2,431 research outputs found

    A Single-Trim frequency reference system with 0.7 ppm/°C from −63 °C to 165 °C Consuming 210 μW at 70 MHz

    Get PDF
    This article presents a frequency reference system that combines high frequency accuracy and low power consumption using a single-point temperature trim and batch calibration. The system is intended as a low-cost fully integrated crystal oscillator replacement. In this system, the oscillation frequency of a power-efficient, but process, voltage, temperature (PVT) and lifetime (L)-sensitive current-controlled ring oscillator (CCO) is periodically (re)calibrated by the well-behaved frequency stability of an untuned LC -based Colpitts oscillator (LCO), which is optimized for stability over PVT variations and lifetime (PVTL). During the single-point room temperature factory trim, the frequency of the LCO is determined and the result is digitally stored. An on-chip calibration engine tunes the CCO to the target frequency based on the LCO frequency, temperature sensor information, and digitally stored trimming information, thus effectively improving the frequency stability of the ring oscillator. The relatively high-power LCO is heavily duty-cycled to minimize the overall power consumption. A prototype fabricated in a 0.13- μ m high-voltage (HV) CMOS SOI process and assembled in a plastic package demonstrates an inaccuracy lower than ±93 ppm over a temperature range from -63 °C to 165 °C across 18 samples. The presented frequency reference system, including on-chip voltage regulators and a temperature sensor, occupies a chip area of 0.69 mm2 and consumes about 64 μA from a single 3.3-V supply. The frequency error due to supply variation is roughly 92 ppm/V. The mean frequency shift due to aging, measured before and after a six-day storage bake at 175 °C, is only 52 ppm.</p

    An FPGA Noise Resistant Digital Temperature Sensor with Auto Calibration

    Get PDF
    In recent years, thermal sensing in digital devices has become increasingly important. From a security perspective, new thermal-based attacks have revealed vulnerabilities in digital devices. Traditional temperature sensors using analog-to-digital converters consume significant power and are not conducive to rapid development. As a result, there has been an escalating demand for low cost, low power digital temperature sensors that can be seamlessly integrated onto digital devices. This research seeks to create a modular Field Programmable Gate Array digital temperature sensor with auto one-point calibration to eliminate the excessive costs and time associated with calibrating existing digital temperature sensors. In addition, to support the auxiliary protection role, the sensor is evaluated alongside a RSA circuit implemented on the same chip, with methods developed to mitigate noise and power fluctuations introduced by the main circuit. The result is a digital temperature sensor resistant to noise and suitable for quick mass deployment in digital devices

    FULLY INTEGRATED HIGH-FREQUENCY CLOCK GENERATION AND SYNCHRONIZATION TECHINIQUES

    Get PDF
    Department of Electrical EngineeringThis thesis presents clock generation and synchronization techniques for RF wireless communication. First, it deals with voltage-controlled oscillators (VCOs) for local oscillators (LO) in transceivers, and secondly delay-locked loops for synchronization. For the high-performance LO, VCO is one of the key blocks. LC VCOs and ring VCOs are commonly-used types. Their characteristics are varied for different frequency bands. In this thesis, two types of VCOs, LC VCO and ring VCO, are presented with specific applications. For the multi-clock generator which could be used for carrier aggregation or frequency hopping, ring-type digitally controlled oscillator (DCO) was designed covering 900-1200 MHz with -165 dB FOM. For the multi-band frequency synthesizer which could be used for 5G communication with backward compatibility, three LC VCOs are designed which frequency range of 25-30 GHz for 5G, 5.2-6.0 GHz for LTE, 2.7-4.2 GHz for 2G-3G communication, respectively. For the clock synchronization in RF communications, a delay-locked loop (DLL) using a digital-to-analog converter (DAC) based band-selecting circuit (BSC) was presented to achieve a wide harmonic-locking-free frequency range. The BSC used the proposed exponential digital-to-analog converter (EDAC) to generate a collection of initial control voltages which follow a sequence of geometric with satisfying the condition for preventing harmonic locking problem. Therefore, the BSC can cover a much wider frequency range which is free from harmonic locking problem compared to initial band selection techniques using conventional, linear DAC (LDAC) that have a set of control voltages of arithmetic sequence. In this thesis, the DLL was implemented in a 65-nm CMOS process, and it had a measured frequency range from 100 to 1500 MHz which range is free from harmonic locking. The measure rms jitter and 1-MHz phase noise at 1000 MHz were 1.99 ps and ?28 dBc/Hz, respectively. The DLL consumes 5.5 mW and its active area was 0.052 mm2.clos

    Reconfigurable time interval measurement circuit incorporating a programmable gain time difference amplifier

