the anchor frame, whose distance measure is the least. The best that can be 

achieved without changing the resolution of the video is a pixel level accuracy of 

motion for each block. The drawback of this method is that noise on a given block 

can throw off the distance measures and thereby give wrong results. The 

alternative to achieve sub-pixel accuracy is to interpolate and increase the size of 

the original image and then perform BMA, though this is computationally 

inefficient and also depends on the accuracy of the interpolator. 

 

3.2  Control grid formulation of the optical flow and the control grid 

interpolation 

 The control grid formulation of optical flow integrates the features of 

BMAs and optical flow. Control grid interpolation (CGI) using the control grid 

formulation of the optical flow has been used in many applications particularly in 

medical imaging and image interpolation [32, 33, 34]. The control grid 

formulation of optical flow is more often used as an interpolating tool than a 

motion estimation tool, though it is shown to be effective in both arenas. 

 To derive the control-grid formulation, we re-write equation 3.2  as, 

                                (     )   (              ).                         …(3.14) 
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where   ,   and    can now be viewed as a small offset or displacement over 

    and   respectively. In this formulation, even if the displacements are sub-

pixel, they can be modeled using a displacement function, as long as the video is 

discrete in terms of pixel values and time. This understanding leads us to the 

discrete formulation, 

                       (                                  )      …(3.15) 

where,   (     ) are the discretized locations of pixels in the image,   is 

discrete time and      is usually a frame away from   ,             and 

            are two dimensional displacement vectors for each frame  . Using 

the same Taylor series procedure followed in the previous section, equation 3.15 

becomes, 

                                
          

   
  ( )  

          

   
  ( )        ...(3.16) 

 In the control grid formulation, the image is divided into rectangular 

blocks and it is assumed that the pixel displacements inside each block   can be 

modeled as, 

                                            ( )  ∑     ( ) 
                                          …(3.17) 

and  

                                            ( )  ∑     ( ) 
                                          …(3.18) 

where   ( ) and   ( ) are independent basis functions that model the 

displacement field. In this case the parameters to be estimated are    and    these 
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are the displacement parameters. Equations 3.17 and 3.18 can be written in vector 

form as, 

                                                    ( )   ̅  ( )                                       …(3.19) 

                                                   ( )   ̅  ( )                                       …(3.20) 

where,  ̅,  ̅,  ̅ and  ̅ are vectors with   ,   ,    and    respectively.  

 For bi-linear basis functions,  ̅ and  ̅ can be defined explicitly as, 
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 )                 …(3.21) 
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 )                 …(3.22) 
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 )                   …(3.23) 

and 

                              (     )    (     )  (
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 )                   …(3.24) 

 The kernels of Equations 3.21 to 3.24 can be visualized in the Figure 3-4. 

It can be noticed that the sum of independent kernels at each given point in the 

grid is always equal to one. This is essential to maintain the smooth interpolation 

of the motion vectors. It is also noteworthy, that in the corners, only one of the 

basis functions can be one. The edge points of the control grids are called the 

control points. It is noteworthy that control points are shared by adjacent control 
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grids, and while calculating the displacements, the displacements from previous 

iterations are carried over. This provides a truly connected motion model.   

 Similar to  ̅ and  ̅,  ̅ and  ̅ also have four components, each component 

can be understood as the component of the velocity vector at the corresponding 

grid corner.  Equation 3.16 can now be written in terms of  ̅ and  ̅ in vector form 

as, 

                          
          

   
 ̅  ( )  

          

   
 ̅  ( )       ...(3.25) 

 

Figure 3-4: Visualization of the bilinear basis. The four diagrams show the plot of 

the four basis for the same grid. It can be noticed that the sum of the four basis at 

any given point is always equal to 1. This is essential for any basis that might be 

used. The basis are calculated for a grid of 256X256. This is only for the purposes 

of visualization and is not a standard. 
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 Now that the velocity vectors inside a given grid are connected using the 

basis vectors  ̅ and  ̅, it is only essential to record the velocity vectors at the 

corners of the control grid. Once the velocity vectors are obtained for one grid, the 

corners of the grid that connect to another grid maintains the velocity vector 

values in the other grid. This makes the entire model a connected motion model. 

Equation 3.25 is solved using a least squares approach as was the case with the 

optical flow formulation in the previous section. If   is the region under 

consideration, the least squared error in terms of the vectors  ̅ and  ̅ , 

 ( ̅  ̅)  ∑(                 
          

   
 ̅  ( )

   

 
          

   
 ̅  ( )   

 …(3.26) 

is minimized. This is repeated for all such grid regions of the image. After one 

entire pass is made, the same process can be repeated for the entire image using 

the previous estimates as starting points, this will further reduce the error 

however, this increases the computation time. 

 Using the displacements vectors thus found, from a given target frame an 

entire anchor frame can be reconstructed by interpolation. This type of 

interpolation is called control grid interpolation (CGI) and is discussed in [33]. 

