43 research outputs found

    Dual-Reference Source-Free Active Domain Adaptation for Nasopharyngeal Carcinoma Tumor Segmentation across Multiple Hospitals

    Full text link
    Nasopharyngeal carcinoma (NPC) is a prevalent and clinically significant malignancy that predominantly impacts the head and neck area. Precise delineation of the Gross Tumor Volume (GTV) plays a pivotal role in ensuring effective radiotherapy for NPC. Despite recent methods that have achieved promising results on GTV segmentation, they are still limited by lacking carefully-annotated data and hard-to-access data from multiple hospitals in clinical practice. Although some unsupervised domain adaptation (UDA) has been proposed to alleviate this problem, unconditionally mapping the distribution distorts the underlying structural information, leading to inferior performance. To address this challenge, we devise a novel Sourece-Free Active Domain Adaptation (SFADA) framework to facilitate domain adaptation for the GTV segmentation task. Specifically, we design a dual reference strategy to select domain-invariant and domain-specific representative samples from a specific target domain for annotation and model fine-tuning without relying on source-domain data. Our approach not only ensures data privacy but also reduces the workload for oncologists as it just requires annotating a few representative samples from the target domain and does not need to access the source data. We collect a large-scale clinical dataset comprising 1057 NPC patients from five hospitals to validate our approach. Experimental results show that our method outperforms the UDA methods and achieves comparable results to the fully supervised upper bound, even with few annotations, highlighting the significant medical utility of our approach. In addition, there is no public dataset about multi-center NPC segmentation, we will release code and dataset for future research

    Multiparametric Magnetic Resonance Imaging Artificial Intelligence Pipeline for Oropharyngeal Cancer Radiotherapy Treatment Guidance

    Get PDF
    Oropharyngeal cancer (OPC) is a widespread disease and one of the few domestic cancers that is rising in incidence. Radiographic images are crucial for assessment of OPC and aid in radiotherapy (RT) treatment. However, RT planning with conventional imaging approaches requires operator-dependent tumor segmentation, which is the primary source of treatment error. Further, OPC expresses differential tumor/node mid-RT response (rapid response) rates, resulting in significant differences between planned and delivered RT dose. Finally, clinical outcomes for OPC patients can also be variable, which warrants the investigation of prognostic models. Multiparametric MRI (mpMRI) techniques that incorporate simultaneous anatomical and functional information coupled to artificial intelligence (AI) approaches could improve clinical decision support for OPC by providing immediately actionable clinical rationale for adaptive RT planning. If tumors could be reproducibly segmented, rapid response could be classified, and prognosis could be reliably determined, overall patient outcomes would be optimized to improve the therapeutic index as a function of more risk-adapted RT volumes. Consequently, there is an unmet need for automated and reproducible imaging which can simultaneously segment tumors and provide predictive value for actionable RT adaptation. This dissertation primarily seeks to explore and optimize image processing, tumor segmentation, and patient outcomes in OPC through a combination of advanced imaging techniques and AI algorithms. In the first specific aim of this dissertation, we develop and evaluate mpMRI pre-processing techniques for use in downstream segmentation, response prediction, and outcome prediction pipelines. Various MRI intensity standardization and registration approaches were systematically compared and benchmarked. Moreover, synthetic image algorithms were developed to decrease MRI scan time in an effort to optimize our AI pipelines. We demonstrated that proper intensity standardization and image registration can improve mpMRI quality for use in AI algorithms, and developed a novel method to decrease mpMRI acquisition time. Subsequently, in the second specific aim of this dissertation, we investigated underlying questions regarding the implementation of RT-related auto-segmentation. Firstly, we quantified interobserver variability for an unprecedented large number of observers for various radiotherapy structures in several disease sites (with a particular emphasis on OPC) using a novel crowdsourcing platform. We then trained an AI algorithm on a series of extant matched mpMRI datasets to segment OPC primary tumors. Moreover, we validated and compared our best model\u27s performance to clinical expert observers. We demonstrated that AI-based mpMRI OPC tumor auto-segmentation offers decreased variability and comparable accuracy to clinical experts, and certain mpMRI input channel combinations could further improve performance. Finally, in the third specific aim of this dissertation, we predicted OPC primary tumor mid-therapy (rapid) treatment response and prognostic outcomes. Using co-registered pre-therapy and mid-therapy primary tumor manual segmentations of OPC patients, we generated and characterized treatment sensitive and treatment resistant pre-RT sub-volumes. These sub-volumes were used to train an AI algorithm to predict individual voxel-wise treatment resistance. Additionally, we developed an AI algorithm to predict OPC patient progression free survival using pre-therapy imaging from an international data science competition (ranking 1st place), and then translated these approaches to mpMRI data. We demonstrated AI models could be used to predict rapid response and prognostic outcomes using pre-therapy imaging, which could help guide treatment adaptation, though further work is needed. In summary, the completion of these aims facilitates the development of an image-guided fully automated OPC clinical decision support tool. The resultant deliverables from this project will positively impact patients by enabling optimized therapeutic interventions in OPC. Future work should consider investigating additional imaging timepoints, imaging modalities, uncertainty quantification, perceptual and ethical considerations, and prospective studies for eventual clinical implementation. A dynamic version of this dissertation is publicly available and assigned a digital object identifier through Figshare (doi: 10.6084/m9.figshare.22141871)

