1,645 research outputs found

    Quantum-dot Cellular Automata: Review Paper

    Get PDF
    Quantum-dot Cellular Automata (QCA) is one of the most important discoveries that will be the successful alternative for CMOS technology in the near future. An important feature of this technique, which has attracted the attention of many researchers, is that it is characterized by its low energy consumption, high speed and small size compared with CMOS.  Inverter and majority gate are the basic building blocks for QCA circuits where it can design the most logical circuit using these gates with help of QCA wire. Due to the lack of availability of review papers, this paper will be a destination for many people who are interested in the QCA field and to know how it works and why it had taken lots of attention recentl

    From Microelectronics to Nanoelectronics: Introducing Nanotechnology to VLSI Curricula

    Get PDF
    © 2011 by ASEEIn the past decades, VLSI industries constantly shrank the size of transistors, so that more and more transistors can be built into the same chip area to make VLSI more and more powerful in its functions. As the typical feature size of CMOS VLSI is shrunk into deep submicron domain, nanotechnology is the next step in order to maintain Moore’s law for several more decades. Nanotechnology not only further improves the resolution in traditional photolithography process, but also introduces many brand-new fabrication strategies, such as bottom-up molecular self-assembly. Nanotechnology is also enabling many novel devices and circuit architectures which are totally different from current microelectronics circuits, such as quantum computing, nanowire crossbar circuits, spin electronics, etc. Nanotechnology is bringing another technology revolution to traditional CMOS VLSI technology. In order to train students to meet the quickly-increasing industry demand for nextgeneration nanoelectronics engineers, we are making efforts to introduce nanotechnology into our VLSI curricula. We have developed a series of VLSI curricula which include CPE/EE 448D - Introduction to VLSI, EE 548 - Low Power VLSI Circuit Design, EE 458 - Analog VLSI Circuit Design, EE 549 - VLSI Testing, etc. Furthermore, we developed a series of micro and nanotechnology related courses, such as EE 451 - Nanotechnology, EE 448 - Microelectronic Fabrication, EE 446 – MEMS (Microelectromechanical Systems). We introduce nanotechnology into our VLSI curricula, and teach the students about various devices, fabrication processes, circuit architectures, design and simulation skills for future nanotechnology-based nanoelectronic circuits. Some examples are nanowire crossbar circuit architecture, carbon-nanotube based nanotransistor, single-electron transistor, spintronics, quantum computing, bioelectronic circuits, etc. Students show intense interest in these exciting topics. Some students also choose nanoelectronics as the topic for their master project/thesis, and perform successful research in the field. The program has attracted many graduate students into the field of nanoelectronics

    The alchemy of ideas

    Get PDF
    This article presents an assessment of the power of ideas and their role in initiating change and progress. The enormous potential cascade effect is illustrated by examining the movement of Modernism in the arts. Next, the immense scope and capabilities of the modern scientific endeavor—with robotic space exploration at the scale of 10âč meters at one extreme and the wonders of nanoscience at the scale of 10⁻âč m at the other—are examined. The attitudes and philosophies of neurological surgery are related to those involved in the Modernist movement and placed on the defined scale of contemporary scientific activity

    A polymorphic hardware platform

    Get PDF
    In the domain of spatial computing, it appears that platforms based on either reconfigurable datapath units or on hybrid microprocessor/logic cell organizations are in the ascendancy as they appear to offer the most efficient means of providing resources across the greatest range of hardware designs. This paper encompasses an initial exploration of an alternative organization. It looks at the effect of using a very fine-grained approach based on a largely undifferentiated logic cell that can be configured to operate as a state element, logic or interconnect - or combinations of all three. A vertical layout style hides the overheads imposed by reconfigurability to an extent where very fine-grained organizations become a viable option. It is demonstrated that the technique can be used to develop building blocks for both synchronous and asynchronous circuits, supporting the development of hybrid architectures such as globally asynchronous, locally synchronous

    High functionality reversible arithmetic logic unit

    Get PDF
    Energy loss is a big challenge in digital logic design primarily due to impending end of Moore’s Law. Increase in power dissipation not only affects portability but also overall life span of a device. Many applications cannot afford this loss. Therefore, future computing will rely on reversible logic for implementation of power efficient and compact circuits. Arithmetic and logic unit (ALU) is a fundamental component of all processors and designing it with reversible logic is tedious. The various ALU designs using reversible logic gates exist in literature but operations performed by them are limited. The main aim of this paper is to propose a new design of reversible ALU and enhance number of operations in it. This paper critically analyzes proposed ALU with existing designs and demonstrates increase in functionality with 56% reduction in gates, 17 % reduction in garbage lines, 92 % reduction in ancillary lines and 53 % reduction in quantum cost. The proposed ALU design is coded in Verilog HDL, synthesized and simulated using EDA (Electronic Design Automation) tool-Xilinx ISE design suit 14.2. RCViewer+ tool has been used to validate quantum cost of proposed design
    • 

    corecore