This interpolation is accomplished by carrying on temporally to the sub-pixel 

locations that the motion vectors point to, the original pixel values. An original 

resolution grid of the image can now be reconstructed using any interpolation 
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technique such as linear, bilinear, bicubic or triangulation depending on the 

available computational power and requirement.  

 To further avoid errors, two displacement fields are constructed, one from 

  to      (displacements from first frame to second frame) and another from 

     to   (displacements from second frame to first frame). This leads to two 

reconstructed images and the two images are combined in a spatially weighted 

sum to create the final interpolated image. The method does not create an 

intermediate frame between the first and the second frame (one bidirectional 

mapping), rather creates two different frames (two unidirectional mappings), 

although this would mean that the flow field is not symmetric. 

 

3.3   One dimensional control grid interpolation (1DCGI) 

 1DCGI is the 1D formulation of the 2D optical flow discussed in the 

previous section [35]. 1DCGI is used in applications like demosaicing and image 

interpolation [36]. While 2DCGI works between frames of a video, 1DCGI works 

between lines of an image. All the analysis and the formulations of constraints 

formed on the original optical flow section all exist in here as a 1D analogue.  

 The optical flow described by equation 3.1 can now be re-iterated in 

1DCGI formulation as, 

                                             (   )   (       )                                …(3.27) 
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The term     shows that the lines must be horizontal in the imaging context, 

though whether it is row or column is immaterial as both ways the two parties 

involved are still one dimensional. While in the optical flow formulation, the 

brightness constraint is that the intensity in the first frame is preserved somewhere 

in the second frame, in the 1D control grid formulation with only one degree of 

freedom, the brightness constraint becomes the assumption that the intensity in 

the first line is preserved in the second line. Interpolation is performed as a 

weighted average of the intensities of pixels along the displacement vectors 

between the two lines and those displacement vectors will be one dimensional. 

The differentials now represent intensity gradients. 

 Following the Taylor series approximation, the equation 3.16 analogue of 

1DCGI is, 

                                           (   )   (   )  
  (   )

  
  

  (   )

  
                   ...(3.28) 

This equation signifies that for any point (   ) there exists a displacement  , 

such that  (       ) and  (   ) have the same pixel intensity. The deviation 

from this brightness constraint can be defined as, 

                                                 ( )  [
  (   )

  
  

  (   )

  
]
 

                         …(3.29) 

The error approaches zero as the value of   approaches  ̂, such that  

                                                 ̂   
  (   )

  

  (   )

  
⁄ .                                      ...(3.30) 
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 Like the 2DCGI case, the displacements are defined at regularly spaced 

control points. Intermediate displacements are generated using linear 

interpolation. Unlike the 2D case though only two basis functions,    and    are 

used. A linear set of kernels, 

                                                    
   

 
    and       

 

 
                             …(3.31) 

are preferred in the 1D case, where   is the distance from the previous node. In the 

1D case, linear, cubic or Hermite interpolation is performed to get the new pixels 

into grid depending on the application. In later chapters, it will be seen that 

1DCGI is a good method for performing spatial deinterlacing. 

 Like the 2D formulation again, here two unidirectional displacements (top 

to bottom and bottom to top) are calculated and are averaged to produce the 

optimal central interpolated line. Adaptations of this technique can be used in 

other methods like super-resolution also.  

  

3.4  Summary of background 

 In this chapter the concept of optical flow was analyzed in detail along 

with its 2D and 1D control grid formulations. 1DCGI, the line-line interpolation 

technique was also studied in detail.  
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Chapter 4:   LITERATURE REVIEW 

 

 Deinterlacing is a well-studied topic. The last century has seen a lot of 

deinterlacing algorithms being proposed. The literature of deinterlacing can be 

studied under two broad categories, Linear and Non-Linear deinterlacers. 

 

4.1  Linear Deinterlacers 

 A linear deinterlacer can be described by, 

                     ̂(   )   {
  (   )  (             )

∑ ∑     (     )   ( )   (         )
 ,          …(4.1) 

where    (   ) represents the pixel value at position (   ) in the  th
 field,   ̂(   ) 

denotes the reconstructed pixel value at the same position, and   ( ) denotes the 

filter weights for field index   and vertical index  . It can also be noticed that the 

choice of the impulse response   ( ) determines whether the filter is spatial, 

temporal or spatio-temporal. 

 

4.1.1  Spatial Deinterlacers  

 Weave [5] is a spatial linear deinterlacing algorithm that is very popular. 

The weave algorithm has two implementations, a purely spatial implementation 

and another purely temporal implementation. The spatial weave algorithm, also 

called as field repetition can be seen as a generalization of the equation 4.1 if,  
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                        ( )       {
                                 
                                              

                  …(4.2) 

 A similar purely spatial algorithm is the line averaging algorithm (LA) or 

the bob algorithm that is so commonly used in the PC community [6]. LA was 

already discussed in equation 1.2 can be generalized using equation 4.1 if, 

                       ( )   {
                                     
                                                  

                    …(4.3) 

They have an all-pass characteristic on the temporal, which ascertains that these 

filters have no motion artifacts. These filters don’t have a really steep cut-off so it 

can allow the alias components that arise due to improper sampling of the videos. 

