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Abstract

Quantum-dot cellular automata are an interesting nanoscale computing paradigm. The introduction of the ternary
quantum-dot cell enabled ternary computing, and with the recent development of a ternary functionally complete
set of elementary logic primitives and the ternary memorizing cell design of complex processing structures is
becoming feasible. The specific nature of the ternary quantum-dot cell makes wire crossings one of the most
problematic areas of ternary quantum-dot cellular automata circuit design. We hereby present a two-layer wire
crossing that uses a specific clocking scheme, which ensures the crossed wires have the same effective delay.
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Background
Since the first introduction of quantum-dot cellular
automata (QCA), an interesting nanoscale computing
paradigm by Lent et al. in 1993 [1], many researchers
have embraced its simple concept and potential as a future
processing platform [2-6]. In recent years, a group of
researchers have presented a generalization of the basic
QCA cell, namely the ternary QCA (tQCA) cell [7-10],
which enables ternary computation. Their principal moti-
vator was the premise that future processing platforms
should not disregard the advantages of multi-valued pro-
cessing [11-15]. The group presented the basic ternary
building blocks, the inverter, majority gate, wire, corner
wire and fan-out, and more recently also, a functionally
complete set of ternary logic functions, based on Post
Logic, and a memorizing tQCA circuit [16,17]. Due to
the specifics of the tQCA cell, wire crossings seem to be
the principal drawback before a more widespread accep-
tance of tQCA circuitry. Wire crossings are one of the
most used steps in systematic logic design. In the classic,
binary QCAs, wires can be crossed either in a coplanar
fashion by using rotated QCA cells for one of the wires
or in a multilayer fashion where two intermediate layers
are used to prevent any possible crosstalk between the
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two crossing lines [18]. Although the multilayer approach
proves to be more robust [19], the majority of designs
employ the coplanar one; that is in fact one of the most
praised features of classic QCA. Since coplanar crossings
tend to be prone to robustness issues, much research has
been devoted to its increase, even to the extents of alter-
ing the design of QCA logic gates [20-22], or as in the
case of molecular implementations, through the elimina-
tion of crossings by logic gate duplication [23,24]. Another
approach exploits the pipelined nature of QCAs and uses
parallel-to-serial converters and a specialized clocking
scheme to design a coplanar crossbar network [25]. Copla-
nar crossings with rotated tQCA cells are not possible, but
multilayer crossings are, as it has been reported recently
[26]. Here, we go a step further by presenting a wire cross-
ing that is synchronized, i.e., the two wires employ such
clocking schemes that the outputs of the two wires have
the same effective delay. In addition, the clocking schemes
allow for a two-layer design, in other words, removing the
requirement for additional layers, whose sole purpose is
to prevent possible crosstalk. The article is organized as
follows. We first present the overview of a ternary QCA
cell, its architecture and inter-cell interaction. We follow
by presenting a two-layer design, where we first show
the inter-layer interaction followed by presenting the
design and clocking scheme of a two-layer synchronized
wire crossing.

© 2012 Lebar Bajec and Pečar; licensee Springer. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Springer - Publisher Connector

https://core.ac.uk/display/81596103?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
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The ternary QCA cell
A QCA is, in general, a planar array of quantum-dot cells
(QCA cells) [1]. In the case of a ternary QCA, it is an array
of tQCA cells. A tQCA cell [7,8] is a circular arrange-
ment of eight quantum-dots and two mobile electrons.
The electrons tend to localize only in the quantum dots
or tunnel between adjacent quantum dots, and they can-
not tunnel outside of the cell. The Coulomb interaction
causes the electrons to localize in the quantum dots that
ensure their maximal separation (thus achieving the min-
imal energetic state). The four arrangements, which in the
case of an isolated cell, correspond to the energetic min-
imal state (ground state) are marked as A, B, C, and D
(see Figure 1).
It turns out that placing a well-polarized cell (i.e., a

cell with electrons fixed in one of the four arrangements)
nearby causes one of the four states to become the favored
one even in the observed cell. When the well-polarized
cell is on the same plane, but to the left, right, above, or
below the observed cell, then the state A or B in the well-
polarized cell induces the same state even in the observed
cell. However, state C induces state D, and the same goes
for state D, which induces state C in the observed cell. If
one interprets state A, B, C, and D as balanced ternary
logic values, so that state A represents logic value −1,
state B logic value 1, and states C and D both logic value
0, then inter-cell interaction causes the logic value of the
well-polarized cell to be transferred to the observed cell.
If the well-polarized cell is placed diagonally to the

observed cell, then state A in the well-polarized cell
induces state B in the observed cell, state B induces state
A, state C induces state C, and state D induces state
D. When the states are interpreted as logic values, this
translates to logic negation. With specific planar arrange-
ments of cells, it is thus possible to mimic the behavior of
interconnecting wires as well as logic gates [27]. By inter-
connecting such building blocks, more complex devices
capable of processing can be constructed.
The reliability of the logic value transfer throughout a

