856 research outputs found

    Cell line name recognition in support of the identification of synthetic lethality in cancer from text

    Get PDF
    Motivation: The recognition and normalization of cell line names in text is an important task in biomedical text mining research, facilitating for instance the identification of synthetically lethal genes from the literature. While several tools have previously been developed to address cell line recognition, it is unclear whether available systems can perform sufficiently well in realistic and broad-coverage applications such as extracting synthetically lethal genes from the cancer literature. In this study, we revisit the cell line name recognition task, evaluating both available systems and newly introduced methods on various resources to obtain a reliable tagger not tied to any specific subdomain. In support of this task, we introduce two text collections manually annotated for cell line names: the broad-coverage corpus Gellus and CLL, a focused target domain corpus. Results: We find that the best performance is achieved using NERsuite, a machine learning system based on Conditional Random Fields, trained on the Gellus corpus and supported with a dictionary of cell line names. The system achieves an F-score of 88.46% on the test set of Gellus and 85.98% on the independently annotated CLL corpus. It was further applied at large scale to 24 302 102 unannotated articles, resulting in the identification of 5 181 342 cell line mentions, normalized to 11 755 unique cell line database identifiers

    Natural Language Query in the Biochemistry and Molecular Biology Domains Based on Cognition Search™

    Get PDF
    Motivation: With the tremendous growth in scientific literature, it is necessary to improve upon the standard pattern matching style of the available search engines. Semantic NLP may be the solution to this problem. Cognition Search (CSIR) is a natural language technology. It is best used by asking a simple question that might be answered in textual data being queried, such as MEDLINE. CSIR has a large English dictionary and semantic database. Cognition’s semantic map enables the search process to be based on meaning rather than statistical word pattern matching and, therefore, returns more complete and relevant results. The Cognition Search engine uses downward reasoning and synonymy which also improves recall. It improves precision through phrase parsing and word sense disambiguation.
Result: Here we have carried out several projects to "teach" the CSIR lexicon medical, biochemical and molecular biological language and acronyms from curated web-based free sources. Vocabulary from the Alliance for Cell Signaling (AfCS), the Human Genome Nomenclature Consortium (HGNC), the United Medical Language System (UMLS) Meta-thesaurus, and The International Union of Pure and Applied Chemistry (IUPAC) was introduced into the CSIR dictionary and curated. The resulting system was used to interpret MEDLINE abstracts. Meaning-based search of MEDLINE abstracts yields high precision (estimated at >90%), and high recall (estimated at >90%), where synonym information has been encoded. The present implementation can be found at http://MEDLINE.cognition.com. 
&#xa

    Ontologies and Information Extraction

    Full text link
    This report argues that, even in the simplest cases, IE is an ontology-driven process. It is not a mere text filtering method based on simple pattern matching and keywords, because the extracted pieces of texts are interpreted with respect to a predefined partial domain model. This report shows that depending on the nature and the depth of the interpretation to be done for extracting the information, more or less knowledge must be involved. This report is mainly illustrated in biology, a domain in which there are critical needs for content-based exploration of the scientific literature and which becomes a major application domain for IE

    Towards Automatic Extraction of Social Networks of Organizations in PubMed Abstracts

    Full text link
    Social Network Analysis (SNA) of organizations can attract great interest from government agencies and scientists for its ability to boost translational research and accelerate the process of converting research to care. For SNA of a particular disease area, we need to identify the key research groups in that area by mining the affiliation information from PubMed. This not only involves recognizing the organization names in the affiliation string, but also resolving ambiguities to identify the article with a unique organization. We present here a process of normalization that involves clustering based on local sequence alignment metrics and local learning based on finding connected components. We demonstrate the application of the method by analyzing organizations involved in angiogenensis treatment, and demonstrating the utility of the results for researchers in the pharmaceutical and biotechnology industries or national funding agencies.Comment: This paper has been withdrawn; First International Workshop on Graph Techniques for Biomedical Networks in Conjunction with IEEE International Conference on Bioinformatics and Biomedicine, Washington D.C., USA, Nov. 1-4, 2009; http://www.public.asu.edu/~sjonnal3/home/papers/IEEE%20BIBM%202009.pd

    ProNormz – An integrated approach for human proteins and protein kinases normalization

