6 research outputs found

    Hybrid Genetic Algorithm for Multi-Period Vehicle Routing Problem with Mixed Pickup and Delivery with Time Window, Heterogeneous Fleet, Duration Time and Rest Area

    Get PDF
    Most logistics industries are improving their technology and innovation in competitive markets in order to serve the various needs of customers more efficiently. However, logistics management costs are one of the factors that entrepreneurs inevitably need to reduce, so that goods and services are distributed to a number of customers in different locations effectively and efficiently. In this research, we consider the multi-period vehicle routing problem with mixed pickup and delivery with time windows, heterogeneous fleet, duration time and rest area (MVRPMPDDR). In the special case that occurs in this research, it is the rest area for resting the vehicle after working long hours of the day during transportation over multiple periods, for which with confidence no research has studied previously. We present a mixed integer linear programming model to give an optimal solution, and a meta-heuristic approach using a hybrid genetic algorithm with variable neighborhood search algorithm (GAVNS) has been developed to solve large-sized problems. The objective is to maximize profits obtained from revenue after deducting fuel cost, the cost of using a vehicle, driver wage cost, penalty cost and overtime cost. We prepared two algorithms, including a genetic algorithm (GA) and variable neighborhood search algorithm (VNS), to compare the performance of our proposed algorithm. The VNS is specially applied instead of the mutation operator in GA, because it can reduce duplicate solutions of the algorithms that increase the difficulty and are time-consuming. The numerical results show the hybrid genetic algorithm with variable neighborhood search algorithm outperforms all other proposed algorithms. This demonstrates that the proposed meta-heuristic is efficient, with reasonable computational time, and is useful not only for increasing profits, but also for efficient management of the outbound transportation logistics system

    A Patient Risk Minimization Model for Post-Disaster Medical Delivery Using Unmanned Aircraft Systems

    Get PDF
    The purpose of this research was to develop a novel routing model for delivery of medical supplies using unmanned aircraft systems, improving existing vehicle routing models by using patient risk as the primary minimization variable. The vehicle routing problem is a subset of operational research that utilizes mathematical models to identify the most efficient route between sets of points. Routing studies using unmanned aircraft systems frequently minimize time, distance, or cost as the primary objective and are powerful decision-making tools for routine delivery operations. However, the fields of emergency triage and disaster response are focused on identifying patient injury severity and providing the necessary care. This study addresses the misalignment of priorities between existing routing models and the emergency response industry by developing an optimization model with injury severity to measure patient risk. Model inputs for this study include vehicle performance variables, environmental variables, and patient injury variables. These inputs are used to construct a multi-objective mixed-integer nonlinear programming (MOMINLP) optimization model with the primary objective of minimizing total risk for a set of patients. The model includes a secondary aim of route time minimization to ensure optimal fleet deployment but is constrained by the risk minimization value identified in the first objective. This multi-objective design ensures risk minimization will not be sacrificed for route efficiency while still ensuring routes are completed as expeditiously as possible. The theoretical foundation for quantifying patient risk is based on mass casualty triage decision-making systems, specifically the emergency severity index, which focuses on sorting patients into categories based on the type of injury and risk of deterioration if additional assistance is not provided. Each level of the Emergency Severity Index is assigned a numerical value, allowing the model to search for a route that prioritizes injury criticality, subject to the appropriate vehicle and environmental constraints. An initial solution was obtained using stochastic patient data and historical environmental data validated by a Monte Carlo simulation, followed by a sensitivity analysis to evaluate the generalizability and reliability of the model. Multiple what-if scenarios were built to conduct the sensitivity analysis. Each scenario contained a different set of variables to demonstrate model generalizability for various vehicle limitations, environmental conditions, and different scales of disaster response. The primary contribution of this study is a flexible and generalizable optimization model that disaster planning organizations can use to simulate potential response capabilities with unmanned aircraft. The model also improves upon existing optimization tools by including environmental variables and patient risk inputs, ensuring the optimal solution is useful as a real-time disaster response tool

    An Efficient Improvement Of Ant Colony System Algorithm For Handling Capacity Vehicle Routing Problem

    Get PDF
    Capacitated Vehicle Routing Problem (CVRP) is considered as one of the most famous specialized forms of VRP that has attracted considerable attention from researchers. This problem belongs to complex combinatorial optimization problems included in the NP-Hard Problem category, which is a problem that needs difficult computation. This paper presents an improvement of Ant Colony System (ACS) to solve this problem. In this study, the problem deals with a few vehicles which are used for transporting products to specific places. Each vehicle starts from a main location at different times every day. The capacitated vehicle routing problem (CVRP) is defined to serve a group of delivery customers with known demands. The proposed study seeks to find the best solution of CVRP by using improvement ACS with the accompanying targets: (1) To decrease the distance as long distances negatively affect the course of the process since it consumes a great time to visit all customers. (2) To implement the improvement of ACS algorithm on new data from the database of CVRP. Through the implementation of the proposed algorithm better results were obtained from the results of other methods and the results were compared

    New Swarm-Based Metaheuristics for Resource Allocation and Schwduling Problems

    Full text link
    Tesis doctoral inédita leída en la Universidad Autónoma de Madrid, Escuela Politécnica Superior, Departamento de Ingeniería Informática. Fecha de lectura : 10-07-2017Esta tesis tiene embargado el acceso al texto completo hasta el 10-01-201
    corecore