These can be suppressed by having a longer frequency response though this might 

suppress the higher part of the baseband spectrum also. It is harder for a purely 

spatial filter to differentiate between baseband and repeat spectrum, no matter 

what their length is and they always balance between alias and resolution. It can 

be seen from Figure 4-1 where the region shaded in mild gray represents the pass-

band of a typical purely spatial filter and the region shaded in dark gray represents 

the spectrum of an ideal deinterlacer, that the purely spatial filter might suppress 

the vertical detail and allows the alias spectrums. 

 

4.1.2 Temporal Deinterlacers 

 The purely temporal implementation of weave, also called as field 

insertion can be seen with the filter weights, 
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                        ( )       {
                                 
                                              

                  …(4.4) 

 The temporal weave algorithm has an all-pass characteristic on the 

vertical, while it still allows the temporal alias spectrum. The spectrum of a purely 

temporal weave algorithm can be seen in Figure 4-2.  This is the best solution in 

the case of a still image as all vertical frequencies are preserved. However this 

produces a serration noise on videos with motion. A typical noisy video that was 

deinterlaced using temporal weave can be seen in Figure 4-3. 

 

Figure 4-1: Spectrum of a purely spatial filter. Dark gray region is the spectrum of 

an ideal deinterlacer, while the mild gray region is the spectrum of a purely spatial 

filter. The dark gray is the true spectrum while other rings are alias spectrums. 
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Figure 4-2: Spectrum of a purely temporal filter. Dark gray region is the spectrum 

of an ideal deinterlacer, while the mild gray region is the spectrum of a purely 

temporal filter. The dark gray is the true spectrum while other rings are alias 

spectrums. 

 

 

Figure 4-3: Foreman video deinterlaced using the temporal weave algorithm. 
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 As with the spatial weave, the quality of temporal weave can be improved 

by using a longer impulse response, though a longer FIR filter would require a 

buffer of higher memory and are not economically viable. 

 

4.1.3 Vertical temporal filter (VTF) 

 A vertical temporal filter as discussed in equation 4.1 is the optimal linear 

deinterlacer. If the signal is band-limited and the video is sampled following the 

sampling theorem (thereby no-alias), then the VTF is the ideal filter [5]. Vertical 

temporal filter (VTF) is one of the most popular methods of deinterlacing and the 

most widely used implementation of it was proposed by Weston [11]. For the 

intentions and purposes of evaluation, this version of VTF is considered.   

 VTF is a spatio-temporal approach that directly tackles the vertical-

temporal spectrum of interlaced videos. The filter works on windows of 3 or 5 

pixel squares and are called the 3-tap or the 5-tap versions respectively. Most 

systems using VTF prefer the 3-tap approach. 5-tap approaches are preferred only 

in case of synthetic videos. Theoretically VTF is the ideal linear filter, if the input 

video is band limited and if the filter   ( ) is well designed.  More often than 

not, the response proposed in Equation 4.5 is preferred as it was proposed for 

natural videos with consistent VT spectrum. The filter coefficients proposed by 

Weston are, 

                      ( )  {

 

 
 
 

 
         (             )

 
 

  
 
 

 
  

 

  
  (                 )

                …(4.5) 
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 Figure 4-4 shows that the VTF is the optimal linear deinterlacer. It 

prevents both alias and blur. Though the vertical detail is gradually reduced with 

the increasing temporal frequencies, it is not unnatural and is tolerable in videos 

with motion. The designs of such filters will be in such a form that the 

contribution of neighbors is limited in the vertical direction. Equation 4.5 shows 

such a trend. 

 

 

Figure 4-4: Spectrum of a vertical temporal filter. Dark gray region is the 

spectrum of an ideal deinterlacer, while the mild gray region is the spectrum of a 

VT filter. The dark gray is the true spectrum while other rings are alias spectrums. 
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4.2  Non-Linear deinterlacers 

 Non-linear deinterlacers can be classified into edge-oriented methods [37, 

38, 39, 40, 41] and motion-adaptive methods [41, 42, 43, 44, 45, 46, 47]. The 

motivation for non-linear deinterlacers is to capture the motion and/or vertical 

detail.  Edge-based deinterlacers use directional edge information on in-frame 

[48] or inter-frame basis [47] to interpolate along the edges. Content-adaptive 

deinterlacers smartly choose between in-frame and inter-frame information. In 

this chapter we shall review some edge-based detectors in detail like edge-based 

line averaging (ELA), spatio-temporal edge-based median filtering (STELA) and 

some other content-adaptive deinterlacers. 

 

4.2.1 Edge-based line averaging (ELA) 

 ELA is one of the popular deinterlacing algorithms that use intra-frame 

deinterlacing. ELA was first proposed by Doyle [49] and was later studied in 

detail by Kuo [39]. These algorithms were proposed with the argument that the 

human eyes are very sensitive to edges. Most methods use directional differences 

to obtain the edge information in each direction and try to interpolate along the 

direction of the edge. ELA works on a     neighborhood to extract the edge 

information. Figure 4-5 shows a typical spatial neighborhood of an ELA system. 