    Advanced machine learning methods for oncological image analysis

    Get PDF
    Cancer is a major public health problem, accounting for an estimated 10 million deaths worldwide in 2020 alone. Rapid advances in the field of image acquisition and hardware development over the past three decades have resulted in the development of modern medical imaging modalities that can capture high-resolution anatomical, physiological, functional, and metabolic quantitative information from cancerous organs. Therefore, the applications of medical imaging have become increasingly crucial in the clinical routines of oncology, providing screening, diagnosis, treatment monitoring, and non/minimally- invasive evaluation of disease prognosis. The essential need for medical images, however, has resulted in the acquisition of a tremendous number of imaging scans. Considering the growing role of medical imaging data on one side and the challenges of manually examining such an abundance of data on the other side, the development of computerized tools to automatically or semi-automatically examine the image data has attracted considerable interest. Hence, a variety of machine learning tools have been developed for oncological image analysis, aiming to assist clinicians with repetitive tasks in their workflow. This thesis aims to contribute to the field of oncological image analysis by proposing new ways of quantifying tumor characteristics from medical image data. Specifically, this thesis consists of six studies, the first two of which focus on introducing novel methods for tumor segmentation. The last four studies aim to develop quantitative imaging biomarkers for cancer diagnosis and prognosis. The main objective of Study I is to develop a deep learning pipeline capable of capturing the appearance of lung pathologies, including lung tumors, and integrating this pipeline into the segmentation networks to leverage the segmentation accuracy. The proposed pipeline was tested on several comprehensive datasets, and the numerical quantifications show the superiority of the proposed prior-aware DL framework compared to the state of the art. Study II aims to address a crucial challenge faced by supervised segmentation models: dependency on the large-scale labeled dataset. In this study, an unsupervised segmentation approach is proposed based on the concept of image inpainting to segment lung and head- neck tumors in images from single and multiple modalities. The proposed autoinpainting pipeline shows great potential in synthesizing high-quality tumor-free images and outperforms a family of well-established unsupervised models in terms of segmentation accuracy. Studies III and IV aim to automatically discriminate the benign from the malignant pulmonary nodules by analyzing the low-dose computed tomography (LDCT) scans. In Study III, a dual-pathway deep classification framework is proposed to simultaneously take into account the local intra-nodule heterogeneities and the global contextual information. Study IV seeks to compare the discriminative power of a series of carefully selected conventional radiomics methods, end-to-end Deep Learning (DL) models, and deep features-based radiomics analysis on the same dataset. The numerical analyses show the potential of fusing the learned deep features into radiomic features for boosting the classification power. Study V focuses on the early assessment of lung tumor response to the applied treatments by proposing a novel feature set that can be interpreted physiologically. This feature set was employed to quantify the changes in the tumor characteristics from longitudinal PET-CT scans in order to predict the overall survival status of the patients two years after the last session of treatments. The discriminative power of the introduced imaging biomarkers was compared against the conventional radiomics, and the quantitative evaluations verified the superiority of the proposed feature set. Whereas Study V focuses on a binary survival prediction task, Study VI addresses the prediction of survival rate in patients diagnosed with lung and head-neck cancer by investigating the potential of spherical convolutional neural networks and comparing their performance against other types of features, including radiomics. While comparable results were achieved in intra- dataset analyses, the proposed spherical-based features show more predictive power in inter-dataset analyses. In summary, the six studies incorporate different imaging modalities and a wide range of image processing and machine-learning techniques in the methods developed for the quantitative assessment of tumor characteristics and contribute to the essential procedures of cancer diagnosis and prognosis

