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Abstract—This paper presents a frequency reference system
that combines high frequency accuracy and low power consump-
tion using a single-point temperature trim and batch calibration.
The system is intended as a low-cost fully integrated crystal
oscillator replacement. In this system, the oscillation frequency of
a power-efficient, but Process, Voltage, Temperature (PVT) and
Lifetime (L) sensitive current-controlled ring oscillator (CCO) is
periodically (re)calibrated by the well-behaved frequency stability
of an untuned LC-based Colpitts oscillator (LCO), which is
optimized for stability over PVTL. During the single-point room
temperature factory trim, the frequency of the LCO is deter-
mined and the result is digitally stored. An on-chip calibration
engine tunes the ring oscillator to the target frequency based
on the LCO frequency, temperature sensor information and
digitally stored trimming information, thus effectively improving
the frequency stability of the ring oscillator. The relatively
high-power LCO is heavily duty-cycled to minimize the overall
power consumption. A prototype fabricated in a 0.13 µm high-
voltage (HV) CMOS SOI process and assembled in a plastic
package demonstrates an inaccuracy lower than ±93 ppm over a
temperature range from −63 to 165 °C across 18 samples. The
presented frequency reference system, including on-chip voltage
regulators and a temperature sensor, occupies a chip area of
0.69 mm2 and consumes about 64 µA from a single 3.3 V supply.
The frequency error due to supply variation is roughly 92 ppm/V.
The mean frequency shift due to aging, measured before and after
a six-day storage bake at 175 °C, is only 52 ppm.

Index Terms—Aging, batch calibration, Colpitts oscillator,
current-controlled oscillator, frequency reference, LC oscillator,
low-power, single-trim, temperature stability, trimming.

I. INTRODUCTION

FREQUENCY references are essential building blocks for
many electronic systems for timing and synchronization

purposes. The accuracy of frequency references must be
high enough to allow other subsystems, e.g. transmitters
or analog-to-digital converters (ADCs), to reach specific
performance levels. The reference frequency for e.g. SS
USB or 10/100/1000 Ethernet must be within ±300 ppm
and ±100 ppm margin over PVT variations and lifetime
(PVTL) respectively [1]. In general, higher accuracy levels
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allow for better system performance. To achieve demanding
accuracy levels, it is common in the industry to use crystal
oscillators (XOs), which have bulky external resonators that
cannot be integrated in a CMOS die. These references,
however, achieve frequency stabilities better than ±100 ppm
over a large temperature range without compensation [2].
Although the size of quartz crystals has shrunk over the past
decades, the fabrication method and the need for a vacuum
package makes integration challenging [2]. Alternatively,
(electrostatic) micro-electro-mechanical systems (MEMS)-
based oscillators can achieve a higher level of integration with
similar frequency accuracy by compensating for the inherent
temperature drift (−20 to −30 ppm/°C) and trimming.
These MEMS-based oscillators have gained more market
share over recent years; however, the mechanical resonator
requires a vacuum cavity, which adds processing steps
and costs [3], [4]. Bulk acoustic wave resonator (BAW)-
based oscillators (piezoelectric MEMS) with a dual-Bragg
bulk acoustic resonator (DBAR) operate without a cavity
and can be packaged in relatively low-cost non-hermetic
plastic packages [5]. These resonators are stacked as a
system-in-package (SiP) solution on top of the CMOS die
that contains the active circuitry. This technique increases
the level of integration, but the resonator cannot (yet) be
integrated with a standard single-die CMOS process flow.
Fully integrated frequency references in a standard CMOS
process are thermal-diffusivity (TD)-based [6]–[8], RC-based
[9]–[17] or LC-based [1], [18]–[24], which differ in power
consumption and are all to a greater or lesser extent subject
to PVT-variations and degradation over lifetime resulting
in inaccuracy and long-term instability. Section II extends
further on previously reported integrated frequency references.

This paper presents a fully integrated frequency reference
system combining the high frequency stability of an LC-based
oscillator (LCO) and the low power consumption of an RC-
based oscillator, which has similarities with the work in [25]–
[27] without relying on an external BAW-based [25], MEMS-
based [26], or crystal-based resonator [27]. The design aims to
achieve long-term stability over PVTL at a reference frequency
of 70 MHz and thus to replace an XO with its accompanying
PLL for future/proprietary IoT systems. Its frequency is flexi-
ble and can be changed easily via a look-up table (LUT). We
demonstrate a frequency inaccuracy better than ±93 ppm from
−63 to 165 °C, consuming about 64 µA from a single 3.3 V
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Figure 1. Overview of prior art fully-integrated frequency references as a
function of power efficiency and residual TCf after trimming. Oscillators are
grouped by type (RC-based, TD-based, LC-based). The marker type indicates
the number of factory temperature trimming points ( 1T-trim, 2T-trim,
3T-trim) and the marker color indicates the reported temperature range. Aging
effects are not included. a2T-trim, see [28]. *With batch calibration.

supply with only a single-temperature factory trim (1T-trim)
and batch calibration. The mean frequency shift due to aging,
measured before and after a six-day storage bake at 175 °C,
is within 52 ppm.