    Get PDF
    PhD ThesisAs further advances are made in semiconductor manufacturing technology the performance of circuits is continuously increasing. Unfortunately, as the technology node descends deeper into the nanometre region, achieving the potential performance gain is becoming more of a challenge; due not only to the effects of process variation but also to the reduced timing margins between signals within the circuit creating timing problems. Production Standard Automatic Test Equipment (ATE) is incapable of performing internal timing measurements due, first to the lack of accessibility and second to the overall timing accuracy of the tester which is grossly inadequate. To address these issue ‘on-chip’ time measurement circuits have been developed in a similar way that built in self-test (BIST) evolved for ‘on-chip’ logic testing. This thesis describes the design and analysis of three time amplifier circuits. The analysis undertaken considers the operational aspects related to gain and input dynamic range, together with the robustness of the circuits to the effects of process, voltage and temperature (PVT) variations. The design which had the best overall performance was subsequently compared to a benchmark design, which used the ‘buffer delay offset’ technique for time amplification, and showed a marked 6.5 times improvement on the dynamic range extending this from 40 ps to 300ps. The new design was also more robust to the effects of PVT variations. The new time amplifier design was further developed to include an adjustable gain capability which could be varied in steps of approximately 7.5 from 4 to 117. The time amplifier was then connected to a 32-stage tapped delay line to create a reconfigurable time measurement circuit with an adjustable resolution range from 15 down to 0.5 ps and a dynamic range from 480 down to 16 ps depending upon the gain setting. The overall footprint of the measurement circuit, together with its calibration module occupies an area of 0.026 mm2 The final circuit, overall, satisfied the main design criteria for ‘on-chip’ time measurement circuitry, namely, it has a wide dynamic range, high resolution, robust to the effects of PVT and has a small area overhead.Umm Al-Qura University

    A 2.4GHz 830pJ/bit duty-cycled wake-up receiver with −82dBm sensitivity for crystal-less wireless sensor nodes

    Get PDF
    A 65 nm CMOS 2.4 GHz wake-up receiver operating with low-accuracy frequency references has been realized. Robustness to frequency inaccuracy is achieved by employing non-coherent energy detection, broadband-IF heterodyne architecture and impulse-radio modulation. The radio dissipates 415 ¿W at 500 kb/s and achieves a sensitivity of -82 dBm with an energy efficiency of 830 pJ/bit.\u

    Digital controlled oscillator (DCO) for all digital phase-locked loop (ADPLL) – a review

    Get PDF
    Digital controlled oscillator (DCO) is becoming an attractive replacement over the voltage control oscillator (VCO) with the advances of digital intensive research on all-digital phase locked-loop (ADPLL) in complementary metal-oxide semiconductor (CMOS) process technology. This paper presents a review of various CMOS DCO schemes implemented in ADPLL and relationship between the DCO parameters with ADPLL performance. The DCO architecture evaluated through its power consumption, speed, chip area, frequency range, supply voltage, portability and resolution. It can be concluded that even though there are various schemes of DCO that have been implemented for ADPLL, the selection of the DCO is frequently based on the ADPLL applications and the complexity of the scheme. The demand for the low power dissipation and high resolution DCO in CMOS technology shall remain a challenging and active area of research for years to come. Thus, this review shall work as a guideline for the researchers who wish to work on all digital PLL

    Design of VCOs in Deep Sub-micron Technologies

    Get PDF
    This work will present a more accurate frequency prediction model for single-ended ring oscillators (ROs), a case-study comparing different ROs, and a design method for LC voltage-controlled oscillators (LCVCOs) that uses a MATLAB script based on analytical equations to output a graphical design space showing performance characteristics as a function of design parameters. Using this method, design trade-offs become clear, and the designer can choose which performance characteristics to optimize. These methods were used to design various topologies of ring oscillators and LCVCOs in the GlobalFoundries 28 nm HPP CMOS technology, comparing the performance between different topologies based on simulation results. The results from the MATLAB design script were compared to simulation results as well to show the effectiveness of the design methods. Three varieties of 5 GHz voltage controlled ring oscillators were designed in the GlobalFoundries 28 nm HPP CMOS technology. The first is a low current low dropout regulator (LDO) tuned ring oscillator designed with thin oxide devices and a 0.85 V supply. The second is a high current LDO-tuned ring oscillator designed with medium oxide devices and a 1.5 V supply. The third is varactor-tuned ring oscillator with no LDO, and 0.85 V supply. Performance comparison of these ring oscillator systems are presented, outlining trade-offs between tuning range, phase noise, power dissipation, and area. The varactor-tuned ring oscillator exhibits 8.89 dBc/Hz (with power supply noise) and 16.27 dBc/Hz (without power supply noise) improvement in phase noise over the best-performing LDO-tuned ring oscillator. There are advantages in average power dissipation and area for a minimal tradeoff in tuning range with the varactor-tuned ring oscillator. Four multi-GHz LCVCOs were designed in the GlobalFoundries 28 nm HPP CMOS technology: 15 GHz varactor-tuned NMOS-only, 9 GHz varactor-tuned self-biased CMOS, 14.2 GHz digitally-tuned NMOS-only, and 8.2 GHz digitally-tuned self-biased CMOS. As a design method, analytical ex-pressions describing tuning range, tank amplitude constraint, and startup condition were used in MATLAB to output a graphical view of the design space for both NMOS-only and CMOS LCVCOs, with maximum varactor capacitance on the y-axis and NMOS transistor width on the x-axis. Phase noise was predicted as well. In addition to the standard varactor control voltage tuning method, digitally-tuned implementations of both NMOS and CMOS LCVCOs are presented. The performance aspects of all designed LCVCOs are compared. Both varactor-tuned and digitally-tuned NMOS LCVCOs have lower phase noise, lower power consumption, and higher tuning range than both CMOS topologies. The varactor-tuned NMOS LCVCO has the lowest phase noise of -97 dBc/Hz at 1 MHz offset from 15 GHz center frequency, FOM of -172.20 dBc/Hz, and FOMT of -167.76 dBc/Hz. The digitally-tuned CMOS LCVCO has the greatest tuning range at 10%. Phase noise is improved by 3 dBc/Hz with the digitally-tuned CMOS topology over varactor-tuned CMOS
    corecore