252,263 research outputs found

    Privacy preserving, real-time and location secured biometrics for mCommerce authentication

    Get PDF
    Secure wireless connectivity between mobile devices and financial/commercial establishments is mature, and so is the security of remote authentication for mCommerce. However, the current techniques are open for hacking, false misrepresentation, replay and other attacks. This is because of the lack of real-time and current-precise-location in the authentication process. This paper proposes a new technique that includes freshly-generated real-time personal biometric data of the client and present-position of the mobile device used by the client to perform the mCommerce so to form a real-time biometric representation to authenticate any remote transaction. A fresh GPS fix generates the "time and location" to stamp the biometric data freshly captured to produce a single, real-time biometric representation on the mobile device. A trusted Certification Authority (CA) acts as an independent authenticator of such client's claimed real time location and his/her provided fresh biometric data. Thus eliminates the necessity of user enrolment with many mCommerce services and application providers. This CA can also "independently from the client" and "at that instant of time" collect the client's mobile device "time and location" from the cellular network operator so to compare with the received information, together with the client's stored biometric information. Finally, to preserve the client's location privacy and to eliminate the possibility of cross-application client tracking, this paper proposes shielding the real location of the mobile device used prior to submission to the CA or authenticators

    Optical Network Models and their Application to Software-Defined Network Management

    Get PDF
    Software-defined networking is finding its way into optical networks. Here, it promises a simplification and unification of network management for optical networks allowing automation of operational tasks despite the highly diverse and vendor-specific commercial systems and the complexity and analog nature of optical transmission. A fundamental component for software-defined optical networking are common abstractions and interfaces. Currently, a number of models for optical networks are available. They all claim to provide open and vendor agnostic management of optical equipment. In this work, we survey and compare the most important models and propose an intent interface for creating virtual topologies that is integrated in the existing model ecosystem.Comment: Parts of the presented work has received funding from the European Commission within the H2020 Research and Innovation Programme, under grant agreeement n.645127, project ACIN

    Accessible user interface support for multi-device ubiquitous applications: architectural modifiability considerations

    Get PDF
    The market for personal computing devices is rapidly expanding from PC, to mobile, home entertainment systems, and even the automotive industry. When developing software targeting such ubiquitous devices, the balance between development costs and market coverage has turned out to be a challenging issue. With the rise of Web technology and the Internet of things, ubiquitous applications have become a reality. Nonetheless, the diversity of presentation and interaction modalities still drastically limit the number of targetable devices and the accessibility toward end users. This paper presents webinos, a multi-device application middleware platform founded on the Future Internet infrastructure. Hereto, the platform's architectural modifiability considerations are described and evaluated as a generic enabler for supporting applications, which are executed in ubiquitous computing environments

    Model-driven and Compositional Service Creation in the Internet of Services

    Get PDF
    Doktorgradsavhandling i informasjons- og kommunikasjonsteknologi, Universitetet i Agder, Grimstad, 2012In the Future Internet, billions of devices will be connected to the Internet. Devices at any levels of hierarchy provide software functionality that can be used by others. We can call the device’s functionality a service, which in turn, introduces the concept of the Internet of Services. From the software developer perspectives, a new service can be created by utilizing services in the Internet of Services. An important issue of the creation of such service-based application is regarding their deployment method on personalized and embedded devices. For each device with different capability and configuration, different tailored code is required. For this, a flexible method and tools that support an automatic code generation for a device with a specific capability and configuration are mandatory. This thesis proposes PMG-pro (Present, Model, Generate and provide), a language- independent, bottom-up and model-driven method for the service creation in the Internet of Services. With this method, a service is created by providing the new functionality of a service-based application as a service. By using existing service frameworks and APIs, from a service description, PMG-pro generates an abstract graphical service representation (service model) and source code implementing for service invocations. Depending on the target modeling languages, different graphical notations can be used to represent services. Similarly, different programming languages can also be used to implement the service invocations. We call these pairs (i.e., the service model and the source code) platform-specific models. With these platform models, service composers use the graphical service representation to model new service-based applications, while the machine (i.e., computer system) uses the source code to generate code from the service-based application model. This thesis contributes to the service engineering method that applies a modeldriven development approach. Three main contributions are a model-driven method for service creation, an automatic service presentation of pre-made services, and a new method of handling device capability and configuration. With these, service creation in the Internet of Services can be done in a rapid and automatic manner. Service designers can create a new service by defining a model of service-based applications using pre-made service models, while code for a specific device can be generated automatically from the model. The PMG-pro method has been partly prototyped and validated on various case studies in the domain of smart homes that have produced encouraging results. The method promotes a rapid, language-independent, and unified process of software service development