The paper is organized as follows: previously reported
integrated frequency references are discussed in Section II.
Section III introduces the general concept of our frequency
reference architecture. Our specific implementation of the
system and its key building blocks are discussed in Section IV.
Section V presents the measurement results, and Section VI
summarizes the main findings and system performance.

II. INTEGRATED FREQUENCY REFERENCES

The primary goal of frequency references is to provide
an accurate and stable clocking signal over production- and
operational variation as well as lifetime. Figure 1 shows
the residual temperature coefficient (TCf in ppm/°C) after
trimming as a function of the power efficiency (in mW/MHz1)
for some fully integrated frequency references. Also included
is the temperature range over which the reported TCf is
achieved. As depicted, most highly stable references use batch
calibration, which generally improves the residual temperature
coefficient. Aging effects are not plotted, as they are generally
not reported. This (incomplete) benchmark also doesn’t take
the phase noise of the reference frequency into account.

RC-based references typically have the lowest power con-
sumption (due to, in general, a relatively low frequency)
but have a residual TCf in the order of 1 to 10 ppm/°C
after a 2T-trim due to complex thermal behaviour of the

1The power efficiency is determined as power per MHz (which can be
simplified to energy [J]). Note that the power efficiency is calculated for
the highest reported output frequency and not for the core frequency. Core
frequencies are typically higher for LC-based references.

RC time constant. The oscillation frequency of RC-based
references is regardless of the architecture, e.g., open-loop
relaxation oscillator [9], [10] or with a frequency-locked-
loop (FLL) [11]–[17], inversely proportional to the resistance
and capacitance of integrated doped (poly) silicon resistors
and capacitors. The resistors are typically the bottleneck for
accuracy as these heavily suffer from PVTL variation [16],
[29], [30]. To minimize temperature dependency, so-called
zero-TC (ZTC) resistors may be used that are composed of
multiple materials with complementary TC, yielding overall
low TCR [16]. Their eventual (small) TCR depends on process-
sensitive sheet resistances. Typically a multi-temperature trim
[16] is required for accuracies better than 1000 ppm over PVT
with large (e.g. automotive) temperature ranges. Doped (poly)
silicon resistors drift over lifetime due to, e.g. hydrogen release
and doping (de-)activation [29], [30]. After a few hours at a
high temperature (>150 °C), the resistor value may already
drift by 1000 ppm [29], making these references impractical
for applications that require stabilities better than ±100 ppm.
Resistors (and other front-end components) are also known to
have significant (package-)stress dependency [15], [31], [32]
that reduce frequency stability, especially in plastic packages.

Many LC-based [19]–[22] and TD-based [6]–[8] references
achieve similar or better accuracy using a more cost-effective
1T-trim. This is thanks to their inherently more robust temper-
ature behaviour. TD-based references are based on the ther-
mal diffusivity of bulk silicon and achieve about ±1000 ppm
across the military temperature range using a 1T-trim [7]. The
frequency accuracy is reported to be mainly limited by the
internal temperature sensor required for the correction loop,
which causes roughly 500 ppm frequency inaccuracy for 0.1 °C
sensing error [6].

The oscillation frequency of LC-based references is primar-
ily defined by their inductance and capacitance, both of which
can be implemented in the metal-backend and are independent
of doping and semiconductor effects. LC-based references are
also less dependent on mechanical (package-)stress compared
to RC-based references [15], [19], [31], [33]. In [19], it
has been shown that LCOs have a well-defined temperature
dependency of roughly 10 to 100 ppm/°C before temperature
compensation and have very low degradation over lifetime
[18], [19]. The temperature dependency can be compensated
with e.g. variable capacitors [20] or with a fractional divider
[18], [19]. Both LC-based and TD-based references have a
substantial power consumption (≫ 1mW), with the former to
sustain high-frequency oscillation of the lossy LC-tank, and
the latter to create a sufficiently large thermal wave [7].

III. PROPOSED SYSTEM ARCHITECTURE

The approach of the presented architecture is to periodically
(re)calibrate a relatively PVTL-sensitive low power oscillator
with a second oscillator that is stable across PVTL-variation
after the 1T-trim, but that consumes more power. The system,
therefore, acts as an FLL which periodically conveys its sta-
bility across PVTL to the low power oscillator. The relatively
high-power oscillator is turned on only for (re)calibrations.
Figure 2 shows a simplified block diagram of the architec-
ture conceptually consisting of four main blocks. The first
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Figure 2. Block diagram of the proposed frequency reference system.

block is the tunable and always-on low-power oscillator that
generates the output frequency fref. The second block is a
frequency sampler2 that effectively implements an accurate
(1T-trimmed) on-chip frequency reference to calibrate the low-
power oscillator periodically. The third block is a calibration
engine that duty-cycles the frequency sampler and controls the
tuning circuitry of the low-power oscillator. The calibration
engine is controlled by the fourth block, containing one or
more sensor(s); we use only a temperature sensor.