    Get PDF
    AbstractThe task of recognizing and normalizing protein name mentions in biomedical literature is a challenging task and important for text mining applications such as protein–protein interactions, pathway reconstruction and many more. In this paper, we present ProNormz, an integrated approach for human proteins (HPs) tagging and normalization. In Homo sapiens, a greater number of biological processes are regulated by a large human gene family called protein kinases by post translational phosphorylation. Recognition and normalization of human protein kinases (HPKs) is considered to be important for the extraction of the underlying information on its regulatory mechanism from biomedical literature. ProNormz distinguishes HPKs from other HPs besides tagging and normalization. To our knowledge, ProNormz is the first normalization system available to distinguish HPKs from other HPs in addition to gene normalization task. ProNormz incorporates a specialized synonyms dictionary for human proteins and protein kinases, a set of 15 string matching rules and a disambiguation module to achieve the normalization. Experimental results on benchmark BioCreative II training and test datasets show that our integrated approach achieve a fairly good performance and outperforms more sophisticated semantic similarity and disambiguation systems presented in BioCreative II GN task. As a freely available web tool, ProNormz is useful to developers as extensible gene normalization implementation, to researchers as a standard for comparing their innovative techniques, and to biologists for normalization and categorization of HPs and HPKs mentions in biomedical literature. URL: http://www.biominingbu.org/pronormz

    NEMO: Extraction and normalization of organization names from PubMed affiliations

    Get PDF
    Background: We are witnessing an exponential increase in biomedical research citations in PubMed. However, translating biomedical discoveries into practical treatments is estimated to take around 17 years, according to the 2000 Yearbook of Medical Informatics, and much information is lost during this transition. Pharmaceutical companies spend huge sums to identify opinion leaders and centers of excellence. Conventional methods such as literature search, survey, observation, self‐identification, expert opinion, and sociometry not only need much human effort, but are also non‐comprehensive. Such huge delays and costs can be reduced by “connecting those who produce the knowledge with those who apply it”. A humble step in this direction is large‐scale discovery of persons and organizations involved in specific areas of research. This can be achieved by automatically extracting and disambiguating author names and affiliation strings retrieved through Medical Subject Heading (MeSH) terms and other keywords associated with articles in PubMed. In this study, we propose NEMO (Normalization Engine for Matching Organizations), a system for extracting organization names from the affiliation strings provided in PubMed abstracts, building a thesaurus (list of synonyms) of organization names, and subsequently normalizing them to a canonical organization name using the thesaurus. Results: We used a parsing process that involves multi‐layered rule matching with multiple dictionaries. The normalization process involves clustering based on weighted local sequence alignment metrics to address synonymy at word level, and local learning based on finding connected components to address synonymy. The graphical user interface and java client library of NEMO are available at http://lnxnemo.sourceforge.net. Conclusion: NEMO associates each biomedical paper and its authors with a unique organization name and the geopolitical location of that organization. This system provides more accurate information about organizations than the raw affiliation strings provided in PubMed abstracts. It can be used for : a) bimodal social network analysis that evaluates the research relationships between individual researchers and their institutions; b) improving author name disambiguation; c) augmenting National Library of Medicine (NLM)’s Medical Articles Record System (MARS) system for correcting errors due to OCR on affiliation strings that are in small fonts; and d) improving PubMed citation indexing strategies (authority control) based on normalized organization name and country

    Normalizing biomedical terms by minimizing ambiguity and variability

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>One of the difficulties in mapping biomedical named entities, e.g. genes, proteins, chemicals and diseases, to their concept identifiers stems from the potential variability of the terms. Soft string matching is a possible solution to the problem, but its inherent heavy computational cost discourages its use when the dictionaries are large or when real time processing is required. A less computationally demanding approach is to normalize the terms by using heuristic rules, which enables us to look up a dictionary in a constant time regardless of its size. The development of good heuristic rules, however, requires extensive knowledge of the terminology in question and thus is the bottleneck of the normalization approach.</p> <p>Results</p> <p>We present a novel framework for discovering a list of normalization rules from a dictionary in a fully automated manner. The rules are discovered in such a way that they minimize the ambiguity and variability of the terms in the dictionary. We evaluated our algorithm using two large dictionaries: a human gene/protein name dictionary built from BioThesaurus and a disease name dictionary built from UMLS.</p> <p>Conclusions</p> <p>The experimental results showed that automatically discovered rules can perform comparably to carefully crafted heuristic rules in term mapping tasks, and the computational overhead of rule application is small enough that a very fast implementation is possible. This work will help improve the performance of term-concept mapping tasks in biomedical information extraction especially when good normalization heuristics for the target terminology are not fully known.</p
    • 

    corecore