    Model-driven and Compositional Service Creation in the Internet of Services

    Get PDF
    Doktorgradsavhandling i informasjons- og kommunikasjonsteknologi, Universitetet i Agder, Grimstad, 2012In the Future Internet, billions of devices will be connected to the Internet. Devices at any levels of hierarchy provide software functionality that can be used by others. We can call the device’s functionality a service, which in turn, introduces the concept of the Internet of Services. From the software developer perspectives, a new service can be created by utilizing services in the Internet of Services. An important issue of the creation of such service-based application is regarding their deployment method on personalized and embedded devices. For each device with different capability and configuration, different tailored code is required. For this, a flexible method and tools that support an automatic code generation for a device with a specific capability and configuration are mandatory. This thesis proposes PMG-pro (Present, Model, Generate and provide), a language- independent, bottom-up and model-driven method for the service creation in the Internet of Services. With this method, a service is created by providing the new functionality of a service-based application as a service. By using existing service frameworks and APIs, from a service description, PMG-pro generates an abstract graphical service representation (service model) and source code implementing for service invocations. Depending on the target modeling languages, different graphical notations can be used to represent services. Similarly, different programming languages can also be used to implement the service invocations. We call these pairs (i.e., the service model and the source code) platform-specific models. With these platform models, service composers use the graphical service representation to model new service-based applications, while the machine (i.e., computer system) uses the source code to generate code from the service-based application model. This thesis contributes to the service engineering method that applies a modeldriven development approach. Three main contributions are a model-driven method for service creation, an automatic service presentation of pre-made services, and a new method of handling device capability and configuration. With these, service creation in the Internet of Services can be done in a rapid and automatic manner. Service designers can create a new service by defining a model of service-based applications using pre-made service models, while code for a specific device can be generated automatically from the model. The PMG-pro method has been partly prototyped and validated on various case studies in the domain of smart homes that have produced encouraging results. The method promotes a rapid, language-independent, and unified process of software service development

    Service-oriented Context-aware Framework

    Get PDF
    Location- and context-aware services are emerging technologies in mobile and desktop environments, however, most of them are difficult to use and do not seem to be beneficial enough. Our research focuses on designing and creating a service-oriented framework that helps location- and context-aware, client-service type application development and use. Location information is combined with other contexts such as the users' history, preferences and disabilities. The framework also handles the spatial model of the environment (e.g. map of a room or a building) as a context. The framework is built on a semantic backend where the ontologies are represented using the OWL description language. The use of ontologies enables the framework to run inference tasks and to easily adapt to new context types. The framework contains a compatibility layer for positioning devices, which hides the technical differences of positioning technologies and enables the combination of location data of various sources

    Design of a middleware for QoS-aware distribution transparent content delivery

    Get PDF
    Developers of distributed multimedia applications face a diversity of multimedia formats, streaming platforms and streaming protocols. Furthermore, support for end-to-end quality-of-service (QoS) is a crucial factor for the development of future distributed multimedia systems. This paper discusses the architecture, design and implementation of a QoS-aware middleware platform for content delivery. The platform supports the development of distributed multimedia applications and can deliver content with QoS guarantees. QoS support is offered by means of an agent infrastructure for QoS negotiation and enforcement. Properties of content are represented using a generic content representation model described using the OMG Meta Object Facility (MOF) model. A content delivery framework manages stream paths for content delivery despite differences in streaming protocols and content encoding. The integration of the QoS support, content representation and content delivery framework results in a QoS-aware middleware that enables representation transparent and location transparent delivery of content
    • …
    corecore