The system conceptually operates as follows; during factory
trim at room temperature (RT), an external frequency (fext) is
supplied. The counter then counts the periods of the stable
oscillator frequency fst within a period of fext and digitally
stores the (fundamentally floored3) counter output ⌊fst/fext⌋
in memory. Provided that fst is stable over PVTL or that fst
has a well described dependency on PVTL with accompanying
sensors, this trimming approach is equivalent to sampling
and holding fext, hence the name frequency sampling. An
advantage of this technique is that it does not require tuning of
the accurate oscillator, which makes the oscillator robust over
PVTL and makes trimming time-efficient. After the frequency
sampler is trimmed, the low power oscillator (fref) can be
sampled (characterized) similarly. The difference between the
counter output ⌊fst/fref⌋ and the stored value (⌊fst/fext⌋) is a
measure for the frequency difference between fref and fext. By
(periodically) sampling and comparing, fref can be calibrated
to be equal to fext or to a scaled version thereof.

A. Duty cycling

The variations over time of fref, as generated by the low-
power oscillator, are dominantly temperature dependent, with
a relative temperature coefficient (TC) TCfref (in ppm/°C).
The system in Figure 2 could be configured to continuously
recalibrate the low-power oscillator to minimize impact of
temperature changes on fref; from a system perspective this
approach is senseless, but it serves as starting point for the
derivation that follows. Defining a relative frequency accuracy
constraint ϵfref (in ppm) for fref as |∆fref/fref| ≤ ϵfref and
denoting the time-duration for a (re)calibration as tcal, the
maximum rate of temperature change that can be handled

2The name frequency sampler will be made clear below.
3The floor function is indicated by the ⌊ ⌋-brackets.

by the system, to stay inside accuracy margins is about
dT
dt |max ≈ ϵfref

TCfref ·tcal
.

For the system presented in this paper, see sections IV-B
and V, ϵfref = 100 ppm, TCfref ≈ 242 ppm/◦C and tcal ≈
2.6ms. This results in a maximum trackable temperature
gradient of about 160 °C/s. Tracking a lower temperature
gradient dT/dt enables duty-cycling the recalibration of the
low-power oscillator at a duty cycle

D =
dT
dt |actual
dT
dt |max

=
dT
dt |actual · TCfref · tcal

ϵfref

(1)

(ignoring the loop resolution and noise) while staying within
the ϵfref constraint. The average power consumption of the
entire system Ptotal,avg is then

Ptotal,avg = D · Pcal + Pon

=
dT
dt |actual · TCfref · tcal

ϵfref

· Pcal + Pon (2)

where Pcal is the combined power consumption of the fre-
quency sampler and calibration engine and Pon is the power
consumption of the low-power oscillator and sensor(s) to
activate the (re)calibration.

Figure 3 shows the power consumption of the implemented
system and the contribution of its sub-blocks (with Pcal =
15.7mW and Pon = 0.21mW, see Section V-D) versus time
spent in low-power mode. The time between (re)calibrations
can be long for small variations in temperature, see (1).
With a (re)calibration every 1.9 s, the power spent for the
(re)calibration is already about a magnitude lower than that
of the always-on circuitry.

One might opt for a fixed duty-cycle (re)calibration loop,
which is a simple solution that can drop the power con-
sumption easily by an order of magnitude or more. However,
this solution can lead to many unnecessary (re)calibrations
at the cost of power consumption as well as (re)calibrations
only long after fref got outside the accuracy constraint. To
circumvent this, one or more sensors can be employed that
trigger (re)calibration when deemed necessary, e.g. when the
temperature has changed more than ϵfref

TCfref
(≈ 0.4 ◦C for our

implementation) with respect to the previous (re)calibration.
A further decrease in power consumption could be accom-

plished by storing and interpolating between e.g. the most re-
cent or most frequently used calibration values for fref, which
would reduce the need to start the relatively power-hungry
frequency sampler while still being able to maintain high
accuracy. More complicated systems could employ machine
learning [27].

IV. CIRCUIT IMPLEMENTATION

Our specific implementation of the generic system as dis-
cussed in Section III is explained in this section. The presented
frequency reference system (see section III) is implemented
in a 0.13 µm HV CMOS SOI process4 and has a single 3.3 V
supply. For this prototype, we aim at an output frequency of

4To the best of the authors knowledge, there is no specific benefit of using
an HV SOI process for this system.
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Figure 3. Average power consumption versus time and duty-cycle with a
fixed (re)calibration duration of 2.6 ms.

Figure 4. Detailed schematic system overview.