The directional differences are calculated as  

                                   |   |    |   |    |   |                               …(4.6) 
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where,             are defined as in Figure 4-5 and   is the point to be 

deinterlaced. The minimum difference among    to    is chosen and the 

interpolated value is the average of the two points that corresponded to the 

minimum difference. 

 

Figure 4-5: Spatial neighborhood of a window used in ELA. 

 An intra-frame deinterlacer like ELA assumes that there is maximum 

motion in the video and thus temporal interlacing will lead to worst case results. 

This is a reasonable assumption to make in the case of a video with high motion 

but in cases of natural motion, this is a drawback. Most videos usually have a 

background and a foreground. While the background consists of reasonably low 

motion, the foreground contains high motion. In spite of these drawbacks, ELA is 

a still an active area of research. 

 

 

 



36 
 

4.2.2 Spatio-temporal edge-based median filtering (STELA) 

 STELA [50] is a spatio-temporal edge-based deinterlacer. The motivation 

behind the development of STELA is that adding the temporal information into an 

already powerful intra- frame approach like ELA will increase its performance on 

regions of relatively low motion. STELA works on three       saptio-temporal 

neighborhoods and forms six directional differences in both the temporal and the 

spatial sense.  

 STELA first divides a video into a low-frequency and a high-frequency 

version. Figure 4-6 shows the spatio-temporal neighborhood of a STELA 

approach proposed by Oh et, al [50]. The six directional differences of STELA 

with respect to the nomenclature in Figure 4-6 are, 

   |   |    |   |    |   | 

                                   |   |    |   |    |   |                            …(4.7) 

The deinterlacing is now performed as                  , where   is the 

average value of the two points that yield the minimum directional change among 

   to    in the low frequency frame.  
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Figure 4-6: Spatio-temporal neighborhood of a window used in STELA. 

 It is noteworthy that a median filter is performed as a step beyond just the 

mean value  . Typically it will be noticeable that   would do the job in place of 

 . The median is made to work like a backup tool in case there was noise in the 

video. If in case there was noise in the video and that altered the decision to 

choose  , the median would eliminate   and still provide a reasonably acceptable 

result. While the median-mean filtering approach is performed on the low 

frequency frames, the high frequency frames are subject to line doubling. This 

line doubled version is added to  . STELA attempts to preserve both the 

horizontal and vertical frequencies of the image. STELA shows that spatio-

temporal methods work better than spatial deinterlacers like ELA when the target 

video consists of both regions of background containing no/little motion and 

foreground containing regions of relatively high motion.   
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4.2.3 Content-adptive and method switching deinterlacers  

 Recently, the deinterlacing community is seeing a boom in content-

adaptive and method switching deinterlacers. These deinterlacers are smart in the 

sense that they accommodate for the fact that a purely temporal deinterlacer 

performs best on still images, a purely spatial deinterlacer performs best on videos 

with high motion and a spatio-temporal deinterlacer performs best on videos with 

combinations of both. They quite simply perform a combination of all the three 

based on the content of the video or based on the level of motion in particular 

regions of the video.  

 Some of the recent state-of-the-art deinterlacers are the content-adaptive 

vertical temporal filters (CAVTF) [51, 52, 53]. The work done by Hong et, al. 

[53] works with ELA as the core algorithm. CAVTF on the other hand proposed 

by Lee et, al. [51] chooses a different filter weight for a different VTF based on 

the content of the video. These filter weights are learned online and has the 

freedom of varying anywhere from purely spatial to purely temporal. These 

algorithms are very sophisticated and have only recently started getting popular, 

owing to increasing computational performances. CAVTF is an algorithm 

published in the year 2011 and along with VTF, ELA and STELA will be 

considered the benchmark for the proposed thesis. 
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4.3 Summary of literature review 

 Many deinterlacing methods, both linear and non-linear are studied in 

detail. In summary, by observing the methods in literature, some noteworthy 

points can be made.  

1. A purely spatial edge-based deinterlacer would perform best on regions of 

high motion. To solve this 1DCGI will be used and will be compared 

against ELA which is also a purely spatial approach.  

2. A purely temporal weave algorithm ideally performs best on regions with 

no motion.  

3. A spatio-temporal VTF performs optimally on regions containing 

moderate motion.   
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Chapter 5:   PROPOSED DEINTERLACING SYSTEM 

 

 The deinterlacing system proposed in this thesis is a non-linear adaptive 

system. The understanding from the last chapter is that a good deinterlacing 

algorithm has to tackle three regions in a video.  

1. Region of video that has no motion or a static region. This requires a 

purely temporal deinterlacer. 

2. Region of video that has moderate motion. This requires a spatio-temporal 

deinterlacer 

3. Region of video that has very high motion. This requires a purely spatial 

deinterlacer.  