    Exploring variability in medical imaging

    Get PDF
    Although recent successes of deep learning and novel machine learning techniques improved the perfor- mance of classification and (anomaly) detection in computer vision problems, the application of these methods in medical imaging pipeline remains a very challenging task. One of the main reasons for this is the amount of variability that is encountered and encapsulated in human anatomy and subsequently reflected in medical images. This fundamental factor impacts most stages in modern medical imaging processing pipelines. Variability of human anatomy makes it virtually impossible to build large datasets for each disease with labels and annotation for fully supervised machine learning. An efficient way to cope with this is to try and learn only from normal samples. Such data is much easier to collect. A case study of such an automatic anomaly detection system based on normative learning is presented in this work. We present a framework for detecting fetal cardiac anomalies during ultrasound screening using generative models, which are trained only utilising normal/healthy subjects. However, despite the significant improvement in automatic abnormality detection systems, clinical routine continues to rely exclusively on the contribution of overburdened medical experts to diagnosis and localise abnormalities. Integrating human expert knowledge into the medical imaging processing pipeline entails uncertainty which is mainly correlated with inter-observer variability. From the per- spective of building an automated medical imaging system, it is still an open issue, to what extent this kind of variability and the resulting uncertainty are introduced during the training of a model and how it affects the final performance of the task. Consequently, it is very important to explore the effect of inter-observer variability both, on the reliable estimation of model’s uncertainty, as well as on the model’s performance in a specific machine learning task. A thorough investigation of this issue is presented in this work by leveraging automated estimates for machine learning model uncertainty, inter-observer variability and segmentation task performance in lung CT scan images. Finally, a presentation of an overview of the existing anomaly detection methods in medical imaging was attempted. This state-of-the-art survey includes both conventional pattern recognition methods and deep learning based methods. It is one of the first literature surveys attempted in the specific research area.Open Acces