70 MHz with a 1T-trimmed accuracy better than ±100 ppm
across the automotive temperature range and lifetime. In our
implementation, a current-controlled ring oscillator (CCO) is
used as a relatively low-power oscillator. Its supply current is
derived from a bandgap voltage over a resistor, making it an
RC-type oscillator. This CCO is occasionally (re)calibrated by
the well-behaved frequency of an untuned LC-based Colpitts
oscillator. Due to the choice for an LCO instead of a TD-
based oscillator for the highly stable reference frequency,
the temperature resolution requirements of the accompanying
temperature sensor can be relaxed by about a factor of 100.
The relatively high-power Colpitts oscillator is heavily duty-
cycled to minimize the overall power consumption.

The block schematic of our system is shown in Figure 4
and consists of a digital core of the calibration engine, the
LCO, the CCO, a temperature sensor and voltage regulators.
Additional digital circuitry for the temperature sensor and a
LUT for the calibration engine are implemented off-chip for
evaluation reasons. The remaining parts of this section discuss
the different blocks and their workings in more detail.

A. Frequency sampler

The core of the system is the frequency sampler that enables
periodic calibration of the CCO that provides the clock output
fref. During production trimming, an external frequency fext =
1MHz divided by Next = 1000 starts/stops the counter that

counts edges of fst. After one period of fext/Next, the counter
value Mcounter is stored as Mtrim;

Mtrim =

⌊
fst (Psample, Vtrim, Ttrim, ttrim, . . . ) ·Next

fext

⌋
(3)

where Mtrim is a digital representation for the process spreaded
fst (about 250 MHz, which equals the LCO frequency di-
vided by 8, see Section IV-C) at the trimming temperature
Ttrim (measured on-chip, approximately RT but not strictly
controlled), the trimming supply voltage Vtrim and at time
ttrim. The 18-bit value of Mtrim provides accuracy up to
fext/(Next · fst) ≈ 4 ppm of fst. The implemented (non-
ideal) LC-based fst has a well-defined temperature dependency
which is about −68.2 ppm/◦C (see section V-B). To use the
frequency sampler at a temperature other than Ttrim, the value
of Mtrim is compensated across temperature as

Mst(T ) = Mtrim ·

(
1 +

5∑
n=1

pn ·∆Tn

)
. (4)

In (4), ∆T = T − Ttrim and pn are the coefficients of a 5th

order polynomial of the LCO frequency across temperature,
determined by batch calibration.

B. CCO (re)calibration

For the CCO (re)calibration, the counter starts/stops by the
scaled version of the LCO frequency fst/Nst and counts the
periods of fref, yielding a counter value

Mcounter(P, V, T, L, . . . ) =

⌊
fref(P, V, T, L, . . . ) ·Nst

fst(P, V, T, L, . . . )

⌋
(5)

During production trim, a target value for Mcounter is set such
that fref is equal to ftar. For our demonstrator, ftar = 70MHz.
The target counter value Mtar is stored in the LUT as

Mtar(T ) =

⌊
ftar ·Nst

fext
Next

·Mst(T )

⌋
. (6)

The division factor for fst is set to Nst = 217 − 1, which
yields a resolution of 25 ppm in Mtar and hence also in
ftar. The accuracy of Mtar across temperature depends on the
temperature sensitivity of Mst(T ) (about −68.2 ppm/◦C, see
section V-B) in combination with its temperature resolution. To
have similar accuracy and resolution of Mtar, the temperature
resolution of the LUT is set to 0.5 °C, resulting in 470 LUT-
values of Mtar(T ) for the measured temperature range (see
section V-B).

During (re)calibration, the digital core (see Figure 5) tunes
fref to get Mcounter = Mtar(T ). The digital core consists of
a subtractor and an error accumulator with gain aki. The
subtractor outputs Mtar(T )−Mcounter which (binary) value is
subsequently scaled by a factor aki and consequently accu-
mulated. The accumulated error is then utilized as frequency
control word for the CCO. The loop gain of the system,
simplifying to a time-continuous loop without delay, is:

fref

Mtar
=

aki · aCCO · fst
Nst

τlpf · s2 + s+ aki · aCCO · afs · fst
Nst

(7)
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Figure 5. Calibration loop of the CCO.

where τlpf ≈ 180 µs is the time-constant of the low-pass
filter, aCCO ≈ 300Hz/code is the combined gain of the
digital-to-analog converter (DAC) and CCO, and afs = Nst/fst
is the gain of the frequency sampler. The dominant time
constant of the loop is τ ≈ 1/ (aki · aCCO) ≈ 1.66ms for
aki = 2. The frequency sampler needs Nst/fst ≈ 525 µs for
one conversion. To reduce an error of ϵfref = 100 ppm in
fref to the Mtar resolution of 25 ppm takes the loop about
ln (100 ppm/25 ppm) · τ ≈ 2.3ms. This results in 5 complete
frequency sampler conversions, yielding a total settling time
of about 2.6 ms.

C. Colpitts oscillator

A modified version of the Colpitts oscillator from our work
presented in [19] implements the LCO that generates the
well-behaved frequency fst(T ) over PVTL for the frequency
sampler. The oscillation frequency of the implemented Colpitts
oscillator (see Figure 6) is [19]

fLC ≈ 1

2π
√
LCS

×

√
1 +

1

QL

(
1

QCA

+
1

QCC

)
where L is the tank inductance, CS is the series capacitance
of the tank capacitors CA and CC, QL, QCA and QCC are the
quality factors of L, CA and CC, respectively.