QCA device (i.e., a spatial arrangement of QCA cells)

Figure 1 Ternary quantum-dot cell (tQCA cell) ground states. In
the case of an isolated tQCA cell, a circular arrangement of quantum
dots with two mobile electrons, there are four electron arrangements
that ensure their maximal separation thus achieving a ground state.
They are marked A, B, C and D and can be mapped to balanced
ternary values -1, 0, and 1.

depends foremost on the reliability of the switching pro-
cess, i.e., the transition of a cell’s state that corresponds
to one logic value to a state that corresponds to another.
The reliability is ensured via the adiabatic switching con-
cept [9,28], where a cyclic signal, namely adiabatic clock,
is used to control the switching dynamics. The cyclic sig-
nal is comprised of four phases. The switch phase serves
the cell’s gradual update of the state with respect to the
neighbors. The hold phase is intended for the stabilization
of the cell’s state when it is to be passed on to the neigh-
bors that are in the switch phase. The release phase and
the relax phase support the cell’s gradual preparation for a
new switch.
Recent research [10] showed that the correct behavior

of tQCA logic gates requires a synchronized data trans-
fer, achievable through a pipelined architecture based on
the adiabatic clock. The four-phased nature of the clock
signal allows any tQCA to be decomposed to smaller
stages or subsystems, controlled by phase shifted signals,
each defining its own clock zone (Figure 2). With the cor-
rect assignment of cells to clock zones (clocking scheme),
the direction of data flow can be controlled. The latency
of a QCA circuit is determined by the number of clock
zones along its critical path. A sequence of four clock
zones causes the delay of one clock cycle. Consequently,
minimizing the number of clock zones leads to better
designs [29].

Methods
Simulations were conducted following the same methods
as outlined in the work of Pečar et al. [10]. Inter-layer
interaction was analyzed as a two-cell system of one well-
polarized cell and one observed cell placed directly one
over the other but on separated layers. Through a series

Figure 2 Clocking scheme. The clock cycle governing the pipeline
transmission through a QCA. It is based on four phases, switch [0, 1

4 ),
hold [ 14 ,

1
2 ), release [

1
2 ,

3
4 ), and relax [ 34 , 1). Indices 0–3 indicate the

clock zones, governed by a phase shifted original clock signal C0, so
that when a cell in clock zone 0 is in the hold phase, a cell in clock
zone 1 is in the switch phase, a cell in clock zone 2 is in the relax
phase, and a cell in clock zone 3 is in the release phase.
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Figure 3 Inter-layer interaction. State transitions of the well-polarized cell and the corresponding response functions of the observed cell. Six
state transitions are presented, namely A→B, A→C, A→D, B→C, B→D, and C→D. For all cases throughout a series of sequential steps, a transition
from the initial state to neutral and then from the neutral state to the final state is applied to the well-polarized cell, and the response of the
observed cell is computed. For each transition, there are four graphs depicting the density correlation function PS for states A, B, C, and D. The
lighter curve (blue) is for the well-polarized cell, and the darker curve (orange) is the response of the observed cell. Notice that states A, B, C, and D of
the well-polarized cell induce states B, A, D, and C in the observed cell, respectively.
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of sequential steps, a transition from the initial state to
neutral and then from the neutral state to the final state
is applied to the well-polarized cell, and the response of
the observed cell is computed. The response is computed
by numerical diagonalization of a tight-binding Hubbard-
type Hamiltonian, where quantum dots are represented as
sites, and the degrees of freedom internal to the quantum
dots are ignored. The same set of parameters was used as
in the work of Pečar et al. [10], with the inter-layer distance
equal to that between the neighboring cells.
The behavior of the wire crossing was assessed using

the intercellular Hartree approximation, as in the work of
Pečar et al. [10]. A single simulation consists of the cir-
cuit’s total delay time discrete time steps. We use 200 time
steps per clock cycle. At each time step, the ground state
of the QCA is found by iteratively solving for the ground
state of each cell. The ground state of a cell (observed
cell) is calculated under the influence of the states of all
other cells in the QCA which are momentarily treated as
well-polarized. In turn, each of the QCA cells is chosen
as the observed cell, so their states change. This process
is iterated until the QCA relaxes, and no further change
in any of the cells is observed (i.e., until the QCA reaches
its ground state at the corresponding time step). At every
simulation, an initial state is applied to cells marked as
input cells (X1,X2) and the simulation run for the corre-
sponding total delay time of the QCA circuit. This is when
the cells marked as output cells (Y1,Y2) are in the hold
phase, and their states are treated as valid. We simulated
all possible combinations of initial states.