The above statements can be put into a mathematical template as, 

                                      ̂(   )   {

  (   )  (             )
                          

   
   

                    …(5.1) 

where,  ,   and   are interpolation techniques and  ,   and   are conditions that 

specify regions of motion in increasing motion content respectively. To elucidate 

further, 

1.   is the interpolation performed for the region defined by   that  specifies 

static region in a video.  

2.   is the interpolation performed for the region defined by   that specifies 

region with low motion.  
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3.   is the interpolation performed for the region defined by   which 

specifies region with highest motion in a video.  

The rest of this chapter will go through this template region by region to solve the 

deinterlacing problem. 

 

5.1  Solving for static regions of the video 

 Region that satisfies any condition   is a static region if the pixel 

differences across that region temporally are zero. Let us define    the difference 

map for the     frame such that,   

                                           ‖ (   )   (   )‖                               …(5.2) 

where  ( ) represents the     frame of the interlaced video. To bring the 

difference image     up to the resolution, we perform line doubling on this image. 

The image can be easily threshold to 1 bit difference. What this would mean is 

that, if there is even one bit difference, the pixel will not be considered a static 

pixel.  

 Once the static region is identified this way, it is easy to interpolate for it. 

We simple perform field insertion. 

                                       (   )      (   )            …(5.3) 

As can be seen from Figure 4-2, any purely temporal deinterlacer performs best 

on static regions, which is further supported by Figure 4-3 where the wall and 

other static regions are perfectly recovered. This solves one part of the problem. 
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 Equation 5.2 represents the condition   and equation 5.3 represents the 

interpolation process  . Equation 5.1 can be updated using this information and 

and we get, 

               ̂(   )   {

  (   )  (             )

                (   )    (   )               
   
   

                    …(5.4) 

where,    is 1 bit depth. 

 

5.2  Solving for semi-static regions of the video 

 As was observed from Figure 4-4, VTF is a good linear deinterlacer, in 

semi-static regions. In this approach we just follow the same understanding and 

use the Weston’s VTF as described in [11]. This means that the interpolator   can 

be formulated as,  

                                           (   )  ∑ ∑     (     )   ( )                    …(5.5) 

where  

                           ( )  {

 

 
 
 

 
         (             )

 
 

  
 
 

 
  

 

  
  (                 )

           …(5.6) 

 Identifying regions of very high motion and regions of semi-static motion 

is difficult. This is in a way equivalent to identifying cognitively, the regions of 

foreground and background with the assumption that foreground is usually the 
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region consisting of high motion. This assumption is reasonable to make with 

respect to natural videos.  

 

5.2.1 Foreground extraction using visual saliency detection 

 Objects of visual saliency are usually the foreground of the image [54]. 

Many videographers and photographers make sure that the content that they want 

to be noticed first is presented as the region of most visual saliency in a video 

[55]. This understanding is followed in many applications like video retargeting 

[56], seam carving [57] and probabilistic tracking [58].  

 This problem is usually solved by trying to detect all objects in the scene 

and then detecting which object is salient [59]. Since this model is based on 

training, it is not suitable for an almost real-time process like deinterlacing. For 

the deinterlacing case, it is best to implement saliency detection without prior 

statistical knowledge of the scene or the contents of the scene.  

 Human saliency detection is a twofold process:  

1. The pre-attentive process 

2. The attention process 

The pre-attentive process is parallel, fast and simple. Its properties and modeling 

are well-studied in literature [60] [61]. In the pre-attentive state, the low level 

information like edge, orientation and intensities are noted automatically. From 

the saliency detection perspective, this information gives the candidate foreground 

in a video. To solve this issue, in the coherence theory, the concept of proto-
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objects was introduced [62] [63] [64]. The first systems that proposed the use of 

the term saliency, to mimic human perception was proposed by Itti and Koch [65] 

[66].  

 Recently studies have been performed to extend saliency models into 

recognition tasks [67]. But just for pre-processing these systems are 

computationally demanding. Saliency detection is as much detection of 

foreground as it is to detect backgrounds. The first work to take this approach is 

the spectral residue approach proposed by Hou and Zhang [68]. This was later 

extended into a spatio-temporal implementation by Guo et, al [69].  

 In [69], a procedure for identifying saliency is presented as a 

representation of spectral residue in a spatio-temporal domain. It is proposed that 

the spatial saliency can be given by low-pass filtering the phase of an image’s 

Fourier transform. In the case of color videos, the phase of a quaternion Fourier 

transform is used. 

 Quaternion Fourier transform of an image is well presented in [70]. A 

color image can be represented using quaternions of the form:  

                                         
     

       
       

                        …(5.7) 

where            satisfies,   
           ,                . The three 

color channels of the images are allocated to Ch2, Ch3 and Ch4. Ch1 is set to zero. 