A Colpitts oscillator achieves higher frequency stability
across PVTL, in the low GHz range, than a cross-coupled
LC-oscillator [19], [23]. For ideal reactances (no loss) both
LCOs have the same temperature sensitivity of ∂f/∂T ≈
−TCL/2 − TCC/2 [19], where TCL and TCC are the TC of
the inductance and capacitance, respectively. For finite quality
factors, the temperature sensitivity of a cross-coupled- and a
Colpitts LCO depend differently on the temperature-sensitive
series resistance RL of the inductor [19], [23]. For cross-
coupled LCOs it can be derived that ∂f/∂T ≈ −TCR/Q

2
L,

where TCR is the TC of RL. For a Colpitts oscillator, it can
be derived that ∂fLC/∂T ≈ 2TCR/ (QLQC) where QC is
the quality factor of the tank capacitance CS. At oscillation
frequencies where QLQC ≫ Q2

L (the low GHz range) the
Colpitts oscillator hence is intrinsically more stable over
temperature than a cross-coupled oscillator.

For the current paper, we reused the design from [19] with
a number of modifications. Firstly, to ensure that the impact
of the Groszkowski effect [19], [34] is sufficiently small,
we included amplitude control that regulates the oscillation
amplitude to about 175mV; this amplitude control is now

Figure 6. Schematic of the implemented Colpitts oscillator and block
schematic of peripheral blocks.

Figure 7. Schematic of the implemented CCO and current DAC.

fully integrated. Secondly, compared to the work in [19], the
LCO frequency is slightly increased to 2 GHz and a different
inductor layout is used, now having QL ≈ 18 at RT and
showing an estimated TCL of about 120 ppm/°C. Similar to the
work in [19], a complementary-to-absolute-temperature bias
voltage (CBV) is used for the LCO to compensate for the
PVT dependency of the drain-bulk junction capacitance.

To assure proper operation of the control logic of the
frequency sampler, a high speed prescaler divides the LCO
frequency fLC by 8 to generate fst.

D. Current-controlled oscillator

Figure 7 shows the block schematic of the programmable
CCO that consists of an inverter-based 3-stage ring oscillator,
a limiting amplifier and a low-pass filter, and the current
DAC with a current reference circuit. The 9-bit current DAC
is implemented by switchable current mirrors, where the 4
MSBs are implemented by thermometer code, and the 5 LSBs
are implemented binary weighted. The 9-bit current DAC
delivers the supply current for the CCO core, which is mirrored
and low-pass filtered via Rlpf and Clpf (f−3 dB ≈ 860Hz) by
the PMOS mirror; its smallest current step, before applying
Σ∆ modulation, is about 125 nA which corresponds to a
frequency step of 77 kHz. The Σ∆ modulator (see Figure 5)
adds 8 fractional bits of resolution to the DAC by duty-cycling
an LSB-step across 255 cycles. This effectively achieves
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17 bits of resolution. The frequency resolution of the CCO
is thereby increased to 300 Hz, or 4 ppm of ftar. The Σ∆
modulator operates at 70MHz/32 ≈ 2.2MHz, and has a
minimal repetition frequency of 8.5 kHz, which is about an
order of magnitude higher than the corner frequency of the
succeeding low-pass filter. The operating frequency of the
Σ∆ modulator is therefore chosen sufficiently low to achieve
relatively low Σ∆ power consumption while still achieving the
target resolution and is high enough to not affect the calibration
speed.

E. Temperature sensing

The temperature sensor continuously monitors the die tem-
perature for the digital calibration engine to select the proper
Mtar value from the LUT and to start (re)calibration when
deemed necessary. Absolute accuracy of the temperature sen-
sor is essential for selecting the correct LUT data (0.5 °C
steps) that is used to compensate the LCO frequency drift
across temperature (about −68.2 ppm/°C, see section V). Dur-
ing trimming, the LUT is generated from Mtrim (see Sec-
tion IV-A), the simultaneously sensed die temperature Ttrim
and batch information. Static inaccuracies of the temperature
sensor are hence accounted for in the LUT data and have
negligible impact on the system performance. The quantization
resolution of the temperature sensor must be better than 0.4 °C
for triggering the (re)calibration before fref deviates by more
than ϵfref (see section III-A) due to the CCO temperature
coefficient, which is about 242 ppm/°C (see Section V-B). It
is desired that the rms temperature resolution is significantly
higher than the quantization resolution of 0.4 °C to avoid
triggering recalibrations due to noise, which would lead to
increased power consumption.