    Multimodal Data Fusion and Quantitative Analysis for Medical Applications

    Get PDF
    Medical big data is not only enormous in its size, but also heterogeneous and complex in its data structure, which makes conventional systems or algorithms difficult to process. These heterogeneous medical data include imaging data (e.g., Positron Emission Tomography (PET), Computerized Tomography (CT), Magnetic Resonance Imaging (MRI)), and non-imaging data (e.g., laboratory biomarkers, electronic medical records, and hand-written doctor notes). Multimodal data fusion is an emerging vital field to address this urgent challenge, aiming to process and analyze the complex, diverse and heterogeneous multimodal data. The fusion algorithms bring great potential in medical data analysis, by 1) taking advantage of complementary information from different sources (such as functional-structural complementarity of PET/CT images) and 2) exploiting consensus information that reflects the intrinsic essence (such as the genetic essence underlying medical imaging and clinical symptoms). Thus, multimodal data fusion benefits a wide range of quantitative medical applications, including personalized patient care, more optimal medical operation plan, and preventive public health. Though there has been extensive research on computational approaches for multimodal fusion, there are three major challenges of multimodal data fusion in quantitative medical applications, which are summarized as feature-level fusion, information-level fusion and knowledge-level fusion: • Feature-level fusion. The first challenge is to mine multimodal biomarkers from high-dimensional small-sample multimodal medical datasets, which hinders the effective discovery of informative multimodal biomarkers. Specifically, efficient dimension reduction algorithms are required to alleviate "curse of dimensionality" problem and address the criteria for discovering interpretable, relevant, non-redundant and generalizable multimodal biomarkers. • Information-level fusion. The second challenge is to exploit and interpret inter-modal and intra-modal information for precise clinical decisions. Although radiomics and multi-branch deep learning have been used for implicit information fusion guided with supervision of the labels, there is a lack of methods to explicitly explore inter-modal relationships in medical applications. Unsupervised multimodal learning is able to mine inter-modal relationship as well as reduce the usage of labor-intensive data and explore potential undiscovered biomarkers; however, mining discriminative information without label supervision is an upcoming challenge. Furthermore, the interpretation of complex non-linear cross-modal associations, especially in deep multimodal learning, is another critical challenge in information-level fusion, which hinders the exploration of multimodal interaction in disease mechanism. • Knowledge-level fusion. The third challenge is quantitative knowledge distillation from multi-focus regions on medical imaging. Although characterizing imaging features from single lesions using either feature engineering or deep learning methods have been investigated in recent years, both methods neglect the importance of inter-region spatial relationships. Thus, a topological profiling tool for multi-focus regions is in high demand, which is yet missing in current feature engineering and deep learning methods. Furthermore, incorporating domain knowledge with distilled knowledge from multi-focus regions is another challenge in knowledge-level fusion. To address the three challenges in multimodal data fusion, this thesis provides a multi-level fusion framework for multimodal biomarker mining, multimodal deep learning, and knowledge distillation from multi-focus regions. Specifically, our major contributions in this thesis include: • To address the challenges in feature-level fusion, we propose an Integrative Multimodal Biomarker Mining framework to select interpretable, relevant, non-redundant and generalizable multimodal biomarkers from high-dimensional small-sample imaging and non-imaging data for diagnostic and prognostic applications. The feature selection criteria including representativeness, robustness, discriminability, and non-redundancy are exploited by consensus clustering, Wilcoxon filter, sequential forward selection, and correlation analysis, respectively. SHapley Additive exPlanations (SHAP) method and nomogram are employed to further enhance feature interpretability in machine learning models. • To address the challenges in information-level fusion, we propose an Interpretable Deep Correlational Fusion framework, based on canonical correlation analysis (CCA) for 1) cohesive multimodal fusion of medical imaging and non-imaging data, and 2) interpretation of complex non-linear cross-modal associations. Specifically, two novel loss functions are proposed to optimize the discovery of informative multimodal representations in both supervised and unsupervised deep learning, by jointly learning inter-modal consensus and intra-modal discriminative information. An interpretation module is proposed to decipher the complex non-linear cross-modal association by leveraging interpretation methods in both deep learning and multimodal consensus learning. • To address the challenges in knowledge-level fusion, we proposed a Dynamic Topological Analysis framework, based on persistent homology, for knowledge distillation from inter-connected multi-focus regions in medical imaging and incorporation of domain knowledge. Different from conventional feature engineering and deep learning, our DTA framework is able to explicitly quantify inter-region topological relationships, including global-level geometric structure and community-level clusters. K-simplex Community Graph is proposed to construct the dynamic community graph for representing community-level multi-scale graph structure. The constructed dynamic graph is subsequently tracked with a novel Decomposed Persistence algorithm. Domain knowledge is incorporated into the Adaptive Community Profile, summarizing the tracked multi-scale community topology with additional customizable clinically important factors