The Quaternion Fourier Transforms (QFT) of the frame n are 
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and   
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∑ ∑    
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)
   
   

   
     

                   …(5.9) 

where (   ) are the pixel locations of individual pixels and       describe the 

frequencies. W and H are the width and height of the frame. The phase spectrum 

of          is given by, 

                                                              ||⁄  ||.                                    …(5.10)  

The spatial saliency map,     is obtained by Gaussian smoothing (σ = 8) the L2 

norm of the inverse QFT of    , as defined by equation 5.11.  

                                                           (   )                                        …(5.11) 

The spatial saliency map is then used as part of the decision making process in 

Equation 5.4 with a threshold of    where    is 4% of the bit depth. 

 

         Figure 5-1: Mother video and the detected saliency, post thresholding. 
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 Figure 5-1 shows the mother video and its visual saliency. It can be 

observed how the non-salient regions (in black) are also regions of less motion. 

This solves the problem   which can be phrased as   (   )          (   )    . 

These conditions together specify the region of moderate motion which is non-

static. Equation 5.1 can be updated as, 

      ̂(   )   

{
 

 
  (   )  (             )

     (   )     (   )              
∑ ∑     (     )   ( )     (   )        (   )      

      (         )

   …(5.12) 

It is noteworthy that the condition specifying region  , is now replaced by 

         .  

 

5.3  Solving for the regions of high motion in the video 

 ELA as an intra-frame deinterlacer was studied in the previous section. 

STELA performs a similar job while working in a spatio-temporal context. A 

drawback of this approach is that there is only a quantized set of angles of edges 

along which interpolation is performed. 1DCGI as was discussed earlier has been 

demonstrated as effective at detecting sub-pixel edge orientations.1DCGI can be 

directly adapted to deinterlacing as, 

                              (       )  
 

 
  (   )   (        )           …(5.13) 
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where the displacements   are solved as was mentioned in Chapter 3. To solve 

Equation 5.13 1DCGI optical flow equation specified by Equation 3.27 is 

modified to the form, 

                                                  (   )   (        )                         …(5.14) 

As was discussed earlier, two uni-directional interpolations are performed. 

Equation 5.14 describes the first of these directional interpolators while the 

second can be written as,   

                                                  (     )   (      )                         …(5.15) 

The two interpolated estimates for the same line are arrived at using Equations 

5.14 and 5.15. The two estimates are averaged to get the one deinterlaced line. 

 A faster way to perform the 1DCGI formulation is using the segment 

adaptive gradient approach [71]. This allows for a numerical solution with 

 ( ) complexity. Once all the lines are interpolated this way, a frame of 1DCGI 

estimates is formed. 

 Equation 5.1 can  now be stated in its complete form as, 

          ̂(   )   

{
 
 

 
 

  (   )  (             )

               
    (   )     (   )

 
     (   )              

∑ ∑     (     )   ( )     (   )       (   )     

     (   )     (         )

   …(5.16) 

Equation 5.16 completes the proposed deinterlacing system. The proposed system 

is a method switching algorithm that chooses and implements a suitable method 

of interlacing for specific regions of video. 
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5.4 Summary of the proposal 

 A novel deinterlacing approach is proposed as a method switching 

algorithm, switching between, Temporal LA, VTF and 1DCGI for different 

regions of the video.  
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Chapter 6:   SPIN OFF ALGORITHMS 

 

 Several spin off algorithms were also developed along with the approach 

proposed in the previous chapter. This are developed either to evaluate 1DCGI as 

an independent deinterlacer or to produce deinterlacers of intermediate 

performance while increasing the computational efficiency. Some of them are 

discussed in this chapter. 

 

6.1 1DCGI as a standalone intra-frame deinterlacer 

 Using equation 5.13, 1DCGI can be considered as an independent 

deinterlacer that works only on the spatial and not on the temporal. 1DCGI can be 

compared with ELA. All the more 1DCGI can also be generalized as an edge-

directed deinterlacer similar to that of ELA.  

 There is one major difference though. While ELA considers 3 possible 

directions of edges per pixel, SAGA virtually considers infinite possible 

directions of edges. This accounts for a substantial increase in performance.  This 

provides for 1DCGI to be considered as a standalone deinterlacing algorithm, 

comparable to ELA. 

 

6.2 1DCGI+TF – A spatio-temporal extension 

 SAGA can be further extended into the temporal domain while still not 

going through the saliency detection process. This makes the computation a little 
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faster. 1DCGI+TF (where TF stands for temporal filter) is a motion adaptive 

algorithm where, the scene is classified into only two regions [72]: 

1. Static region 

2. Moving region 

Using the same difference map   , as proposed in equation 5.2 for classifying a 

static region from a moving region, the new approach 1DCGI+TF can be 

mathematically formulated as, 

               ̂(   )  {

  (   )  (             )

     (   )     (   )     

     (   )   ∑ ∑     (     )   ( )   (    )
   

 

 …(6.1) 

where, 

                             ( )  {
      (              )

  

  
 
 

 
 
  

  
    (                 )

    

 

           …(6.2) 