Figure 8 shows the block diagram of the temperature sensor,
consisting of a temperature sensing front-end that generates
two temperature-dependent currents, ICTAT and IPTAT, and a
dual-slope ADC quantizing the temperature-dependent ratio
X(T ) = ICTAT/IPTAT. The counter of the dual-slope con-
verter is driven by an external clock fclk of 10 MHz for
measurement flexibility. However, this clock could be derived
from the CCO clock as well. The dual-slope architecture
is insensitive to static changes in the clock frequency. The
currents IPTAT and ICTAT are generated in the BJT-based
sensing front-end from the base-emitter voltage difference
∆VBE = (kT/q) ln (n) and the base-emitter voltage VBE,1
respectively. The currents IPTAT and ICTAT are then obtained
by V-to-I conversion by resistors R1 and R2 to generate
IPTAT = ∆VBE/R1 and ICTAT = VBE/R2, respectively, similar
to [35]. The ratio X(T ), which is digitized by the dual-slope
converter, can be expressed by

X(T ) =
ICTAT

IPTAT
=

R1

R2
· VBE,1

∆VBE
. (8)

Note that X(T ) is largely independent of the temperature
coefficient of resistors R1 and R2. Dynamic element matching
(DEM) and chopping of the amplifiers and current mirrors
are implemented to reduce the effect of process spread and
flicker-noise to obtain sufficient sensor accuracy. The digitized
ratio µout = r · ⌊X(T )⌋, where r is a gain-factor of the

  

  

Figure 8. Block schematic of the dual-slope temperature sensor.

dual-slope converter, is used off-chip to derive the digital
output Dout (proportional to the temperature T ) similar as [36].
The final value of Dout is the average of six sub-conversions
Dout,1, . . . , Dout,6, which use different settings for the DEM
and chopping switches. A sample-specific 1T-trim and a 3rd-
order polynomial based on batch calibration (see section V-A)
are used to correct non-linearities of the temperature sensor.

F. Supply regulation

The supply regulation is implemented by two low-dropout
regulators (LDOs) that generate the 2.5 V and 1.5 V supply,
respectively. The LDOs have no tuning circuitry, but share a
reference voltage from a bandgap circuit that is tuned to its
nominal value, of about 1 V, at Ttrim. The TC of the bandgap
circuit is corrected by batch calibration. The (measured) supply
voltages have uncorrelated spread in their output voltage of
±50 mV (3σ) and ±40 mV (3σ) for the 2.5 V and 1.5 V supply
respectively. The 1.5 V LDO drives the temperature sensor,
the CCO with its current DAC and Σ∆-modulator, the digital
circuitry and some parts of the LCO. The duty-cycled Colpitts
oscillator is supplied via the 2.5 V LDO.

V. MEASUREMENT RESULTS

A prototype in a 0.13 µm HV CMOS SOI process is
fabricated and packaged in a plastic package (transfer molding
process). Figure 10 shows a die micrograph of the prototype.
The prototype is not optimized for area and occupies a
combined active area of 0.69 mm2. In this paper, the temper-
ature sensor and LCO (including LDO) were characterized in
separate measurements to obtain batch information optimized
for temperature stability and measurement speed, respectively.
This characterization could be done at once in a production
scenario. The final 1T-trim of all sub-blocks, complementary
to the batch calibration, is carried out simultaneously.
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Figure 9. Measured open-loop frequency over temperature for the CCO and LCO (a) and (b), respectively. The sample-specific frequency deviation w.r.t. the
output frequency at Ttrim for the CCO and LCO in (c) and (d), respectively.

Figure 10. Die micrograph of the prototype.

A. Characterization of the temperature sensing circuit

The temperature sensing circuit of 6 samples is charac-
terized across a temperature range from −40 °C to 130 °C
(measurement setup limited) to obtain information for batch
calibration. The measurements were executed in a climate
chamber, and the samples were in good thermal contact with
a PT100 (resistance thermometer) for reference measurement.
Figure 11 shows the measured temperature error after applying
a single-point trim and using the obtained batch calibration,
for the 6 samples. The measured span of the temperature
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Figure 11. Measured temperature error between the on-chip temperature
sensor and PT100 reference.

error across the 170 °C temperature range is about 0.3 °C. The
conversion-time of the temperature sensor is about 1.2 ms and
it consumes about 46.2 µW from the 3.3 V supply at RT. The
rms-resolution is 25 mK, corresponding to a resolution FoM
[37] of 34.8 pJ · K2.

B. Uncalibrated/untrimmed CCO and LCO frequency

The uncalibrated/untrimmed frequency of the CCO and
LCO is characterized across a temperature range from
−65 to 170 °C provided by a thermal-streamer (TA-5000).
The corresponding junction temperature measured by the
temperature sensor is −63 to 165 °C; the difference is due
to RT airflow and thermal leakage. In all measurements this
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junction-temperature is used as temperature reference for the
reported performance.