Results and discussion
Multi-layer interaction
QCA processing is based on inter-cell interaction, where
the state of a cell influences the states of its neighbors
and vice versa. The same applies for inter-layer inter-
action. The cell that is closest to the observed cell has
the largest influence on the observed cell’s state. In a

multi-layer case, two cells are closest when placed directly
one over the other, i.e., on the same location but on
separate layers.
Figure 3 presents six state transitions of the well-

polarized cell and the corresponding response functions
for the observed cell. The results were obtained by
numerical diagonalization of a tight-binding Hubbard-
type Hamiltonian, where quantum dots are represented as
sites, and the degrees of freedom internal to the quantum
dots are ignored. The same set of parameters was used as
in the work of Pečar et al. [10], with the inter-layer distance
equal to that between the neighboring cells. Reverse tran-
sitions are not presented as they are symmetrical to those
presented. Observing the graphs, it can be noticed that
the observed cell saturates very quickly, and the response
function is highly nonlinear for the initial and final states
and almost flat for the other two. However, the observed
cell does not assume the same state as it would if the two
cells were on the same layer. State A in the well-polarized
cell induces state B in the observed cell, B induces A, C
induces D, and D induces C (for the last two cases inter-
estingly as it would if the two cells were on the same layer).
When the states are interpreted as logic values this trans-
lates to logic negation since C and D both represent logic
value 0, A logic value −1, and B logic value 1.
A negation of the transferred logic value occurs by mov-

ing from one layer to the other. When designing a wire
crossing, this has no real effect as eventually the trans-
ferred logic value will be negated once more upon moving
back to the original layer. In the case when processing is
to be performed on different layers, however, this fact has
to be kept in mind. For states C and D, it presents no real
problem, as they both represent the same logic value, and
alternating between the two states is achieved through
simple addition of another adjacent cell. For states A and
B, which represent two opposite logic values (−1 and
1, respectively), this, however, means adding an inverter
(which in its simplest form could be just one cell displaced

Figure 4 Two-layer synchronized wire crossing. The left image (L1:X1-Y1) shows the clocking scheme of wire X1-Y1. It is based on a diagonal
pipelined transmission with blocks of two cells, producing a total delay of one clock cycle. The middle and right images show the clocking scheme
of wire X2-Y2. The middle image (L1:X2-Y2) the part on layer L1; note that the clocking scheme is such that the active cells cause no interference
with the cells carrying information of wire X1-Y1. The right image (L2:X2-Y2) shows the part on layer L2, where the same concept of diagonal
pipelined transmission is used as for line X1-Y1.
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Figure 5 Two-layer synchronized three wire crossing. Application of the two-layer synchronized wire crossing concept to a three wire crossing.
The total delay is 1.75 clock cycles.

diagonally) or designing the processing element based on
an inverted input value.

Synchronized two-layer wire crossing
Figure 4 presents a two-layer synchronized wire crossing
that achieves the most compact wire crossing possible.
Typically, it will be employed when two wires running
parallel to one another have to be swapped. There are
only two layers in this design, with the inter-layer distance
equal to that between neighboring cells. Our experiments
showed that this inter-layer distance is also the most
robust one. The behavior of the wire crossing was assessed
using the intercellular Hartree approximation, as in the
work of Pečar et al. [10].
The total delay of the crossing is one clock cycle. The

four phases are used so as to keep the distance between
active cells (neighboring cells that are currently in the hold
or switch phase) as large as possible, as well as to achieve
robust inter-cell transfers. Active cells on the two layers
are never directly one over the other, although this would
not present a real issue as long as enough cells are active
in the same instant. Reducing the number of active cells
makes them more susceptible to inter-layer crosstalk, all
due to the highly nonlinear inter-cell interaction.
The line, marked X1-Y1, travels in a diagonal fashion

upwards on layer L1. This is achieved in one clock cycle
(four phases), with blocks of two cells, so that the same
state that is input to the first cell, marked X1, appears on
the last cell, marked Y1, after a delay of one clock cycle.
The line, marked X2-Y2, travels first vertically from

layer L1 to layer L2, then in a diagonal fashion downwards,
and back vertically from layer L2 to layer L1, again all in
one clock cycle. This ensures that the state that is input to
the first cell, marked X2, appears on the last cell, marked
Y2, after a delay of one clock cycle.

Figure 5 presents the two-layer synchronized wire cross-
ing concept applied to a three wire crossing. The total
delay is 1.75 clock cycles, but the outputs of all three wires
are synchronized, meaning the total latency is the same
for all three wires.

Conclusions
Due to the specifics of the ternary quantum-dot cell,
the basic building block of ternary quantum dot cellu-
lar automata, coplanar wire crossings are not possible.
In this article, we present a two-layer synchronized wire
crossing; a wire crossing that uses such clocking schemes
that the effective latency is equal for both wires (one
clock cycle). In addition, the clocking schemes allow
for a two-layer design. They override the requirement
for additional layers, whose sole purpose is to prevent
possible crosstalk.
Our current research is devoted to the study of synchro-

nized two-layer wire crossings that consume fewer clock
cycles as well as tile-based solutions, what we find to be
one of the more promising approaches for QCA design
in general.
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