 1DCGI is now given additional information with the filter response of a 

purely temporal filter defined by equation 6.2. This solves the issues of 1DCGI as 

a standalone deinteralcer. It is to be noted that the filter coefficients of   ( ) in 

this approach adds up to 0 as against 1 when used with VTF and other linear 

approaches.  1DCGI+TF is seen as an approach comparable to VTF and STELA, 

the other spatio-temporal approaches. 
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6.3 Spatio-temporally median assisted 1DCGI  

 Another spin-off method using 1DCGI that is considered here is a spatio-

temporally median assisted 1DCGI (ST-1DCGI). In this method 1DCGI is further 

assisted to avoid noisy pixel influences with the addition of a spatio-temporal 

median from a neighborhood as shown in Figure 4-6. This approach can be 

mathematically demonstrated as, 

                         ̂(   )  {

  (   )  (             )
 

      (     (   )          )
   

 

                    …(6.3) 

The variables in the equation are as defined in Figure 4-6 for each pixel under 

consideration. This method is also a strong competitor to STELA. The main 

advantage with this method is that the interpolator has a spatio-temporal choice of 

content. 

 

6.4 Using 2DCGI to build a 1D deinterlacer 

 A 2DCGI interpolator is adopted as a parallelized line-line deinterlacer 

with partial use of temporal information. Figure 6-1 shows a typical interlaced 

video after up-sampling. In here  ( ) represents the     frame and  ( )   

represents the     frame     row of data. Assuming that a video has      frames 

of video (or a windowed selection of      frames of video), the video can be 

re-arranged as shown in Figure 6-2. 
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Figure 6-1: A Typical interlaced video when up-sampled but not interpolated yet. 

Lines marked ‘X’ are those that contain data and blank lines are those that are to 

be deinterlaced. 

 

 

Figure 6-2: Re-arrangement of video to interlace the 2
nd

 line of video. All the 

lines contain data. 

 

 The video is re-arranged in such a way that the entire first and the third 

lines of the video are collected into intermediary frames. Now using 2DCGI that 

was discussed in section 3.2, a frame is arrived at, and that represents all the 

second spatially-deinterlaced lines of the video. It can be noted that using one 
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2DCGI formulation of the methodology mentioned above, at one pass, (   )   

lines can be deinterlaced, irrespective of the length of the line. Also, there is a 

trade-off between the number of frames considered and the limit to which the 

temporal information is required. More the number of frames in the window more 

are the temporal information supplied to the algorithm. For the purposes of 

evaluation, 64 frames are considered per window. 

 This method is particularly significant because, this is the first method to 

re-arrange a video in such a way that a 2D interpolator is used to deinterlace line-

by-line. This methodology is essentially a spatial deinterlacer with information 

also from the horizontal-temporal, rather than the vertical-temporal.  

 

6.5 Summary of Spin-off methods 

 Three additional spin-off methods using the principles of 1DCGI are 

proposed with influences from other methods in literature. 
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Chapter 7:   RESULTS 

 

 The videos are interlaced using the second method of deinterlacing 

discussed in Chapter 1:  . This enables us to maintain the number of frames so that 

evaluation can be performed easily. The test videos are taken from the ASU trace 

video library [73]. Experiments are performed for a minimum of 300 frames of 

videos. Peak signal to noise ratio (PSNR) is used as a metric of comparison to 

evaluate the performance of each algorithm. PSNR is calculated for each frame of 

the video and are averaged to get the PSNR of the final video. Mean squared error 

(MSE) for two monochrome images   and   of size     is given by, 

                                        
 

  
∑ ∑   (   )   (   )     

   
   
                    …(7.1) 

where     represent the horizontal and the vertical pixel locations. The PSNR is 

defined as, 

                                       (    )          (   )                 …(7.2) 

where      is the maximum possible pixel value of the Image. Most of the 

videos that are considered here are unsigned 8-bit integer images for which the 

maximum pixel values are usually 255. Table 1 compares the PSNR of the prior 

arts methods, proposed algorithm and the spin-off methods. 
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Table 1: PSNR (dB) of the proposed method compared against other prior art 

methods. 

Video Weave LA ELA STELA VTF Proposed 

Akiyo 33.302 38.359 36.758 41.237 41.117 47.301 

Bowing 31.617 36.850 34.617 37.013 40.962 46.122 

Bridge Far 29.854 32.244 32.135 38.788 33.689 42.423 

Container 24.436 28.017 27.795 35.479 31.055 46.417 

Deadline 27.178 30.443 28.519 35.662 33.152 42.814 

Foreman 28.162 31.519 32.149 31.467 32.202 36.957 

Galleon 21.411 24.333 23.344 31.609 27.058 42.048 

Hall Monitor 25.801 29.945 30.435 36.942 32.023 41.892 

Mother 33.103 36.637 36.016 42.599 38.058 45.635 

News 28.469 34.202 31.765 36.855 39.088 44.597 

Students 28.124 31.906 30.994 37.086 33.436 45.173 

Paris 23.541 26.717 25.370 30.943 28.934 33.799 

Sign Irene 32.667 36.468 36.268 36.181 36.401 40.108 

 

 The methods 1DCGI, 1DCGI+TF, ST-1DCGI and 2DCGI discussed in 

Table 2 are spin-off methods. It can be noticed that 1DCGI as a purely spatial 

method outperforms ELA. The reason for this is because while ELA can 

interpolate along only 3 discrete angles, 1DCGI can interpolate along virtually 

infinite angles. It can also be noticed that 1DCGI+TF performs better than 

STELA and VTF. This is a fair comparison in the sense that all the methods 

involved in the comparison are spatio-temporal edge-directed methods.  
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Table 2: PSNR (dB) of the spin-off methods compared against other prior art 

methods. 