    Advanced Computational Methods for Oncological Image Analysis

    Get PDF
    [Cancer is the second most common cause of death worldwide and encompasses highly variable clinical and biological scenarios. Some of the current clinical challenges are (i) early diagnosis of the disease and (ii) precision medicine, which allows for treatments targeted to specific clinical cases. The ultimate goal is to optimize the clinical workflow by combining accurate diagnosis with the most suitable therapies. Toward this, large-scale machine learning research can define associations among clinical, imaging, and multi-omics studies, making it possible to provide reliable diagnostic and prognostic biomarkers for precision oncology. Such reliable computer-assisted methods (i.e., artificial intelligence) together with clinicians’ unique knowledge can be used to properly handle typical issues in evaluation/quantification procedures (i.e., operator dependence and time-consuming tasks). These technical advances can significantly improve result repeatability in disease diagnosis and guide toward appropriate cancer care. Indeed, the need to apply machine learning and computational intelligence techniques has steadily increased to effectively perform image processing operations—such as segmentation, co-registration, classification, and dimensionality reduction—and multi-omics data integration.

    Learning with Limited Annotations: A Survey on Deep Semi-Supervised Learning for Medical Image Segmentation

    Full text link
    Medical image segmentation is a fundamental and critical step in many image-guided clinical approaches. Recent success of deep learning-based segmentation methods usually relies on a large amount of labeled data, which is particularly difficult and costly to obtain especially in the medical imaging domain where only experts can provide reliable and accurate annotations. Semi-supervised learning has emerged as an appealing strategy and been widely applied to medical image segmentation tasks to train deep models with limited annotations. In this paper, we present a comprehensive review of recently proposed semi-supervised learning methods for medical image segmentation and summarized both the technical novelties and empirical results. Furthermore, we analyze and discuss the limitations and several unsolved problems of existing approaches. We hope this review could inspire the research community to explore solutions for this challenge and further promote the developments in medical image segmentation field

    Computational Imaging for Phase Retrieval and Biomedical Applications

    Get PDF
    In conventional imaging, optimizing hardware is prioritized to enhance image quality directly. Digital signal processing is viewed as supplementary. Computational imaging intentionally distorts images through modulation schemes in illumination or sensing. Then its reconstruction algorithms extract desired object information from raw data afterwards. Co-designing hardware and algorithms reduces demands on hardware and achieves the same or even better image quality. Algorithm design is at the heart of computational imaging, with model-based inverse problem or data-driven deep learning methods as approaches. This thesis presents research work from both perspectives, with a primary focus on the phase retrieval issue in computational microscopy and the application of deep learning techniques to address biomedical imaging challenges. The first half of the thesis begins with Fourier ptychography, which was employed to overcome chromatic aberration problems in multispectral imaging. Then, we proposed a novel computational coherent imaging modality based on Kramers-Kronig relations, aiming to replace Fourier ptychography as a non-iterative method. While this approach showed promise, it lacks certain essential characteristics of the original Fourier ptychography. To address this limitation, we introduced two additional algorithms to form a whole package scheme. Through comprehensive evaluation, we demonstrated that the combined scheme outperforms Fourier ptychography in achieving high-resolution, large field-of-view, aberration-free coherent imaging. The second half of the thesis shifts focus to deep-learning-based methods. In one project, we optimized the scanning strategy and image processing pipeline of an epifluorescence microscope to address focus issues. Additionally, we leveraged deep-learning-based object detection models to automate cell analysis tasks. In another project, we predicted the polarity status of mouse embryos from bright field images using adapted deep learning models. These findings highlight the capability of computational imaging to automate labor-intensive processes, and even outperform humans in challenging tasks.</p

    Artificial Intelligence in Oral Health

    Get PDF
    This Special Issue is intended to lay the foundation of AI applications focusing on oral health, including general dentistry, periodontology, implantology, oral surgery, oral radiology, orthodontics, and prosthodontics, among others
    corecore