Figure 9(a) shows the measured CCO frequency of 18
samples. For demonstration purposes, all samples use the
same, static, tuning value, showing the large spread in both
frequency and temperature behaviour. Figure 9(b) shows a
measure for the LCO frequency, that is measured via the digital
frequency sampler output as fst = fLC/8 ≈ Mcounter ·fext/Next.
The measured frequency deviation w.r.t. the sample-specific
frequencies at TTrim are shown in Figure 9(c) and (d) for
the CCO and LCO, respectively. The CCO frequency drifts
with roughly 242 ppm/°C (box-method for the measured tem-
perature range) and shows significant TC-spread over the
measured samples. The LCO frequency deviation stays within
±0.8% across the temperature range, but more importantly,
the TCf of −68.2 ppm/°C (box-method) is consistent over the
18 measured samples, as is shown in Figure 9(d). Based on
the first 11 samples measured, a 5th-order polynomial p(T ),
which models the LCO temperature behavior, is obtained for
batch calibration.

The maximum frequency error between p(T ) and the mea-
sured samples is about ±75 ppm, which includes errors from
the temperature sensor. A larger error is expected for wafer-
to-wafer spread [19]. If a 3rd-order polynomial p(T ) would
be used instead of the 5th-order polynomial, the maximum
frequency error between the polynomial and the measured
samples would increase to about ±120 ppm.

C. Calibrated CCO frequency

As described in section IV-B, the frequency sampler is
trimmed at RT with an external clock of 1 MHz and the result
together with the batch calibrated polynomial p(T ) is used to
generate the LUT data. After this, the samples are measured
from −65 °C to 170 °C (ambient). At each measurement point
the CCO is recalibrated as described in section IV-B. Figure 12
shows the measured CCO frequency and frequency error w.r.t.
70 MHz over temperature after (re)calibration. The frequency
error across the entire temperature range stays within −93/
+74 ppm, which corresponds to 0.7 ppm/°C (box method).
The residual frequency error is dominated by two effects.
Firstly, the sample specific spread between the LCOs TC
(TCfst ) and the batch calibrated polynomial p(T ). Secondly,
the temperature sensor inaccuracy that propagates, via the
actual TCfst , into an inaccuracy in the selected LUT value of
the frequency sampler. Figure 13 shows the measured CCO
frequency deviation over supply voltage from 3 V to 3.6 V,
which is limited to the resolution error of the loop (±25 ppm).

D. Power consumption

When the system is not (re)calibrating, and hence in low-
power mode, only the 1.5 V voltage regulator, the temper-
ature sensor, the CCO and the associated Σ∆ modulator
are powered. At room temperature, these circuits draw a
total of ≈64 µA from the 3.3 V supply. Figure 14 shows the
power breakdown in low-power mode. While the system is
(re)calibrating also the 2.5 V voltage regulator and frequency
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Figure 12. Calibrated CCO frequency (left y-axis) and frequency inaccuracy
w.r.t. 70 MHz (right y-axis) of 18 samples as a function of temperature.
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Figure 13. Calibrated CCO frequency (left y-axis) and frequency inaccuracy
w.r.t. 70 MHz (right y-axis) as a function of supply variation.

sampler (including the Colpitts oscillator) are powered which
draw an additional 4.75 mA from the 3.3 V supply.

E. Time domain measurement

Fast (re)calibration of the CCO is necessary to minimize the
on-time of the LCO and hence lower the duty-cycle and the
overall power consumption. The start-up time of the LCO,
including start-up of the accompanying LDO and settling
of the amplitude control loop, is less than 30 µs. Figure 15
shows transient measurements of the CCO frequency during
an operational recalibration cycle as described in section IV-B.
For demonstration purposes we measured the recalibration
speed as function of the gain setting aki. For this measurement,
the CCO frequency fref was manually set to about 69 MHz
instead of the desired 70 MHz (∼15 000 ppm error) before
recalibration was started. The curves in Figure 15 correspond

9.5%
15.8%

22.1%

50.5%

Σ∆-modulator (4.4 µW)

Divider (÷32) (19.8 µW)

Voltage regulator (33.0 µW)

Temperature sensor (46.2 µW)

CCO (105.7 µW)

Figure 14. Power breakdown in low-power mode (total ≈ 210 µW).
.
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Figure 16. Measured Allan deviation of the CCO and the LCO over time.

to the measured fref over recalibration time for various aki.
These correspond to different time constants as described by
(7). To achieve both fast settling and low residual error when
stopping the (re)calibration loop, the gain can be geared down
during recalibration (the curve denoted by aki=2.00 → 0.25).

The measurement resolution of the trimming and calibra-
tion loop depends both on the counter- and LUT values
(Mcounter and Mtar(T )) and on the Allan deviation of the
clocks. Figure 16 shows the measured Allan deviation of the
LCO and CCO without a strictly controlled environmental
temperature and without intermediate calibrations. The mea-
sured Allan deviation floor, which limits the accuracy of
trimming and calibration, is approximately 0.7 ppm for the
LCO and 25 ppm for the CCO. Our demonstrator is optimized
for high PVTL stability, and not for (noise limited) short-term
output frequency stability of the CCO. There is, however, no
fundamental reason why this could not be improved further
using e.g. the approach in [11]–[13]. The rms period jitter
of the free-running CCO in an uncontrolled environment is
measured to be 14.5 ps, as shown in Figure 17. The measured
phase noise of the free-running CCO is shown in Figure 18.