Video 1DCGI   1DCGI+TF ST-1DCGI 

Akiyo 38.720 46.024 45.452 

Bowing 36.228 42.881 42.232 

Bridge Far 32.225 39.138 38.324 

Container 28.769 46.278 44.073 

Deadline 30.603 42.954 41.564 

Foreman 34.539 35.709 34.785 

Galleon 24.290 31.780 30.760 

Hall Monitor 31.566 37.948 36.963 

Mother 36.690 44.351 43.898 

News 34.068 40.053 40.746 

Students 32.323 38.479 38.224 

Paris 26.764 32.114 32.254 

Sign Irene 37.462 37.489 38.129 

  

  CAVTF [51] was proposed in 2011 and is currently the state-of-the-art in 

deinterlacing. CAVTF as discussed earlier is a parametric approach that can’t be 

re-implemented and its results re-calculated. To facilitate comparisons to such 

published results, a statistical relevance factor   is introduced. If        is the 

mean squared error from VTF and        is the mean squared error of a new 

algorithm, then the statistical relevance   is 

                                                           [  
      

      
]                             …(7.3) 
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Comparison of the proposed approach against CAVTF in terms of   is given in 

Table 3.  

Table 3: Comparison of the Proposed Algorithm against CAVTF in terms of 

Statistical relevance. 

Video CAVTF Proposed Algorithm 

Akiyo 70.620 74.941 

Container 93.200 97.090 

Foreman 41.920 66.547 

Hall Monitor 76.770 89.694 

Mother 57.040 82.529 

 

 The proposed deinterlacing system outperforms all the methods discussed. 

This shows that the method switching algorithm implemented with 1DCGI is as 

predicted, a better method for deinterlacing than the prior arts methods. 

Advantages of the proposed algorithm are particularly noticeable in videos like 

‘mother’, where there are distinct salient and background regions as indicated in 

Figure 5-1. 1DCGI interpolates better than the other temporal method along the 

edges in the salient regions, while the background regions are estimated using 

either VTF or temporal average (depending on temporal motion). It is clear that 

this selection process improves the performance of 1DCGI alone as a deinterlacer 

and makes the overall approach better than the prior art methods in both the 

PSNR and visual sense. From Figure 7-1 it can be seen that the proposed 

approach maintains the quality in the non-moving background in particular.  
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Summary of Results 

 The deinterlacing methods are evaluated by testing with standard videos 

from the Trace library. These methods are compared with PSNR and the proposed 

system is also compared against CAVTF using the statistical relevance method. 
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                       a) Original                                                b) ELA  

  

                         c) STELA                                              d) VTF    

 

                        a) 1DCGI                                              b) Proposed  

Figure 7-1: Visual comparison among the deinterlacing algorithms. 
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Chapter 8:   CONCLUSIONS AND FUTURE SCOPE 

 

 1DCGI is a 1D optical flow analogue that is easily adaptable to the 

deinterlacing problem. 1DCGI is a purely spatial deinterlacer and can’t solve the 

deinterlacing problem by itself. To support 1DCGI, a method switching technique 

is proposed that chooses adaptively between Temporal Weave and VTF based on 

a saliency map and a difference frame. The temporal weave algorithm is 

implemented on static regions of the video and 1DCGI is implemented on salient 

regions of the video and on the other regions VTF is performed.  

 The proposed algorithm performs better than the state-of-the-art both in 

the PSNR sense and in the visual sense. Among the spin-off methods, 1DCGI 

outperforms its purely spatial counterpart ELA while, 1DCGI+TF and ST-1DCGI 

outperform its spatio-temporal counterparts VTF and STELA.  

 Recently 1DCGI is made faster by the implementation of Segment 

adaptive gradient angle interpolation (SAGA) [71]. This can be adapted directly 

for the deinterlacing problem. This would potentially increase the computational 

performance of the algorithm and make it faster. Further research can be 

undertaken to perform one symmetric directional estimate rather than two uni 

directional estimates. This can be directly targeted to suit the deinterlacing 

application. 

 The 1DCGI as described in this form can also be applied to two lines 

temporally. If used along with two lines spatially, this will provide a bi-linear 
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structure to 1DCGI, wherein four uni-directional lines can be arrived at and 

averaged. This would truly make 1DCGI a spatio-temporal approach.  
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