F. Frequency deviation over lifetime

To evaluate the sensitivity of the system over lifetime
effects, 5 samples have undergone a 6-day storage bake
at 175 °C, which corresponds to 150 years at 25 °C [38].
A storage bake is a reasonable representation of the aging
scenario if the frequency sampler has a very small duty cycle.
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Figure 17. Measured period jitter of the free-running CCO frequency.
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Figure 18. Measured phase noise of the free-running CCO at RT.

Figure 19 shows the measured output frequency deviation
over temperature before and after the bake. The mean open-
loop CCO frequency with the same manual trim code as in
section V-B shows a large shift of approximately −2500 ppm
(as expected from section II), while the mean CCO frequency
after calibration with the frequency sampler has shifted only
about +52 ppm, which is mainly attributed to a similar shift
in the LCO frequency. This is in accordance with results in
[1], [18], [19]. This indicates that the presented frequency
reference is much less sensitive to aging than a plain (free-
running) CCO.
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Figure 19. Calibrated CCO frequency (left y-axis) and frequency inaccuracy
w.r.t. 70 MHz (right y-axis) (including standard deviation) of 5 samples as a
function of temperature before and after a 6-day storage bake.
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Table I
PERFORMANCE SUMMARY AND COMPARISON TO PRIOR WORK IN INTEGRATED FREQUENCY REFERENCES.

This work [18] [20] [7] [11] [12] [13]

reference principle Ring osc. & Cross-coupled Cross-coupled Thermal RC RC RCColpitts LC LC LC Diffusivity
frequency [MHz] 70 100 25 16 28 16 16

temperature range [°C] −63 to 165 -40 to 140 -10 to 80 -55 to 125 -40 to 85 -45 to 85 -45 to 85
TC [ppm/°C] 0.7 0.5 2.9 11.1 2.6 5.2 1.3

(# temperature trimming points) (Batch+1) (Batch+2) (Batch+1) (Batch+1) (Batch+2) (Batch+1) (Batch+2)
supply sensitivity [ppm/V] 92a 2.6a 200a NA 2900 2000 1200

number of samples 18 28 10 24 12 18 20
power [mW] 0.21b 14.85c 59.4 2.1 0.14 0.16 0.22

Allan deviation floor [ppm] 25 (@ 1 s) NA 26 (@ 300 s) NA 2 (@ 40 s) 0.35 (@ 100 s) 0.32 (@ 11 s)
area [mm2] 0.69 0.2c NA 0.5 0.06 0.14 0.3

technology 130 nm 130 nm 250 nm 160 nm 65 nm 180 nm 180 nm
HV CMOS SOId CMOS CMOS CMOS CMOS CMOS CMOS

NA = Not Available a Includes an on-chip LDO. b Includes only always on-power, which assumes a small duty cycle (<0.03%) and hence negligible
power overhead of the (re)calibration system. c From private communication as not available from [18] itself. Power is calculated for a supply voltage of
2.7V. d To the best of the authors knowledge, there is no specific benefit of using an HV SOI process for this system.

G. Benchmarking

Table I summarizes the measured performance of the
presented design and compares it to other fully integrated
frequency references. The achieved frequency accuracy over
temperature of this work is more than 4 times better compared
to the LC-based work of [20] and 7 times better than the RC-
based work of [12], which also only use a 1T-trim. Moreover,
we report the largest temperature range and demonstrate a
high stability over lifetime which makes the system suitable
for the most stringent automotive temperature requirements.
The 210 µW power consumption is on par with the RC-
based work in [11]–[13] despite our higher output frequency.
Simultaneously, this work achieves better frequency accuracy
and integrates LDOs and a temperature sensor. Due to the
integrated supply regulation our work achieves more than one
order of magnitude better supply sensitivity compared to the
RC-based references [11]–[13]. The RC-based references in
[11]–[13], that also tune a ring-oscillator to generate the output
frequency, have a lower Allan deviation floor due to their
continuously operating FLL.

VI. CONCLUSIONS

A fully-integrated frequency reference system in a 0.13 µm
HV CMOS SOI process has been presented. The system
effectively combines the high frequency accuracy over PVTL
of a best-in-class untuned Colpitts LCO with a low-power
but inherently highly PVTL sensitive RC-based CCO. The
low-power CCO is periodically, over temperature, recali-
brated to 70 MHz with the highly accurate duty-cycled LCO.
Our demonstrator achieves frequency accuracies better than
±93 ppm over a temperature range from −63 to 165 °C (re-
sulting in 0.7 ppm/°C) across 18 samples while requiring only
a single room-temperature trim. The mean frequency shift due
to a storage bake is only +52 ppm. The presented frequency
reference has the best reported combined temperature coeffi-
cient and power efficiency (3 µW/MHz) compared to state-of-
the-art 1T-trimmed fully-integrated frequency references.
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